Добірка наукової літератури з теми "High frequency electronic applications"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "High frequency electronic applications".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "High frequency electronic applications"
Zampardi, P. J., K. Runge, R. L. Pierson, J. A. Higgins, R. Yu, B. T. McDermott, and N. Pan. "Heterostructure-based high-speed/high-frequency electronic circuit applications." Solid-State Electronics 43, no. 8 (August 1999): 1633–43. http://dx.doi.org/10.1016/s0038-1101(99)00113-6.
Повний текст джерелаAdachi, Michael M. "(Invited) Thickness-Modulated MoS2 for High-Frequency Electronic Applications." ECS Meeting Abstracts MA2021-01, no. 14 (May 30, 2021): 664. http://dx.doi.org/10.1149/ma2021-0114664mtgabs.
Повний текст джерелаTan, Qi Yao. "Applications of Simulation and Demo in High Frequency Electronic Circuit." Applied Mechanics and Materials 427-429 (September 2013): 450–54. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.450.
Повний текст джерелаHeadrick, J. M., and J. F. Thomason. "Applications of high-frequency radar." Radio Science 33, no. 4 (July 1998): 1045–54. http://dx.doi.org/10.1029/98rs01013.
Повний текст джерелаMU, Chunhong, Huaiwu ZHANG, Yingli LIU, Yuanqiang SONG, and Peng LIU. "Rare earth doped CaCu3Ti4O12 electronic ceramics for high frequency applications." Journal of Rare Earths 28, no. 1 (February 2010): 43–47. http://dx.doi.org/10.1016/s1002-0721(09)60048-x.
Повний текст джерелаXun Gong, W. J. Chappell, and L. P. B. Katehi. "Multifunctional substrates for high-frequency applications." IEEE Microwave and Wireless Components Letters 13, no. 10 (October 2003): 428–30. http://dx.doi.org/10.1109/lmwc.2003.818525.
Повний текст джерелаBURKE, P. J., C. RUTHERGLEN, and Z. YU. "SINGLE-WALLED CARBON NANOTUBES: APPLICATIONS IN HIGH FREQUENCY ELECTRONICS." International Journal of High Speed Electronics and Systems 16, no. 04 (December 2006): 977–99. http://dx.doi.org/10.1142/s0129156406004119.
Повний текст джерелаHamed, Ahmed, Mohamed Saeed, and Renato Negra. "Graphene-Based Frequency-Conversion Mixers for High-Frequency Applications." IEEE Transactions on Microwave Theory and Techniques 68, no. 6 (June 2020): 2090–96. http://dx.doi.org/10.1109/tmtt.2020.2978821.
Повний текст джерелаGardes, C., Y. Roelens, S. Bollaert, J. S. Galloo, X. Wallart, A. Curutchet, C. Gaquiere, et al. "Ballistic nanodevices for high frequency applications." International Journal of Nanotechnology 5, no. 6/7/8 (2008): 796. http://dx.doi.org/10.1504/ijnt.2008.018698.
Повний текст джерелаAlshehri, Ali H., Malgorzata Jakubowska, Anna Młożniak, Michal Horaczek, Diana Rudka, Charles Free, and J. David Carey. "Enhanced Electrical Conductivity of Silver Nanoparticles for High Frequency Electronic Applications." ACS Applied Materials & Interfaces 4, no. 12 (November 26, 2012): 7007–10. http://dx.doi.org/10.1021/am3022569.
Повний текст джерелаДисертації з теми "High frequency electronic applications"
Massicotte, Mathieu. "Graphene electronics for high frequency, scalable applications." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110547.
Повний текст джерелаL'avènement du graphène produit à grande-échelle par dépôt chimique en phase vapeur (CVD) ouvre une voie vers l'électronique haute-fréquence (HF) à base de graphène. Synthétiser du graphène possédant une grande mobilité des porteurs de charge et l'incorporer à des dispositifs HF constitue cependant un important défi. Nous présentons ici le fruit de nos efforts pour comprendre et contrôler le mécanisme de croissance CVD du graphène sur le cuivre, caractériser les films ainsi produits, et fabriquer des transistors et dispositifs HF à base de graphène. Parallèlement, nous décrivons la synthèse de grands flocons dendritiques de graphène que nous appelons graphlocons. Les propriété électroniques et la magnetorésistance de ces échantillons ont été mesurées de 300 K à 100 mK et la mobilité la plus élevée obtenue est de 460 cm^2/Vs avec une densité de porteurs de charge résiduels de 1.6x10^12 cm^-2 . Les paramètres S de haute fréquence ont été mesurés de 0.04 à 20 GHz mais aucune dépendance en température ou champ magnétique n'a été observée. Ce travail fourni un point de départ pour améliorer les propriétés structurales et électroniques du graphène produit par CVD, et pour explorer de nouveaux phénomènes dans le domaine des GHz. .
Davari, Pooya. "High frequency high power converters for industrial applications." Thesis, Queensland University of Technology, 2013. https://eprints.qut.edu.au/62896/1/Pooya_Davari_Thesis.pdf.
Повний текст джерелаSkulason, Helgi. "High-frequency characterization and applications of graphene devices." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119524.
Повний текст джерелаDans cette thèse, nous avons expérimentalement sondé les micro-ondes électrodynamiques de graphène de grande surface, plus particulièrement les mesures de graphène sans contact pour en extraire les propriétés de la matière et la mise en œuvre de dispositifs non-réciproques générateurs de micro-ondes. Notre objectif consiste à exploiter l'interaction entre le graphène et les ondes électromagnétiques dans le domaine des micro-ondes. En fabriquant un guide d'ondes de graphène coplanaire à large bande, nous établissons que le graphène possède une résistance de large bande constante comprise entre 17 Hz et 110 GHz. Ceci est attribuable à l'inductivité cinétique et à l'effet pelliculaire négligeables jusqu'à 110 GHz. Nous décrivons l'impédance des contacts entre le graphène et les électrodes métalliques. Nos dispositifs démontrent que la capacitance de contact court-circuite la résistance de contact au-dessus de 2 GHz, permettant les mesures du graphène sans contact jusqu'à 110 GHz. Nous avons mesuré la conductivité magnétique du graphène à grande surface sous excitation de micro-ondes utilisant une géométrie de disque Corbino en transférant les films de graphène sur des embouts de câble coaxial polis. Notre installation permet l'utilisation de dispositifs de graphène actifs et passifs où les dispositifs actifs sont dopés par effet de champ avec une grille de silicium intrinsèque transparente aux micro-ondes. Nous avons extrait des mobilités à base de la conductivité magnétique autour de 1000 cm… en utilisant le model de Drude à une composante à haute densité. Une magnéto résistance atypique a également été observée. Nous avons créé, fabriqué et caractérisé un guide d'onde isolateur creux avec du graphène biaisé magnétiquement agissant comme élément non-réciproque par rotation de Faraday. Notre montage expérimentale permet la caractérisation sans contact de la conductivité, la mobilité et la densité de porteurs de charges du film de graphène. La rotation de Faraday a été mesuré jusqu'à 1.5 ce qui résulte en une isolation de 25dB. Nous démontrons que la performance de l'isolateur peut être améliorée en augmentant la mobilité dans le graphène. Étant donné que la direction de la rotation de Faraday dépend du signe du porteur de charge dominant dans le graphène, nous soumettons des données démontrant que la direction de l'isolation peut être modulée et changée en utilisant l'effet de champ implémenté dans le guide d'ondes creux avec une seule source de voltage à basse puissance. Notre travail suggère que d'autres dispositifs non-réciproques comme des circulateurs peuvent être implémentés de façon compacte avec du graphène.
Lim, Ying Ying. "Printing conductive traces to enable high frequency wearable electronics applications." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/17880.
Повний текст джерелаBar, Galit 1970. "High-frequency time domain electron paramagnetic resonance : methods and applications." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/17826.
Повний текст джерелаVita.
Includes bibliographical references.
There are numerous advantages to high frequency (high field) electron paramagnetic resonance (EPR) spectroscopy. Two of the most important are improved sensitivity and the improved resolution of field dependent interactions. In addition, there are many attractive features to time domain spectroscopy. Pulsed EPR allows for the design of experiments, which can specifically be used to study structure and dynamics of paramagnetic species and provide utmost resolution by separating interactions from each other. The combination of pulsed techniques and high frequencies is not only complimentary to continuous wave (CW) low frequency EPR but it also greatly increases the accessible information on paramagnetic species. High frequency, time domain EPR is still in its infancy. Spectrometers at W-band ([approximately] 95 GHz) are now available commercially but to date very few spectrometers operating at higher frequencies have been described. The spectrometer developed in the Francis Bitter Magnet Laboratory operates at a microwave (MW) frequency of 139.5 GHz corresponding to [approximately] 5 T magnetic field. The applications presented in this thesis illustrate the potential of high frequency, time domain EPR spectroscopy at 139.5 GHz in obtaining structural and mechanistic insights of several paramagnetic systems. Well resolved EPR spectra observed at 139.5 GHz of the stable tyrosine radical in ribonucleotide reductase (RNR) revealed the existence of a hydrogen bond in RNR from yeast, chapter 1. The bond length and orientation were determined from the nuclear frequencies of the proton, detected by orientation selective electron nuclear double resonance (ENDOR).
(cont.) The advantage of the time domain detection scheme is demonstrated in chapters 4, 5 and 6. A stimulated echo sequence is used to separate different organic radicals associated with the reduction chemistry and inhibition mechanisms of RNR. Using the dispersion in relaxation rates at high temperature ([approximately] 60 K) it is possible to filter the multi component spectrum. The assignment of new radicals is possible at high field, 5 T, due to the high resolution in g anisotropy. The findings support earlier proposals for the mechanism of nucleotide reduction and inhibition of this very important enzyme. To study photoexcited triplet molecules a light source was coupled to the high frequency spectrometer and the pulsed mode detection scheme was used to acquire EPR spectra. The new technique is demonstrated on several model systems. In addition to the basic advantages described above, high frequency EPR opens new frontiers for high spin systems, S >[or equal to] 1, with large spin-spin interaction. Because of the inverse field dependency of the zero field splitting, such systems may be totally EPR-silent at normal EPR frequencies. However their EPR spectra are accessible at high frequencies due to the reduction of linewidth. The Mn(II), S = 5/2, in superoxide dismutase (SOD) is a good example for such system.
by Galit Bar.
Ph.D.
ABDELHAMID, ESLAM. "Innovative Digital dc-dc Architectures for High-Frequency High-Efficiency Applications." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3427310.
Повний текст джерелаCheng, Jung-hui 1960. "Steady-state and dynamic analysis of high-order resonant converters for high-frequency applications." Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/282337.
Повний текст джерелаLou, Fan. "Mismatch-insensitive N-path multirate SC Sigma-Delta Modulator for high-frequency applications." Thesis, University of Macau, 2002. http://umaclib3.umac.mo/record=b1445818.
Повний текст джерелаTsang, Tommy 1977. "The design of low-voltage high frequency CMOS low noise amplifiers for future wireless applications /." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33998.
Повний текст джерелаThis thesis is concerned with one of the key building blocks, namely the Low Noise Amplifier (LNA). Several low-voltage LNA's were successfully implemented in a standard 0.18 mum CMOS technology, operating in the 5--9 GHz frequency band, targeted for future wireless applications. A new and very simple gain control mechanism is suggested for the first time, which does not affect the optimum noise and impedance matching. The 8--9 GHz prototypes are the highest LNA frequencies reported to-date in CMOS. All prototypes exhibit gain tuning ranges of over 10 dB, and can operate from a supply voltage as low as 0.7 V.
A design strategy for optimizing RF passive components (e.g. inductors, capacitors, and varactors) beyond 5 GHz is presented.
An attempt is made to explore the possibility of using Micro-Electro Mechanical Systems (MEMS) in the RF arena. (Abstract shortened by UMI.)
Karisan, Yasir. "Full-wave Electromagnetic Modeling of Electronic Device Parasitics for Terahertz Applications." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1419019102.
Повний текст джерелаКниги з теми "High frequency electronic applications"
Reisch, M. High-Frequency Bipolar Transistors: Physics, Modeling, Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
Знайти повний текст джерелаFay, Patrick, Debdeep Jena, and Paul Maki, eds. High-Frequency GaN Electronic Devices. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-20208-8.
Повний текст джерелаKhamas, Salam. High frequency applications of superconductors. Birmingham: University of Birmingham, 1988.
Знайти повний текст джерелаMartens, Luc. High-Frequency Characterization of Electronic Packaging. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5623-7.
Повний текст джерелаMartens, Luc. High-frequency characterization of electronic packaging. Boston: Kluwer Academic Publishers, 1998.
Знайти повний текст джерелаF, Nibler, and Institution of Electrical Engineers, eds. High-frequency circuit engineering. London: Institution of Electrical Engineers, 1996.
Знайти повний текст джерелаReisch, M. High-frequency bipolar transistors: Physics, modeling, applications. Berlin: Springer, 2003.
Знайти повний текст джерелаSkutt, Glenn. Modeling multiwinding transformers for high-frequency applications. Durham, N.C: Duke University, 1988.
Знайти повний текст джерелаHigh-frequency bipolar transistors: Physics, modelling, applications. Berlin: Springer, 2003.
Знайти повний текст джерелаDurbin, Michael. All about high-frequency trading. New York, NY: McGraw-Hill, 2010.
Знайти повний текст джерелаЧастини книг з теми "High frequency electronic applications"
Condori Quispe, Hugo O., Berardi Sensale-Rodriguez, and Patrick Fay. "Plasma-Wave Propagation in GaN and Its Applications." In High-Frequency GaN Electronic Devices, 159–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_6.
Повний текст джерелаSollner, T. C. L. Gerhard, Elliott R. Brown, C. D. Parker, and W. D. Goodhue. "High-Frequency Applications of Resonant-Tunneling Devices." In Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures, 283–96. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-7412-1_16.
Повний текст джерелаVélez, Adolfo, and Hans-Walter Glock. "Superconducting Radio-Frequency for High-Current CW Applications." In Synchrotron Light Sources and Free-Electron Lasers, 1–20. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-04507-8_59-1.
Повний текст джерелаVélez, Adolfo, and Hans-Walter Glock. "Superconducting Radio-Frequency for High-Current CW Applications." In Synchrotron Light Sources and Free-Electron Lasers, 581–601. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-23201-6_59.
Повний текст джерелаSommer, J. P., R. Dudek, B. Michel, M. Boheim, and W. Hager. "Thermal and Mechanical Characterization of Electronic Packages in Extremely High Frequency Applications by Means of Finite Element Analysis." In Thermal Management of Electronic Systems II, 349–59. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5506-9_34.
Повний текст джерелаVallabhaneni, Manikantha, Sreenidhi Balki, P. S. V. N. K. Mani Gupta, and Sonali Agrawal. "Power-Efficient Bulk-Driven MCML D-Latch for High-Frequency Applications." In Proceedings of Third International Conference on Communication, Computing and Electronics Systems, 749–60. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8862-1_49.
Повний текст джерелаCordier, Yvon, Rémi Comyn, and Eric Frayssinet. "Molecular Beam Epitaxy of AlGaN/GaN High Electron Mobility Transistor Heterostructures for High Power and High-Frequency Applications." In Low Power Semiconductor Devices and Processes for Emerging Applications in Communications, Computing, and Sensing, 201–23. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor &: CRC Press, 2018. http://dx.doi.org/10.1201/9780429503634-9.
Повний текст джерелаMaheswari, Y. Uma, A. Amudha, and L. Ashok Kumar. "Effect of EMI on Electrical and Electronic System and Mitigation Methods for Low- and High-Frequency Applications." In Energy Audit and Management, 181–209. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003203810-6.
Повний текст джерелаRedgment, P. G. "High-Frequency Direction Finding in the Royal Navy: Development of Anti-U-Boat Equipment, 1941–5." In The Applications of Radar and other Electronic Systems in the Royal Navy in World War 2, 229–65. London: Palgrave Macmillan UK, 1995. http://dx.doi.org/10.1007/978-1-349-13623-0_6.
Повний текст джерелаGhosh, Monisha, and Arindam Biswas. "Applications of Si~3C-SiC Heterostructures in High-Frequency Electronics up to the Terahertz Spectrum." In Lecture Notes in Electrical Engineering, 239–50. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4947-9_16.
Повний текст джерелаТези доповідей конференцій з теми "High frequency electronic applications"
Vanisri, T. "The opto-electronic high-frequency transconductor and circuit applications." In IEE Colloquium on `The RF Design Scene'. IEE, 1996. http://dx.doi.org/10.1049/ic:19960170.
Повний текст джерелаSato, Junya, Shin Teraki, Masaki Yoshida, and Hisao Kondo. "High Performance Insulating Adhesive Film for High-Frequency Applications." In 2017 IEEE 67th Electronic Components and Technology Conference (ECTC). IEEE, 2017. http://dx.doi.org/10.1109/ectc.2017.94.
Повний текст джерелаTheuss, H., R. Weigel, J. Dangelmaier, M. Engl, K. Pressel, H. Knapp, W. Simburger, K. Gnannt, W. Eurskens, and J. Hirtreiter. "A leadless packaging concept for high frequency applications." In 2004 Proceedings. 54th Electronic Components and Technology Conference. IEEE, 2004. http://dx.doi.org/10.1109/ectc.2004.1320371.
Повний текст джерелаRaj, P. Markondeya, Himani Sharma, G. Prashant Reddy, Nevin Altunyurt, Madhavan Swaminathan, Rao Tummala, Vijay Nair, and David Reid. "Novel nanomagnetic materials for high-frequency RF applications." In 2011 IEEE 61st Electronic Components and Technology Conference (ECTC). IEEE, 2011. http://dx.doi.org/10.1109/ectc.2011.5898670.
Повний текст джерелаKim, Taeeui, Christian Romero, KyungO Kim, Taesung Jung, and Sung Yi. "Embedded filter's temperature effect analysis for high frequency applications." In 2008 International Conference on Electronic Materials and Packaging (EMAP). IEEE, 2008. http://dx.doi.org/10.1109/emap.2008.4784263.
Повний текст джерелаKraft, J., G. Meinhardt, K. Molnar, T. Bodner, and F. Schrank. "Electrical and Optical TSVs for High Frequency Photonic Applications." In 2016 IEEE 66th Electronic Components and Technology Conference (ECTC). IEEE, 2016. http://dx.doi.org/10.1109/ectc.2016.188.
Повний текст джерелаJong-Woong Kim, Young-Chul Lee, Jae-Hoon Ko, Wansoo Nah, and Seung-Boo Jung. "Transmission property of adhesive interconnect for high frequency applications." In 2007 International Conference on Electronic Materials and Packaging (EMAP 2007). IEEE, 2007. http://dx.doi.org/10.1109/emap.2007.4510286.
Повний текст джерелаOgawa, N., H. Onozeki, T. Tanabe, and T. Kumakura. "Profile-Free Copper Foil for High-Density Packaging Substrates and High-Frequency Applications." In 2005 Proceedings. 55th Electronic Components and Technology Conference. IEEE, 2005. http://dx.doi.org/10.1109/ectc.2005.1441305.
Повний текст джерела"Tape Automated Bonding Packages: Electrical Considerations For High Frequency Applications." In Proceedings of Japan International Electronic Manufacturing Technology Symposium. IEEE, 1993. http://dx.doi.org/10.1109/iemt.1993.639798.
Повний текст джерелаLee, Tzu Nien, John H. Lau, Cheng-Ta Ko, Tim Xia, Eagle Lin, Kai-Ming Yang, Puru Bruce Lin, et al. "Characterization of Low Loss Dielectric Materials for High-Speed and High-Frequency Applications." In 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC). IEEE, 2022. http://dx.doi.org/10.1109/ectc51906.2022.00351.
Повний текст джерелаЗвіти організацій з теми "High frequency electronic applications"
van der Heijden, Joost. Optimizing electron temperature in quantum dot devices. QDevil ApS, March 2021. http://dx.doi.org/10.53109/ypdh3824.
Повний текст джерелаAntonsen, T. M. Jr, W. W. Destler, V. Granatstein, and B. Levush. Microwave generation for magnetic fusion energy applications. Task A, Free electron lasers with small period wigglers; Task B, Theory and modeling of high frequency, high power gyrotron operation: Progress report, May 1, 1993--May 1, 1994. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10151962.
Повний текст джерелаArmendariz, M. G., G. R. Hadley, and M. E. Warren. Advanced packaging technology for high frequency photonic applications. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/211590.
Повний текст джерелаArchambeau, C. Applications of discrimination methods to high frequency seismic data. Office of Scientific and Technical Information (OSTI), May 1989. http://dx.doi.org/10.2172/7245131.
Повний текст джерелаBACA, ALBERT G., RONALD D. BRIGGS, ANDREW A. ALLERMAN, CHRISTINE C. MITCHELL, ARTHUR J. FISCHER, CAROL I. ASHBY, ALAN F. WRIGHT, and RANDY J. SHUL. High Al-Content AlInGaN Devices for Next Generation Electronic and Optoelectronic Applications. Office of Scientific and Technical Information (OSTI), December 2001. http://dx.doi.org/10.2172/789599.
Повний текст джерелаSchmitt, R. L., R. J. Williams, and J. D. Matthews. High-frequency scannerless imaging laser radar for industrial inspection and measurement applications. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/419074.
Повний текст джерелаJakaboski, Blake Elaine, Chung-Nin Channy Wong, Dale L. Huber, Michael J. Rightley, and John Allen Emerson. Advancement in thermal interface materials for future high-performance electronic applications. Part 1. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/902216.
Повний текст джерелаBarbee, T. W. Jr, and G. W. Johnson. High energy density capacitors for power electronic applications using nano-structure multilayer technology. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/258017.
Повний текст джерелаGivot, Brad, Justin Johnson, Sung Kim, Luke E. Schallinger, and James Baker-Jarvis. Characterization of tissue-equivalent materials for high-frequency applications (200 MHz to 20 GHz). Gaithersburg, MD: National Bureau of Standards, 2010. http://dx.doi.org/10.6028/nist.tn.1554.
Повний текст джерелаLyo, Sungkwun Kenneth, Wei Pan, John Louis Reno, Joel Robert Wendt, and Daniel Lee Barton. LDRD final report on Bloch Oscillations in two-dimensional nanostructure arrays for high frequency applications. Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/948689.
Повний текст джерела