Добірка наукової літератури з теми "Holographic imaging techniques"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Holographic imaging techniques".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Holographic imaging techniques"

1

Kang, Hoonjong, Dimana Nazarova, Branimir Ivanov, Sunghee Hong, Joo Sup Park, Youngmin Kim, Jiyong Park, Nataliya Berberova, Elena Stoykova, and Nikola Malinowski. "Digital Holographic Printing Methods for 3D Visualization of Cultural Heritage Artifacts." Digital Presentation and Preservation of Cultural and Scientific Heritage 4 (September 30, 2014): 69–78. http://dx.doi.org/10.55630/dipp.2014.4.8.

Повний текст джерела
Анотація:
Holography enables capture and reconstruction of the optical field scattered from three-dimensional (3D) objects. The hologram encodes both amplitude and phase of the field under coherent illumination, whereas photography records only the amplitude by incoherent light. 3D visualization feature of holography motivates expansion of research efforts dedicated to digital holographic imaging methods as a holographic display or a holographic printer. The paper presents two holographic 3D printing techniques which combine digital 3D representation of an object with analog holographic recording. Generation of digital contents is considered for a holographic stereogram printer and a recently proposed wavefront printer. These imaging methods could be applied to specific artifacts which are difficult to be recorded by conventional analog holography.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

PARK, Jung-Hoon, Kyoohyun KIM, and YongKeun PARK. "Holographic Optical Imaging and Manipulation Techniques." Physics and High Technology 26, no. 3 (March 31, 2017): 7–14. http://dx.doi.org/10.3938/phit.26.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Smith, D., O. Yurduseven, B. Livingstone, and V. Schejbal. "Microwave imaging using indirect holographic techniques." IEEE Antennas and Propagation Magazine 56, no. 1 (February 2014): 104–17. http://dx.doi.org/10.1109/map.2014.6821762.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Howlett, Isela D., Wanglei Han, Michael Gordon, Photini Rice, Jennifer K. Barton, and Raymond K. Kostuk. "Volume holographic imaging endoscopic design and construction techniques." Journal of Biomedical Optics 22, no. 5 (May 31, 2017): 056010. http://dx.doi.org/10.1117/1.jbo.22.5.056010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

McCartney, M. R. "Electron Holographic Imaging of Magnetic Materials at Nanometer Scale Resolution." Microscopy and Microanalysis 3, S2 (August 1997): 519–20. http://dx.doi.org/10.1017/s143192760000948x.

Повний текст джерела
Анотація:
Traditional electron microscopy techniques for imaging magnetic microstructure include out-of-focus Fresnel or Lorentz imaging, Foucault imaging and differential phase contrast (DPC). Off-axis electron holography provides access to both the amplitude and phase of the electron wave which has passed through the sample and therefore can provide direct, quantitative information about the in-plane component of the magnetic induction. The Philips CM200-FEG microscope which was used for the holography described here is equipped with a powerful mini-lens below the specimen enabling 2nm spatial resolution and only a small residual field at the sample. The combination of high coherence and increased magnification enable quantitative mapping of magnetic induction at the nanometer scale.Electrostatic or magnetic potentials give rise to phase shifts in the holographic interference fringes which can be quantified following reconstruction. In the presence of a magnetic field, the phase equation (for constant composition and neglecting diffraction effects) becomes:
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yang, Guoliang, Junhong Su, Yuan Li, Jialin Cai, and Yiren Li. "A Study of Resolution Improvement in Noncoherent Optical Coherence Imaging." Advances in Mathematical Physics 2022 (July 5, 2022): 1–12. http://dx.doi.org/10.1155/2022/3232323.

Повний текст джерела
Анотація:
Noncoherent light, as a common light source in life, can effectively avoid problems such as scattering noise caused by optical components incoherent light imaging, and through the design of the optical path can also trigger interference and holographic imaging of objects, allowing holography to be used in more fields. Various techniques have emerged for recording holograms using incoherent light sources as technology has developed. A recording method has been proposed that exploits the correlation between the object wave information and the Fresnel band sheet to achieve incoherent hologram recording. Using a spatial light modulator (SLM) loaded with a bit-phase mask with multiplexed lens function, the incident light wavefield is phase-modulated to achieve diffraction spectroscopy and phase shifting. And holograms with different phase shifts can be obtained and combined with phase-shifting techniques to eliminate the effects of twin images caused by coaxial holography in the reproduction process. Based on the study of this incoherent holographic imaging system, the influence of the characteristics of the main components of the system and the corresponding parameters on the resolution of the recorded and reproduced holograms is investigated, and optimization methods are given from both theoretical and experimental studies. The empirical analysis of the FINCH imaging system is carried out. The observed optical path is designed, and the method of making a bit-phase mask loaded on a spatial light modulator is presented. The effect of the focal length and recording distance of the dislocation mask on the resolution of the system is investigated by both computer simulation and experimental operation.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Picart, Pascal. "Recent advances in speckle decorrelation modeling and processing in digital holographic interferometry." Photonics Letters of Poland 13, no. 4 (December 30, 2021): 73. http://dx.doi.org/10.4302/plp.v13i4.1126.

Повний текст джерела
Анотація:
Digital holography, and especially digital holographic interferometry, is a powerful approach for the characterization of modifications at the surface or in the volume of objects. Nevertheless, the reconstructed phase data from holographic interferometry is corrupted by the speckle noise. In this paper, we discuss on recent advances in speckle decorrelation noise removal. Two main topics are considered. The first one presents recent results in modelling the decorrelation noise in digital Fresnel holography. Especially the anisotropy of the decorrelation noise is established. The second topic presents a new approach for speckle de-noising using deep convolution neural networks. Full Text: PDF ReferencesP. Picart (ed.), New techniques in digital holography (John Wiley & Sons, 2015). CrossRef T.M. Biewer, J.C. Sawyer, C.D. Smith, C.E. Thomas, "Dual laser holography for in situ measurement of plasma facing component erosion (invited)", Rev. Sci. Instr. 89, 10J123 (2018). CrossRef M. Fratz, T. Beckmann, J. Anders, A. Bertz, M. Bayer, T. Gießler, C. Nemeth, D. Carl, "Inline application of digital holography [Invited]", Appl. Opt. 58(34), G120 (2019). CrossRef M.P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, D. Doyle, "Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [Invited]", Appl. Opt. 52(1), A102 (2013). CrossRef E. Meteyer, F. Foucart, M. Secail-Geraud, P. Picart, C. Pezerat, "Full-field force identification with high-speed digital holography", Mech. Syst. Signal Process. 164 (2022). CrossRef L. Lagny, M. Secail-Geraud, J. Le Meur, S. Montresor, K. Heggarty, C. Pezerat, P. Picart, "Visualization of travelling waves propagating in a plate equipped with 2D ABH using wide-field holographic vibrometry", J. Sound Vib. 461 114925 (2019). CrossRef L. Valzania, Y. Zhao, L. Rong, D. Wang, M. Georges, E. Hack, P. Zolliker, "THz coherent lensless imaging", Appl. Opt. 58, G256 (2019). CrossRef V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, P. Ferraro, "Strategies for reducing speckle noise in digital holography", Light: Sci. Appl. 7(1), 1 (2018). CrossRef V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, P. Ferraro, "Quasi noise-free digital holography", Light. Sci. Appl. 5(9), e16142 (2016). CrossRef R. Horisaki, R. Takagi, J. Tanida, "Deep-learning-generated holography", Appl. Opt. 57(14), 3859 (2018). CrossRef E. Meteyer, F. Foucart, C. Pezerat, P. Picart, "Modeling of speckle decorrelation in digital Fresnel holographic interferometry", Opt. Expr. 29(22), 36180 (2021). CrossRef M. Piniard, B. Sorrente, G. Hug, P. Picart, "Theoretical analysis of surface-shape-induced decorrelation noise in multi-wavelength digital holography", Opt. Expr. 29(10), 14720 (2021). CrossRef P. Picart, S. Montresor, O. Sakharuk, L. Muravsky, "Refocus criterion based on maximization of the coherence factor in digital three-wavelength holographic interferometry", Opt. Lett. 42(2), 275 (2017). CrossRef P. Picart, J. Leval, "General theoretical formulation of image formation in digital Fresnel holography", J. Opt. Soc. Am. A 25, 1744 (2008). CrossRef S. Montresor, P. Picart, "Quantitative appraisal for noise reduction in digital holographic phase imaging", Opt. Expr. 24(13), 14322 (2016). CrossRef S. Montresor, M. Tahon, A. Laurent, P. Picart, "Computational de-noising based on deep learning for phase data in digital holographic interferometry", APL Photonics 5(3), 030802 (2020). CrossRef M. Tahon, S. Montresor, P. Picart, "Towards Reduced CNNs for De-Noising Phase Images Corrupted with Speckle Noise", Photonics 8(7), 255 (2021). CrossRef E. Meteyer, S. Montresor, F. Foucart, J. Le Meur, K. Heggarty, C. Pezerat, P. Picart, "Lock-in vibration retrieval based on high-speed full-field coherent imaging", Sci. Rep. 11(1), 1 (2021). CrossRef
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yu, Panpan, Yifan Liu, Yijing Wu, Jinghan Zhuang, Ziqiang Wang, Yinmei Li, and Lei Gong. "Large-FOV scattering-assisted holographic projection by enhanced sampling of transmission matrix." Applied Physics Letters 122, no. 6 (February 6, 2023): 061104. http://dx.doi.org/10.1063/5.0137279.

Повний текст джерела
Анотація:
Based on wavefront shaping, scattering materials provide a unique tool to break the trade-off between the viewing angle and field of view (FOV) for three-dimensional holographic projections. However, large-size image projection is limited by the low sampling ability of the transmission matrix (TM) of the scattering medium. Here, we propose a disperse and montage sampling strategy to access the TM for large-size image projection by scattering-assisted holography. Compared with the conventional TM sampling methods, our method achieves control of the output field with an enlarged FOV and improved adaptability. Experimentally, we achieve calibration of a TM corresponding to 1920 × 780 output pixels. As a proof of concept, we demonstrate holographic projection of large-size letter images within an area of 11.25 × 4.57 mm2 behind a scattering medium. In addition, we show that large-FOV vectorial projection can also be achieved by sampling the polarization-related TMs. Our work is expected to benefit scattering-assisted holographic techniques with potential applications in holographic display, imaging, and trapping.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nam Kim, Nam Kim, Md Ashraful Alam Md. Ashraful Alam, Le Thanh Bang Le Thanh Bang, Anh-Hoang Phan Anh-Hoang Phan, Mei-Lan Piao Mei-Lan Piao, and Munkh-Uchral Erdenebat Munkh-Uchral Erdenebat. "Advances in the light field displays based on integral imaging and holographic techniques (Invited Paper)." Chinese Optics Letters 12, no. 6 (2014): 060005–60009. http://dx.doi.org/10.3788/col201412.060005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

JANG, Jaeduck, Jung Hoon PARK, KyooHyun KIM, Hyeonseung YU, and YongKeun PARK. "Super-resolution Holographic Imaging Techniques Using a Synthetic Aperture." Physics and High Technology 21, no. 5 (May 31, 2012): 27. http://dx.doi.org/10.3938/phit.21.023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Holographic imaging techniques"

1

Howlett, Isela D., Wanglei Han, Michael Gordon, Photini Rice, Jennifer K. Barton, and Raymond K. Kostuk. "Volume holographic imaging endoscopic design and construction techniques." SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 2017. http://hdl.handle.net/10150/624713.

Повний текст джерела
Анотація:
A reflectance volume holographic imaging (VHI) endoscope has been designed for simultaneous in vivo imaging of surface and subsurface tissue structures. Prior utilization of VHI systems has been limited to ex vivo tissue imaging. The VHI system presented in this work is designed for laparoscopic use. It consists of a probe section that relays light from the tissue sample to a handheld unit that contains the VHI microscope. The probe section is constructed from gradient index (GRIN) lenses that form a 1: 1 relay for image collection. The probe has an outer diameter of 3.8 mm and is capable of achieving 228.1 lp/mm resolution with 660-nm Kohler illumination. The handheld optical section operates with a magnification of 13.9 and a field of view of 390 mu m x 244 mu m. System performance is assessed through imaging of 1951 USAF resolution targets and soft tissue samples. The system has also passed sterilization procedures required for surgical use and has been used in two laparoscopic surgical procedures. (C) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shih, Tina 1982. "Three dimensional imaging of translucent objects using volume holographic techniques." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32786.

Повний текст джерела
Анотація:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2004.
Includes bibliographical references (p. 25-26).
Plankton is a primitive form of one or several-celled organism that lives in the sea. Its behavior, its formation, and the various life patterns, when monitored, reveals a wealth of information about the sea. Three dimensional in-situ images of these semi-translucent organisms are therefore of great interest. To better understand how volume holographic imaging works on a translucent object like plankton, this project explores the three dimensional imaging of a gummy bear. Tomographic experiments were performed both with monochromatic laser light illumination and broadband white-light illumination. It was found that unexpectedly, the white light illumination, though not a perfect tomographic setup because of the inclusion of a lot of scattered and refracted light, images better in three dimensions than the monochromatic laser illumination.
by Tina Shih.
S.B.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Brown, Andrew, and Hua Lee. "SYNTHETIC APERTURE GROUND PENETRATING RADAR IMAGING FOR NONDESTRUCTIVE EVALUATION OF CIVIL AND GEOPHYSICAL STRUCTURES." International Foundation for Telemetering, 2001. http://hdl.handle.net/10150/607690.

Повний текст джерела
Анотація:
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada
Synthetic-aperture microwave imaging with ground penetrating radar systems has become a research topic of great importance for the potential applications in sensing and profiling of civil and geophysical structures. It allows us to visualize subsurface structures for nondestructive evaluation with microwave tomographic images. This paper provides an overview of the research program, ranging from the formation of the concepts, physical and mathematical modeling, formulation and development of the image reconstruction algorithms, laboratory experiments, and full-scale field tests.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Flasseur, Olivier. "Object detection and characterization from faint signals in images : applications in astronomy and microscopy." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSES042.

Повний текст джерела
Анотація:
La détection et la caractérisation d’objets dans des images à faible rapport signal sur bruit est un problème courant dans de nombreux domaines tels que l’astronomie ou la microscopie. En astronomie, la détection des exoplanètes et leur caractérisation par imagerie directe depuis la Terre sont des sujets de recherche très actifs. Une étoile cible et son environnement proche (abritant potentiellement des exoplanètes) sont observés sur de courtes poses. En microscopie, l’holographie en ligne est une méthode de choix pour caractériser à faibles coûts les objets microscopiques. Basée sur l’enregistrement d’un hologramme, elle permet une mise au point numérique dans n’importe quel plan du volume 3-D imagé. Dans ces deux applications cibles, le problème est rendu difficile par le faible contraste entre les objets et le fond non stationnaire des images enregistrées.Dans cette thèse, nous proposons un algorithme non-supervisé dédié à la détection et à la caractérisation d’exoplanètes par une modélisation statistique des fluctuations du fond. Cette méthode est basée sur une modélisation de la distribution statistique des données à une échelle locale de patchs, capturant ainsi leur covariances spatiales. Testé sur plusieurs jeux de données de l’imageur haut-contraste SPHERE opérant au Très Grand Télescope Européen, cet algorithme atteint de meilleures performances que les méthodes de l’état de l’art. En particulier, les cartes de détection produites sont stationnaires et statistiquement fondées. La détection des exoplanètes peut ainsi être effectuée à probabilité de fausse alarme contrôlée. L’estimation de la distribution d’énergie spectrale des sources détectées est également non biaisée. L’utilisation d’un modèle statistique permet également de déduire des précisions photométriques et astrométriques fiables. Ce cadre méthodologique est ensuite adapté pour la détection de motifs spatialement étendus tels que les motifs de diffraction rencontrés en microscopie holographique qui sont également dominés par un fond non-stationnaire. Nous proposons aussi des approches robustes basées sur des stratégies de pondération afin de réduire l’influence des nombreuses valeurs aberrantes présentes sur les données réelles. Nous montrons sur des vidéos holographiques que les méthodes de pondération proposées permettent d’atteindre un compromis biais/variance. En astronomie, la robustesse améliore les performances de détection, en particulier à courtes séparations angulaires, où les fuites stellaires dominent. Les algorithmes développés sont également adaptés pour tirer parti de la diversité spectrale des données en plus de leur diversité temporelle, améliorant ainsi leurs performances de détection et de caractérisation. Tous les algorithmes développés sont totalement non-supervisés: les paramètres de pondération et/ou de régularisation sont estimés directement à partir des données. Au-delà des applications considérées en astronomie et en microscopie, les méthodes de traitement du signal introduites dans cette thèse sont générales et pourraient être appliquées à d’autres problèmes de détection et d’estimation
Detecting and characterizing objects in images in the low signal-to-noise ratio regime is a critical issue in many areas such as astronomy or microscopy. In astronomy, the detection of exoplanets and their characterization by direct imaging from the Earth is a hot topic. A target star and its close environment (hosting potential exoplanets) are observed on short exposures. In microscopy, in-line holography is a cost-effective method for characterizing microscopic objects. Based on the recording of a hologram, it allows a digital focusing in any plane of the imaged 3-D volume. In these two fields, the object detection problem is made difficult by the low contrast between the objects and the nonstationary background of the recorded images.In this thesis, we propose an unsupervised exoplanet detection and characterization algorithm based on the statistical modeling of background fluctuations. The method, based on a modeling of the statistical distribution of patches, captures their spatial covariances. It reaches a performance superior to state-of-the-art techniques on several datasets of the European high-contrast imager SPHERE operating at the Very Large Telescope. It produces statistically grounded and spatially-stationary detection maps in which detections can be performed at a constant probability of false alarm. It also produces photometrically unbiased spectral energy distributions of the detected sources. The use of a statistical model of the data leads to reliable photometric and astrometric accuracies. This methodological framework can be adapted to the detection of spatially-extended patterns in strong structured background, such as the diffraction patterns in holographic microscopy. We also propose robust approaches based on weighting strategies to reduce the influence of the numerous outliers present in real data. We show on holographic videos that the proposed weighting approach achieves a bias/variance tradeoff. In astronomy, the robustness improves the performance of our detection method in particular at close separations where the stellar residuals dominate. Our algorithms are adapted to benefit from the possible spectral diversity of the data, which improves the detection and characterization performance. All the algorithms developed are unsupervised: weighting and/or regularization parameters are estimated in a data-driven fashion. Beyond the applications in astronomy and microscopy, the signal processing methodologies introduced are general and could be applied to other detection and estimation problems
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dunsby, Christopher William. "Wide-field coherence-gated imaging techniques including photorefractive holography." Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407465.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Docurro, Manuel J. "Three-dimensional autostereoscopic imaging by computer based holography techniques." FIU Digital Commons, 2003. http://digitalcommons.fiu.edu/etd/3069.

Повний текст джерела
Анотація:
The purpose of this thesis is to explore the potential of computer based holography as a means to create autostereoscopic three-dimensional images. The methodology involved research into human three dimensional image perception and the applications of holographic techniques, both conventional and computer based, for achieving threedimensional displays. As part of the research, a physical holography laboratory setup was established, and experimental findings served to validate this approach for threedimensional image visualization. Optical holography experiments were carried out to link the theoretical premise to the practical implementations. The realized computer based approach involved a holographic stereogram technique whereby multiple two dimensional digital images are combined to form a three-dimensional holographic image. The conclusions drawn from the study include a determination of which computer based holography techniques are suited for particular applications, as well as an assessment of the current limitations and challenges experienced in the current technology.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jayet, Baptiste. "Acousto-optic and photoacoustic imaging of scattering media using wavefront adaptive holography techniques in NdYO4." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066039/document.

Повний текст джерела
Анотація:
L'imagerie optique des tissus biologiques est un défi du fait de la diffusion de la lumière. Pour sonder les propriétés optiques à quelques cm de profondeur, on peut coupler l'information optique des ultrasons. De cette idée sont nées les imageries acousto-optique et photoacoustique. La première repose sur la modulation de la lumière par des ultrasons balistiques. La seconde se base sur la génération d'ultrasons lors de l'absorption de lumière par un objet. Que ce soit pour l'une ou pour l'autre, l'enregistrement du signal nécessite la mesure de très faibles modulations de phase dans une figure de speckle. L'holographie dynamique est une bonne solution. En effet, les techniques interférométriques sont suffisamment sensibles pour mesurer de telles modulations et l'holographie permet de corriger la nature speckle de la lumière. Dans cette thèse nous démontrons la faisabilité de fabriquer un système d'holographie adaptative basé sur un milieu laser (Nd :YVO4). Un des grands avantages de ce type de milieu est le temps de réponse. On montrera que le rafraîchissement d'un hologramme dans notre cristal peut se faire en moins de 100 ?s, bien inférieur au temps de décorrélation du speckle (? 1ms) qui pourrait grandement perturber les techniques de détection plus lentes lors d'expériences in vivo. Trois montages sont présentés ici, le premier pour la détection acousto-optique par conjugaison de phase, le deuxième pour la détection acousto-optique par adaptation de front d'onde et enfin le troisième pour détection photoacoustique. Dans les trois cas on mesure un temps de réponse entre 15 ?s et 50 ?s, et on utilise le montage imager un échantillon
Strong scattering properties of biological media make their optical imaging in depth a challenge. A solution to probe the local optical properties is to couple the optical information with ultrasound. Two imaging techniques were born from this idea, acousto-optic imaging and photoacoustic imaging. The first technique is based on the local modulation of light by ballistic ultrasound. The latter relies on the emission of ultrasound following the absorption of light by an object. Whether it is acousto-optic imaging or photoacoustic imaging, the recording of the the signal requires a detection system sensitive to weak phase modulation. In addition, the detection system must be compatible with a speckle pattern. Dynamic holography is a good solution. Indeed, as it is based on interferometry, it is very sensitive to small phase variations and holography can be used to correct the speckle nature of light. In this manuscript, we show the use of an holographic detection system based on a laser medium (Nd:YVO4). One of the main advantage of this type of material is the very fast response time. It will be highlighted that the recording of a hologram inside our crystal can be done in less than 100 μs, much faster than the speckle decorrelation time (≈ 1ms), which is one of the major obstacle towards in vivo imaging. Three optical setups will be presented in this manuscript. The first one is a phase conjugation setup for acousto-optic detection. The second one is a wavefront adaption setup, also for acousto-optic detection. Finally, the third setup is an adaptive vibrometry setup for photoacoustic detection. In each setups the measured response time is between 15 μs and 50 μs
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ibrahim, Ahmad. "Development of photoinitiating systems for free radical Photopolymerization usable for laser Imaging." Thesis, Mulhouse, 2011. http://www.theses.fr/2011MULH4082.

Повний текст джерела
Анотація:
Le sujet de thèse sur lequel je travaille depuis trois ans est l’étude et le développement des systèmes photoamorceurs pour des applications holographiques. Ce travail a lieu en collaboration avec l’équipe BMS (Bayer Material Science) de Bayer-Leverkusen (Allemagne). Mes études se sont limitées aux systèmes utilisables avec une source d’irradiation appartenant à la partie visible du spectre électromagnétique de la lumière (400 nm – 700 nm).Parmi les différents types des réactions de polymérisation, nous avons choisi la polymérisation radicalaire. L’étape cruciale dans cette réaction réside dans la génération des radicaux qui amorcent la réaction. Ces derniers sont formés par transformation, via absorption de lumière, d’un composé photosensible. La formation de ces espèces est en général en compétition avec plusieurs processus de désactivation. Les polymérisations radicalaires sont en particulier fortement inhibées par l’oxygène de l’air. Pour réduire l’effet de l’oxygène et pour avoir des conditions comparables à ceux appliqués dans l’industrie, nos échantillons ont été préparés en utilisant la technique laminée (l’échantillon est mis entre deux films de polypropylène). [...]
The subject of the thesis I have been working on for three years is the study and development of photoinitiating systems for holographic applications. This work takes place in collaboration with the BMS (Bayer Material Science) team from Bayer Leverkusen (Germany). My studies have been limited to systems used with a radiation source belonging to the visible part of the electromagnetic spectrum of light (400 nm - 700 nm). Among the different types of polymerization reactions, we chose the radical polymerization. The critical step in this reaction is the generation of radicals which initiate the reaction. These are formed by transformation via absorption of light of a photosensitive compound. The formation of these species is generally in competition with several deactivation process. [...]
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Seifi, Mozhdeh. "Signal processing methods for fast and accurate reconstruction of digital holograms." Phd thesis, Université Jean Monnet - Saint-Etienne, 2013. http://tel.archives-ouvertes.fr/tel-01004605.

Повний текст джерела
Анотація:
Techniques for fast, 3D, quantitative microscopy are of great interest in many fields. In this context, in-line digital holography has significant potential due to its relatively simple setup (lensless imaging), its three-dimensional character and its temporal resolution. The goal of this thesis is to improve existing hologram reconstruction techniques by employing an "inverse problems" approach. For applications of objects with parametric shapes, a greedy algorithm has been previously proposed which solves the (inherently ill-posed) inversion problem of reconstruction by maximizing the likelihood between a model of holographic patterns and the measured data. The first contribution of this thesis is to reduce the computational costs of this algorithm using a multi-resolution approach (FAST algorithm). For the second contribution, a "matching pursuit" type of pattern recognition approach is proposed for hologram reconstruction of volumes containing parametric objects, or non-parametric objects of a few shape classes. This method finds the closest set of diffraction patterns to the measured data using a diffraction pattern dictionary. The size of the dictionary is reduced by employing a truncated singular value decomposition to obtain a low cost algorithm. The third contribution of this thesis was carried out in collaboration with the laboratory of fluid mechanics and acoustics of Lyon (LMFA). The greedy algorithm is used in a real application: the reconstruction and tracking of free-falling, evaporating, ether droplets. In all the proposed methods, special attention has been paid to improvement of the accuracy of reconstruction as well as to reducing the computational costs and the number of parameters to be tuned by the user (so that the proposed algorithms are used with little or no supervision). A Matlab® toolbox (accessible on-line) has been developed as part of this thesis
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liu, Hui. "Microscopie tomographique diffractive et profilométrie multivue à haute résolution." Thesis, Mulhouse, 2014. http://www.theses.fr/2014MULH9558/document.

Повний текст джерела
Анотація:
Nous avons développé un microscope tomographique diffractif en réflexion, qui permet d’observer la surface d’un échantillon avec une résolution latérale améliorée comparée à un microscope holographique conventionnel. À partir des même données expérimentales (les hologrammes acquis sous différents angles d’illumination), des mesures à haute précision longitudinale peuvent être réalisées sur la surface d’un échantillon purement réfléchissant, par reconstruction du profil de hauteur à partir de la phase. Cette méthode d’imagerie multimodale présente plusieurs avantages comparée aux mesures en holographie interférométrique classique : amélioration de la résolution latérale sur la partie diffractive, déroulement de phase facilité, réduction du bruit cohérent, l’ensemble étant associé à la grande précision longitudinale fournie par les mesures de phase. Nous montrons ces possibilités en imageant divers échantillons minces
We have developed a tomographic diffractive microscope in reflection, which permits observation of sample surfaces with an improved lateral resolution, compared to a conventional holographic microscope. From the same set of data, high-precision measurements can be performed on the shape of the reflective surface by reconstructing the phase of the diffracted field. doing so allows for several advantages compared to classical holographic interferometric measurements: improvement in lateral resolution, easier phase unwrapping, reduction of the coherent noise, combined with the high-longitudinal precision provided by interferometric phase measurements. We demonstrate these capabilities by imaging various test samples
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Holographic imaging techniques"

1

1966-, Boffi P., Piccinin D. 1968-, and Ubaldi M. C. 1970-, eds. Infrared holography for optical communications: Techniques, materials, and devices. New York: Springer, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hans-Jochen, Foth, Marchesini R, Podbielska Halina, Society of Photo-optical Instrumentation Engineers., and European Laser Association, eds. Proceedings of optical and imaging techniques for biomonitoring II: 9-10 September 1996, Vienna, Austria. Bellingham, Wash., USA: SPIE, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hans-Jochen, Foth, Marchesini R, Podbielska Halina, Society of Photo-optical Instrumentation Engineers., and Società italiana di laser chirurgia e medicina., eds. Proceedings of optical and imaging techniques for biomonitoring III: 6-8 September 1997, San Remo, Italy. Bellingham, Wash., USA: SPIE, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

1966-, Boffi P., Piccinin D. 1968-, and Ubaldi M. C. 1970-, eds. Infrared holography for optical communications: Techniques, materials, and devices. Berlin: Springer, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hans-Jochen, Foth, Society of Photo-optical Instrumentation Engineers., and European Laser Association, eds. Proceedings of optical and imaging techniques for biomonitoring: 14-16 September 1995, Barcelona, Spain. Bellingham, Wash., USA: SPIE, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Leitgeb, Rainer A. Optical coherence tomography and coherence techniques V: 24-26 May 2011, Munich, Germany. Bellingham, Wash: SPIE, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wolfgang, Drexler, Society of Photo-optical Instrumentation Engineers., Optical Society of America, European Physical Society, and European Conference on Biomedical Optics (2003 : Munich, Germany), eds. Optical coherence tomography and coherence techniques: 22-24 June 2003, Munich, Germany. Bellingham, Wash., USA: SPIE, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Andersen, Peter E. Optical coherence tomography and coherence techniques III: 17-19 June 2007, Munich, Germany. Edited by SPIE (Society), Optical Society of America, European Optical Society, Wissenschaftliche Gesellschaft Lasertechnik, and Deutsche Gesellschaft für Lasermedizin. Bellingham, Wash: SPIE, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Andersen, Peter E., and Brett E. Bouma. Optical coherence tomography and coherence techniques IV: 14-17 June 2009, Munich, Germany. Edited by Optical Society of America, SPIE (Society), German Biophotonics Research Program, Photonics4Life (Group), and United States. Air Force. Office of Scientific Research. Bellingham, Wash: SPIE, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jamie, Hutchins, and Ames Research Center, eds. Full resolution hologram like autostereoscopic display. Rochester, N.Y: Dimension Technologies, Inc., 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Holographic imaging techniques"

1

Marquet, Pierre, Benjamin Rappaz, and Nicolas Pavillon. "Quantitative Phase-Digital Holographic Microscopy: A New Modality for Live Cell Imaging." In New Techniques in Digital Holography, 169–217. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119091745.ch5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Aoki, Y., Y. Takahasi, Y. Sakamoto, and M. Ikegami. "Display Techniques of Volume Images of Buried Objects in Piled Snow by Acoustical and Microwave Holographic Radar." In Acoustical Imaging, 285–94. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0791-4_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Carrillo-Reid, Luis, Weijian Yang, and Rafael Yuste. "Optical and Analytical Methods to Visualize and Manipulate Cortical Ensembles and Behavior." In Neuromethods, 331–61. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2764-8_11.

Повний текст джерела
Анотація:
AbstractThe development of all-optical techniques and analytical tools to visualize and manipulate the activity of identified neuronal ensembles enables the characterization of causal relations between neuronal activity and behavioral states. In this chapter, we review the implementation of simultaneous two-photon imaging and holographic optogenetics in conjunction with population analytical tools to identify and reactivate neuronal ensembles to control a visual-guided behavior.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jayanthy, Maniam, N. Selvanathan, M. Abu-Bakar, D. Smith, H. M. Elgabroun, P. M. Yeong, and S. Senthil Kumar. "Microwave Holographic Imaging Technique for Tumour Detection." In 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006, 275–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68017-8_71.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lee, Hua, and Jen-Hui Chuang. "Performance Evaluation of Phase-Only Technique for High-Resolution Holographic Imaging." In Acoustical Imaging, 227–36. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0725-9_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Marquet, Pierre, and Christian Depeursinge. "Digital Holographic Microscopy: A New Imaging Technique to Quantitatively Explore Cell Dynamics with Nanometer Sensitivity." In Multi-Dimensional Imaging, 197–223. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118705766.ch9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Anand, Vijayakumar, Soon Hock Ng, Tomas Katkus, Daniel Smith, Vinoth Balasubramani, Denver P. Linklater, Pierre J. Magistretti, Christian Depeursinge, Elena P. Ivanova, and Saulius Juodkazis. "Compact Incoherent Multidimensional Imaging Systems Using Static Diffractive Coded Apertures." In Holography - Recent Advances and Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105864.

Повний текст джерела
Анотація:
Incoherent holographic imaging technologies, in general, involve multiple optical components for beam splitting—combining and shaping—and in most cases, require an active optical device such as a spatial light modulator (SLM) for generating multiple phase-shifted holograms in time. The above requirements made the realization of holography-based products expensive, heavy, large, and slow. To successfully transfer the holography capabilities discussed in research articles to products, it is necessary to find methods to simplify holography architectures. In this book chapter, two important incoherent holography techniques, namely interference-based Fresnel incoherent correlation holography (FINCH) and interferenceless coded aperture correlation holography (I-COACH), have been successfully simplified in space and time using advanced manufacturing methods and nonlinear reconstruction, respectively. Both techniques have been realized in compact optical architectures using a single static diffractive optical element manufactured using lithography technologies. Randomly multiplexed diffractive lenses were manufactured using electron beam lithography for FINCH. A quasi-random lens and a mask containing a quasi-random array of pinholes were manufactured using electron beam lithography and photolithography, respectively, for I-COACH. In both cases, the compactification has been achieved without sacrificing the performances. The design, fabrication, and experiments of FINCH and I-COACH with static diffractive optical elements are presented in details.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tiwari, Vipin, and Nandan S. Bisht. "Spatial Light Modulators and Their Applications in Polarization Holography." In Holography - Recent Advances and Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.107110.

Повний текст джерела
Анотація:
Liquid crystal spatial light modulators (LC-SLMs) have gained substantial interest of the research fraternity due to their remarkable light modulation characteristics in modern imaging applications. Replacing the conventional optical elements from the SLM-based computer-generated holograms (CGHs) is a trending approach in modern digital holographic applications due to the optimized phase shift depending on the phase modulation features of SLMs. Apparently; SLMs serve a crucial role in the experimental implementation of digital holographic techniques. However, the resolution of the CGHs are sometimes limited by the structural discrepancies (fill factor, spatial anomalies, refresh rate, etc.) of SLM. Therefore, it is recommended to calibrate the modulation characteristics of SLMs prior to their implementation for imaging applications. This chapter provides comprehensive literature (review) of the LC-SLMs along with their major calibration methods. In addition, recent interesting applications of LC-SLMs have been discussed thoroughly within the framework of polarization holography.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Khare, Kedar. "Standardization Techniques for Single-Shot Digital Holographic Microscopy." In Holography - Recent Advances and Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.107469.

Повний текст джерела
Анотація:
Digital holographic microscopy (DHM) is a mature technology for quantitative phase imaging. Thousands of articles have been published on this topic over the last couple of decades. Our goal in this article is to emphasize that single-shot holographic microscopy systems offer several practical advantages and in principle capture the full diffraction-limited information of interest. Since phase cannot be measured directly, phase reconstruction is inherently a computational problem. In this context, we describe some traditional algorithmic ideas as well as newer sparse optimization-based methodologies for phase reconstruction from single-shot holograms. Robust operation of a DHM system additionally requires a number of auxiliary algorithms associated with fractional fringe detection, phase unwrapping, detection of focus plane, etc., that will be discussed in some detail. With the data-driven nature of applications of DHM being developed currently, the standardization or benchmarking of algorithmic ideas for DHM systems is important so that same sample imaged by different DHM systems provides the same numerical phase maps. Such uniformity is also key to establishing effective communication between DHM developers and potential users and thereby increasing the reach of the DHM technology.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kemper, Björn, Patrik Langehanenberg, and Andreas Bauwens. "Holographic Microscopy Techniques for Multifocus Phase Imaging of Living Cells." In Biomedical Optical Phase Microscopy and Nanoscopy, 97–128. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-415871-9.00006-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Holographic imaging techniques"

1

Goodman, Matthew A., R. Krishna Mohan, and Wm Randall Babbitt. "Range Selective Digital Holographic Imaging Using FMCW Lidar." In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/dh.2022.w7a.2.

Повний текст джерела
Анотація:
Integrating frequency modulated continuous wave lidar techniques into digital holographic imaging allows for high resolution range selective holography. This technique is presented, showing cancellation of obscurations as well as enhanced contrast in images of objects.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Brody, Philip S., Charles G. Garvin, Arthur W. Gillman, and Lian Shentu. "Phase-imaging holographic microscope." In Phase Contrast and Differential Interference Contrast Imaging Techniques and Applications, edited by Maksymilian Pluta and Mariusz Szyjer. SPIE, 1994. http://dx.doi.org/10.1117/12.171863.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Lulu, Ray Simpkin, and A. M. Al-Jumaily. "Holographic Microwave Imaging Array for Early Breast Cancer Detection." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-85910.

Повний текст джерела
Анотація:
This paper presents a new Holographic Microwave Imaging Array (HMIA) technique for early breast cancer detection, which is based on microwave holography and aperture synthesis imaging techniques. Using published data for the dielectric properties of normal breast tissues and malignant tumours, a two-dimensional (2D) mathematical model was developed under the MATLAB environment to demonstrate the proposed imaging technique. The computer simulations showed that tumours as small as 2 mm in diameter anywhere within the breast could be successfully detected. The significant imaging improvement was achieved by optimizing antenna array configurations to offer the best possibility of detecting tumours of various size, shape and position.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

May, Molly A., Kai K. Kummer, Michaela Kress, Monika Ritsch-Marte, and Alexander Jesacher. "Fast holographic scattering compensation for deep tissue biological imaging." In Novel Techniques in Microscopy. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/ntm.2021.ntu1c.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

McMakin, Douglas L., David M. Sheen, Thomas E. Hall, Mike O. Kennedy, and Harlen P. Foote. "Biometric identification using holographic radar imaging techniques." In Defense and Security Symposium, edited by Edward M. Carapezza. SPIE, 2007. http://dx.doi.org/10.1117/12.729636.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ren, Zhenbo, Ni Chen, Antony C. S. Chan, and Edmund Y. Lam. "Extended focused imaging in a holographic microscopy imaging system." In 2015 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2015. http://dx.doi.org/10.1109/ist.2015.7294471.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Balasubramani, Vinoth, and Chau-Jern Cheng. "Holographic Tomography: Techniques and Biomedical Applications [Invited]." In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/dh.2021.dm6e.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Maleki, Mohammad H., and Anthony J. Devaney. "Holographic techniques for inverse scattering and tomographic imaging." In IS&T/SPIE 1994 International Symposium on Electronic Imaging: Science and Technology, edited by Stephen A. Benton. SPIE, 1994. http://dx.doi.org/10.1117/12.172633.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kapfenberger, David, Adar Sonn-Segev, and Yael Roichman. "Accurate holographic imaging of colloidal particle pairs by Rayleigh-Sommerfeld reconstruction." In Novel Techniques in Microscopy. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/ntm.2013.nw4b.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Smith, D., O. Yurduseven, and B. Livingstone. "The use of indirect holographic techniques for microwave imaging." In 2013 13th Conference on Microwave Techniques (COMITE). IEEE, 2013. http://dx.doi.org/10.1109/comite.2013.6545036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Holographic imaging techniques"

1

Akbari, Homaira. High Resolution Imaging of Particle Interactions in a Large Bubble Chamber Using Holographic Techniques. Office of Scientific and Technical Information (OSTI), June 1987. http://dx.doi.org/10.2172/1433222.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії