Добірка наукової літератури з теми "Homeolog"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Homeolog".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Homeolog"

1

Kuo, Tony C. Y., Masaomi Hatakeyama, Toshiaki Tameshige, Kentaro K. Shimizu, and Jun Sese. "Homeolog expression quantification methods for allopolyploids." Briefings in Bioinformatics 21, no. 2 (December 27, 2018): 395–407. http://dx.doi.org/10.1093/bib/bby121.

Повний текст джерела
Анотація:
Abstract Genome duplication with hybridization, or allopolyploidization, occurs in animals, fungi and plants, and is especially common in crop plants. There is an increasing interest in the study of allopolyploids because of advances in polyploid genome assembly; however, the high level of sequence similarity in duplicated gene copies (homeologs) poses many challenges. Here we compared standard RNA-seq expression quantification approaches used currently for diploid species against subgenome-classification approaches which maps reads to each subgenome separately. We examined mapping error using our previous and new RNA-seq data in which a subgenome is experimentally added (synthetic allotetraploid Arabidopsis kamchatica) or reduced (allohexaploid wheat Triticum aestivum versus extracted allotetraploid) as ground truth. The error rates in the two species were very similar. The standard approaches showed higher error rates (>10% using pseudo-alignment with Kallisto) while subgenome-classification approaches showed much lower error rates (<1% using EAGLE-RC, <2% using HomeoRoq). Although downstream analysis may partly mitigate mapping errors, the difference in methods was substantial in hexaploid wheat, where Kallisto appeared to have systematic differences relative to other methods. Only approximately half of the differentially expressed homeologs detected using Kallisto overlapped with those by any other method in wheat. In general, disagreement in low-expression genes was responsible for most of the discordance between methods, which is consistent with known biases in Kallisto. We also observed that there exist uncertainties in genome sequences and annotation which can affect each method differently. Overall, subgenome-classification approaches tend to perform better than standard approaches with EAGLE-RC having the highest precision.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nakade, Shota, Tetsushi Sakuma, Yuto Sakane, Yoshihiro Hara, Atsushi Kurabayashi, Keiko Kashiwagi, Akihiko Kashiwagi, Takashi Yamamoto, and Masanobu Obara. "Homeolog-specific targeted mutagenesis in Xenopus laevis using TALENs." In Vitro Cellular & Developmental Biology - Animal 51, no. 9 (April 29, 2015): 879–84. http://dx.doi.org/10.1007/s11626-015-9912-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhao, Na, Qianli Dong, Brian D. Nadon, Xiaoyang Ding, Xutong Wang, Yuzhu Dong, Bao Liu, Scott A. Jackson, and Chunming Xu. "Evolution of Homeologous Gene Expression in Polyploid Wheat." Genes 11, no. 12 (November 25, 2020): 1401. http://dx.doi.org/10.3390/genes11121401.

Повний текст джерела
Анотація:
Polyploidization has played a prominent role in the evolutionary history of plants. Two recent and sequential allopolyploidization events have resulted in the formation of wheat species with different ploidies, and which provide a model to study the effects of polyploidization on the evolution of gene expression. In this study, we identified differentially expressed genes (DEGs) between four BBAA tetraploid wheats of three different ploidy backgrounds. DEGs were found to be unevenly distributed among functional categories and duplication modes. We observed more DEGs in the extracted tetraploid wheat (ETW) than in natural tetraploid wheats (TD and TTR13) as compared to a synthetic tetraploid (AT2). Furthermore, DEGs showed higher Ka/Ks ratios than those that did not show expression changes (non-DEGs) between genotypes, indicating DEGs and non-DEGs experienced different selection pressures. For A-B homeolog pairs with DEGs, most of them had only one differentially expressed copy, however, when both copies of a homeolog pair were DEGs, the A and B copies were more likely to be regulated to the same direction. Our results suggest that both cis- and inter-subgenome trans-regulatory changes are important drivers in the evolution of homeologous gene expression in polyploid wheat, with ploidy playing a significant role in the process.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ludman, Márta, and Károly Fátyol. "The virological model plant, Nicotiana benthamiana expresses a single functional RDR6 homeolog." Virology 537 (November 2019): 143–48. http://dx.doi.org/10.1016/j.virol.2019.08.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Boatwright, J. Lucas, Lauren M. McIntyre, Alison M. Morse, Sixue Chen, Mi-Jeong Yoo, Jin Koh, Pamela S. Soltis, Douglas E. Soltis, and W. Brad Barbazuk. "A Robust Methodology for Assessing Differential Homeolog Contributions to the Transcriptomes of Allopolyploids." Genetics 210, no. 3 (September 13, 2018): 883–94. http://dx.doi.org/10.1534/genetics.118.301564.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Akama, Satoru, Rie Shimizu-Inatsugi, Kentaro K. Shimizu, and Jun Sese. "Genome-wide quantification of homeolog expression ratio revealed nonstochastic gene regulation in synthetic allopolyploid Arabidopsis." Nucleic Acids Research 42, no. 6 (January 13, 2014): e46-e46. http://dx.doi.org/10.1093/nar/gkt1376.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sigel, Erin M., Joshua P. Der, Michael D. Windham, and Kathleen M. Pryer. "Expression Level Dominance and Homeolog Expression Bias in Recurrent Origins of the Allopolyploid Fern Polypodium hesperium." American Fern Journal 109, no. 3 (September 17, 2019): 224. http://dx.doi.org/10.1640/0002-8444-109.3.224.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hughes, Thomas E., Jane A. Langdale, and Steven Kelly. "The impact of widespread regulatory neofunctionalization on homeolog gene evolution following whole-genome duplication in maize." Genome Research 24, no. 8 (April 30, 2014): 1348–55. http://dx.doi.org/10.1101/gr.172684.114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yoo, Mi-Jeong, Tianyi Ma, Ning Zhu, Lihong Liu, Alice C. Harmon, Qiaomei Wang, and Sixue Chen. "Genome-wide identification and homeolog-specific expression analysis of the SnRK2 genes in Brassica napus guard cells." Plant Molecular Biology 91, no. 1-2 (February 22, 2016): 211–27. http://dx.doi.org/10.1007/s11103-016-0456-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sri, Tanu, Pratiksha Mayee, and Anandita Singh. "Sequence and expression variation in SUPPRESSOR of OVEREXPRESSION of CONSTANS 1 (SOC1): homeolog evolution in Indian Brassicas." Development Genes and Evolution 225, no. 5 (August 15, 2015): 287–303. http://dx.doi.org/10.1007/s00427-015-0513-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Homeolog"

1

Juery, Caroline. "Expression et régulation épigénétique des gènes homéologues chez le blé tendre." Thesis, Université Clermont Auvergne‎ (2017-2020), 2020. http://www.theses.fr/2020CLFAC037.

Повний текст джерела
Анотація:
De nombreuses espèces de plantes sont polyploïdes, c’est-à-dire qu’elles possèdent plusieurs sous-génomes au sein du noyau de leurs cellules. La polyploïdie s’accompagne d’une redondance génétique qui offre un potentiel d’innovations évolutives important par un relâchement de la pression de sélection autorisant sous-fonctionnalisation, néo-fonctionnalisation, perte de gènes. Le blé tendre est une espèce polyploïde récente, apparue suite à deux hybridations interspécifiques (800 000 et 10 000 ans). Il possède un génome hexaploïde composé de trois sous-génomes : AABBDD et théoriquement, il possède trois copies homéologues de chaque gène (1A:1B:1D). Cependant, les analyses génomiques ont révélées que la moitié des séquences codantes présentaient un nombre de copie de type NA:NB:ND. Comment évolue cette redondance génétique après la polyploïdisation chez le blé tendre? Peut-on observer des différences d’expression des copies de gènes témoignant d’une évolution fonctionnelle pour cette espèce formée très récemment? Quels sont les mécanismes sous-jacents ? L’objectif de cette thèse a été d’analyser les expressions relatives des copies de gènes homéologues pour des groupes présentant trois (1 :1 :1, triades), deux (0:1:1, 1:0:1 ou 1:1:0, dyades) ou quatre copies (2:1:1, 1:2:1 ou 1:1:2, tétrades). Nous avons également relié les résultats aux caractéristiques structurales (position génomique), évolutives (présence ou absence des copies chez les espèces ancêtres) et épigénétiques (marques histones) des gènes pour répondre aux questions de recherche. Nous avons utilisé les données de RNA-seq et de ChIP-seq mises à disposition lors de la publication dela séquence génomique de référence du blé tendre (IWGSC 2018). Nous avons mis en évidence que les 51,1% de gènes en triades présentent en majorité (81%) une expression équilibrée sur l’ensemble des tissus et au cours du développement (expression élevée et constitutive). Ces gènes sont majoritairement associés la marque épigénétique d’activation de l’expression : H3K9ac. A contrario, les gènes en dyades (11,7% des gènes) et en tétrades (2,8% des gènes) présentent plus fréquemment des biais d’expression (36% et 75,4% respectivement). Ces gènes sont plus associés à la marque épigénétique liée à la répression ciblée et transitoire des séquences (H3K27me3). En revanche, aucune dominance d’expression n’a été décelée à l’échelle du génome entier. Ceci met en évidence de potentielles sous-fonctionnalisations des gènes, plus fréquentes pour des gènes différents des triades, présents dans les régions distales des chromosomes. Même si les biais d’expression correspondent à des différences déjà existantes chez les espèces ancêtres, nous avons cependant distingué des traits d’expression correspondant aux différentes étapes de l’histoire évolutive du blé : les copies du sous-génome D sont moins réprimées et moins associées à la marque H3K27me3 ; les biais d’expression entre les copies AABB sont plus prononcés. Ainsi, la coévolution des deux sous-génomes AABB pendant 800 000 ans est décelable alors que le sous-génome D semble encore s’exprimer de façon autonome. Ces résultats suggèrent que ce génome comprend des gènes très contraints évolutivement qui constitueraient le « core » génome de l’espèce avec des fonctions de bases conservées (gènes en triades) et des gènes présentant des variations du nombre de copies, des régulations différentielles et des fonctions spécifiques témoignant de possibles innovations évolutives, appartenant probablement au génome dit « dispensable » (dyades et tétrades)
Within the plant kingdom, a lot of species are polyploids, meaning that they present two or more sub-genomes in the nucleus of their cells. Polyploidy confers genetic redundancy that offers a high potential of innovations and adaptations by relaxing natural selection on genic sequences. This allows faster sub and neo-functionalization of genes but also a loss of sequences that might be stochastic or not between the sub-genomes. Bread wheat is a recent polyploidy species that derived from two interspecific hybridizations that occurred 800 000 and 10 000 years ago. The genome of this species contains three sub-genomes: AABBDD and in theory three copies of each gene (1A:1B:1D). However, genomic analysis of the genome sequences reveals that half of the genes present copy number variations (NA:NB:ND). Within this scientific context, we wanted to answer questions such as: How this genetic redundancy evaluates after the polyploïdisation process? Is-it possible to observe differences in terms of gene expression that could correspond to functional evolution for this recently formed species? Which mechanisms could explain those processes? The objective of this PhD was to analyses relative expressions of homoeologous genes of bread wheat for groups presenting one copy on each sub-genomes (1 :1 :1, triades) and groups presenting a copy number variation with a loss (0:1:1, 1:0:1 ou 1:1:0), dyads or a duplication (2:1:1, 1:2:1 ou 1:1:2, tetrads) of sequences. We linked this analysis to genomic characteristics such as chromosome structure (genomic position of genes for exemple), evolution (presence or absence of lost and duplicated copies within diploid genomes of the progenitor species) and epigenetics (histone modifications). We used RNA-seq and ChIP-seq data released at the same time as the publication of the genomic reference sequence of bread wheat (IWGSC 2018). We highlight that the 51,1% of triads genes present mostly (81%) a balanced expression across the 15 tissues and developmental stages analyzed (high and constitutive expression) Those genes are mainly associated with the H3K9ac histone mark that is linked to an active transcription of genes. At the opposite, dyad genes (11,7% of High Confidence wheat genes) and tetrad genes (2,8%) present more frequently unbalanced expression patterns (36% and 74,5% respectively). Those genes are more associated with the histone mark H3K27me3 defining facultative heterochromatin and that target genes with transient expression. No dominance of one sub-genome on the others was discovered at the whole genome scale but rather stochastic suppression of genes copies. These results reveals potential sub-functionalization of genes, more frequent for copies present I the distal regions of chromosomes and associated with the epigenetic mark H3K27me3. Even if the homoeolog expression bias mostly corresponds to already existing divergence between diploid progenitor species, we nevertheless observe expression bias corresponding to the different step of bread wheat evolutive history: copies from sub-genome D are less repressed than the A or B copies; expression bias between AABB copies are more pronounced. In that respect the co-evolution of the two sub-genomes AABB during 800 000 years are traceable while D sub-genome seems to still present a nearly autonomous expression Combined together, these results suggest that wheat genome contains genes evolutionary constraints that correspond to a “core” genome of the species with basic conserved function (triad genes) and genes that present variation of the number of gene copies with differential regulations and specific functions that correspond to “dispensable” genes (dyads and tetrads)
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Grier, D. G. "Homeobox genes in lung development." Thesis, Queen's University Belfast, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426729.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Voronina, Vera A. "Rx plays multiple roles in eye development." Morgantown, W. Va. : [West Virginia University Libraries], 2003. http://etd.wvu.edu/templates/showETD.cfm?recnum=2984.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--West Virginia University, 2003.
Title from document title page. Document formatted into pages; contains viii, 123 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 94-123).
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Quinn, M. F. "Homeobox gene expression in acute leukaemia." Thesis, Queen's University Belfast, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Carreiro, Lenn. "Characterization of the Alx3 homeobox gene." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0005/MQ40789.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bokaee, Shadi. "Trageting homeobox genes for cancer immunotherapy." Thesis, University of Surrey, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.543286.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hui, Jerome Ho Lam. "The Evolution of clustered Homeobox genes." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.490081.

Повний текст джерела
Анотація:
By comparison of developmental processes and features across animal taxa, one can reconstruct ancestral states and gain a deeper understanding of how different developmental modes and body plans evolved. ANTP-class homeobox genes are an ideal starting point to study the diversification of animals due to their essential functions in developmental processes, genomic organisation, confinement to animals, and highly conserved domains, which permit relatively robust orthologue classification between species.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Butts, Thomas. "The nevolution of animal homeobox genes." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.543559.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Baxter, Euan W. "Homeobox containing genes in the leech." Thesis, University of Edinburgh, 1993. http://hdl.handle.net/1842/19982.

Повний текст джерела
Анотація:
Leech embryos have been used in developmental studies for over 100 years and continue to be used because of a number of unique and useful features. There is a large amount of detailed information on the highly stereotyped cellular events that take place during leech development, and recent work has shown that it is possible to study some of the genes in leech that have been shown to exert developmental effects in other species. This thesis presents that sequence of two fragments of homeobox genes which were generated from leech Helobdella robusta by polymerase chain reaction. These genes have been named Lox 7 and Lox 8. Some preliminary in situ hybridization data suggests that the Lox 7 gene is expressed in the germinal plate of stage 9 embryos. A genomic library was constructed from Helobdella robusta DNA and screened with the Lox 7 and Lox 8 fragments. A control screening was carried out with Lox 2. These experiments proved that the Lox 7 and Lox 8 genes were not represented in the library. Positives were obtained from the control screening of the Helobdella robusta genomic library and were investigated further. Evidence is presented that some of these clones do not contain the gene used to make the probe (Lox2), but may contain other homeobox genes. Positive clones were gained from the screening of a Helobdella robusta cDNA library with the leech engrailed gene. The clones show that the mRNA from the engrailed gene is alternatively spliced.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chen, Weizhong. "Homeobox genes and regeneration in asteroid echinoderms." Thesis, Royal Holloway, University of London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Homeolog"

1

Denis, Duboule, ed. Guidebook to the homeobox genes. Oxford: Oxford University Press, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Carreiro, Lenni. Characterization of the Alx3 homeobox gene. Ottawa: National Library of Canada, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Snow, Bryan E. Characterisation of the Chx10 and 171 homeobox genes. Ottawa: National Library of Canada, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Graba, Yacine. Hox genes: Methods and protocols. New York: Humana Press, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dong, Jianli. The expression of a LIM homeobox gene ISL-1. Ottawa: National Library of Canada, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Looser, Jens. Identification of two novel CVC domain-containing homeobox genes. Ottawa: National Library of Canada, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

service), ScienceDirect (Online, ed. Hox genes. Amsterdam: Elsevier, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gehring, Walter J. Master control genes in development and evolution: The homeobox story. New Haven: Yale University Press, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hox genes: Studies from the 20th to the 21st century. New York: Springer Science+Business Media, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cohen, Dana Rachel. The cloning and characterization of the murine iroquois-related homeobox genes. Ottawa: National Library of Canada, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Homeolog"

1

Stein, Stacey, and Cory Abate-Shen. "Homeobox Genes." In Encyclopedia of Cancer, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27841-9_2788-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Stein, Stacey, and Cory Abate-Shen. "Homeobox Genes." In Encyclopedia of Cancer, 2104–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-46875-3_2788.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Stein, Stacey, and Cory Abate-Shen. "Homeobox Genes." In Encyclopedia of Cancer, 1721–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16483-5_2788.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Neelabh, Neelabh, and Akash Gautam. "Homeobox Gene." In Encyclopedia of Animal Cognition and Behavior, 1–3. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-47829-6_34-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Neelabh and Akash Gautam. "Homeobox Gene." In Encyclopedia of Animal Cognition and Behavior, 3130–32. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-55065-7_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Aldinger, Kimberly. "Aristaless-Related Homeobox Gene." In Encyclopedia of Autism Spectrum Disorders, 238–39. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1698-3_887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

La Rosa, Stefano. "Orthopedia Homeobox Protein (OTP)." In Encyclopedia of Pathology, 1–2. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-28845-1_5195-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Aldinger, Kimberly. "Aristaless-Related Homeobox Gene." In Encyclopedia of Autism Spectrum Disorders, 311. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-91280-6_887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

La Rosa, Stefano. "Orthopedia Homeobox Protein (OTP)." In Endocrine Pathology, 588–90. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-62345-6_5195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Franco, Diego, and Amelia Aranega. "PITX2 (Pituitary Homeobox Gene 2)." In Encyclopedia of Signaling Molecules, 4024–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_101670.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Homeolog"

1

Wang, Shen-Nien, and Shih-Hsien Hsu. "Abstract 4709: ERK1/2 regulates hepatocellular carcinoma through proinflammatory homeobox gene, ISX." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-4709.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kirolikar, Saurabh, Mandeep Gill, Silma Pereira, Svetlana Ghinbouschi, Luciane Cavalli, and Patricia Berg. "Abstract 1409: The BP1 homeobox gene is dysregulated in triple negative breast cancer." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-1409.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Carbone, Carmine, Geny Piro, Francesca Simionato, Fotios Loupakis, Chiara Cremolini, Gabriella Fontanini, Federica Di Nicolantonio, et al. "Abstract 3265: Homeobox B9 (HOXB9) sustains anti-VEGF treatment resistance in gastrointestinal tumors." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3265.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Huang, Yue, and Guozhang Zhu. "Abstract 3101: Pituitary homeobox 2 (PITX2) promotes thyroid carcinogenesis by activation of cyclin D2." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-3101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yamashita, Keishi, Akira Ooki, Hiroshi Katoh, David Sidransky, and Masahiko Watanabe. "Abstract 4671: Tumor Suppressive Role of HOP (homeobox only protein) Gene in Gastric Cancer." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-4671.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, SN, and SH Hsu. "PO-318 Intestine-specific homeobox gene ISX integrates IL6 signaling, tryptophan catabolism, and immune suppression." In Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.831.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Haria, Dhwani, Bon Q. Trinh, Song Yi Ko, Nicolas Barengo, and Honami Naora. "Abstract 343: The homeobox gene DLX4 promotes inflammatory signaling and peritoneal metastasis of ovarian cancer." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-343.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Shen-Nien, Li-Ting Wang, and Shih-Hsien Hsu. "Abstract 2275: Intestine-specific homeobox (ISX) upregulates E2F1 expression and related oncogenic activities in HCC." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-2275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Marcinkiewicz, Katarzyna M., and Lorraine J. Gudas. "Abstract A27: Altered epigenetic regulation of homeobox genes in human oral squamous cell carcinoma cells." In Abstracts: AACR Special Conference on Chromatin and Epigenetics in Cancer - June 19-22, 2013; Atlanta, GA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.cec13-a27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wilson, C., T. Mertens, S. Collum, W. Bi, A. Guha, R. Thandavarayan, K. Rajagopal, S. S. Jyothula, and H. Karmouty-Quintana. "Deletion of Alveolar Epithelial Type II Sine Oculis Homeobox Homolog 1 (Six1) Attenuates Established Pulmonary Fibrosis." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a5400.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Homeolog"

1

Gudas, Lorraine J. Aberrant Homeobox Gene Expression in Mammary Tumorigenesis. Fort Belvoir, VA: Defense Technical Information Center, October 2002. http://dx.doi.org/10.21236/ada413156.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gudas, Lorraine J. Aberrant Homeobox Gene Expression in Mammary Tumorigenesis. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada392917.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Daniel, Charles W. Homeobox Genes in Normal, Preneoplastic, and Neoplastic Mammary Glands. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada391550.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gorski, David H. Inhibition of Breast Cancer-Induced Angiogenesis by a Diverged Homeobox Gene. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada437755.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gorski, David H. Inhibition of Breast Cancer-Induced Angiogenesis by a Diverged Homeobox Gene. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada425899.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bieberich, Charles J. Molecular Basis of Prostate-Specific Androgen-Independent Expression of a Homeobox Gene. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada398350.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bryant, Susan V., and David M. Gardiner. Homeobox Genes and Patterning of the Proximal-Distal Axis in Regenerating Limbs. Fort Belvoir, VA: Defense Technical Information Center, May 1996. http://dx.doi.org/10.21236/ada320044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gorski, David H. Regulation of Breast Cancer-Induced Angiogenesis by a Growth Arrest-Specific Homeobox Transcription Factor. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada426328.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gorski, David H. Regulation of Breast Cancer-Induced Angiogensis by a Growth Arrest-Specific Homeobox Transcription Factor. Fort Belvoir, VA: Defense Technical Information Center, May 2003. http://dx.doi.org/10.21236/ada416728.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gorski, David H. Regulation of Breast Cancer-Induced Angiogenesis by a Growth Arrest-specific Homeobox Transcription Factor. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada473248.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії