Добірка наукової літератури з теми "High Dynamic Range images (HDR)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "High Dynamic Range images (HDR)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "High Dynamic Range images (HDR)"
Lu, Jiajun, Fangyan Dong, and Kaoru Hirota. "Gradient-Related Non-Photorealistic Rendering for High Dynamic Range Images." Journal of Advanced Computational Intelligence and Intelligent Informatics 17, no. 4 (July 20, 2013): 628–36. http://dx.doi.org/10.20965/jaciii.2013.p0628.
Повний текст джерелаDev, Soumyabrata, Florian M. Savoy, Yee Hui Lee, and Stefan Winkler. "High-dynamic-range imaging for cloud segmentation." Atmospheric Measurement Techniques 11, no. 4 (April 11, 2018): 2041–49. http://dx.doi.org/10.5194/amt-11-2041-2018.
Повний текст джерелаChoi, Sungil, Jaehoon Cho, Wonil Song, Jihwan Choe, Jisung Yoo, and Kwanghoon Sohn. "Pyramid Inter-Attention for High Dynamic Range Imaging." Sensors 20, no. 18 (September 7, 2020): 5102. http://dx.doi.org/10.3390/s20185102.
Повний текст джерелаLedda, Patrick. "Product Review: High Dynamic Range Displays." Presence: Teleoperators and Virtual Environments 16, no. 1 (February 1, 2007): 119–22. http://dx.doi.org/10.1162/pres.16.1.119.
Повний текст джерелаShaya, Omar, Pengpeng Yang, Rongrong Ni, Yao Zhao, and Alessandro Piva. "A New Dataset for Source Identification of High Dynamic Range Images." Sensors 18, no. 11 (November 6, 2018): 3801. http://dx.doi.org/10.3390/s18113801.
Повний текст джерелаAhirwal, Ramratan, Yogesh Singh Rajput, and Dr Yogendra Kumar Jain. "Ghost-Free High Dynamic Range Imaging Using Histogram Separation and Edge Preserving Denoising." INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 12, no. 3 (January 7, 2014): 3329–37. http://dx.doi.org/10.24297/ijct.v12i3.3242.
Повний текст джерелаLi, Jie, Hai Wen Wang, and Xi Xi He. "Creation Method of High Dynamic Range Image Based on Three-Color Camera." Applied Mechanics and Materials 731 (January 2015): 193–96. http://dx.doi.org/10.4028/www.scientific.net/amm.731.193.
Повний текст джерелаGracheva, I. A., and A. V. Kopylov. "TONE COMPRESSION ALGORITHM FOR HIGH DYNAMIC RANGE MEDICAL IMAGES." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W12 (May 9, 2019): 87–95. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w12-87-2019.
Повний текст джерелаSee, Zi Siang, Lizbeth Goodman, Craig Hight, Mohd Shahrizal Sunar, Arindam Dey, Yen Kaow Ng, and Mark Billinghurst. "Creating high fidelity 360° virtual reality with high dynamic range spherical panorama images." Virtual Creativity 9, no. 1 (December 1, 2019): 73–109. http://dx.doi.org/10.1386/vcr_00006_1.
Повний текст джерелаXie, Shundao, Wenfang Wu, Rongjun Chen, and Hong-Zhou Tan. "Reduced-Dimensional Capture of High-Dynamic Range Images with Compressive Sensing." Discrete Dynamics in Nature and Society 2020 (April 27, 2020): 1–13. http://dx.doi.org/10.1155/2020/6703528.
Повний текст джерелаДисертації з теми "High Dynamic Range images (HDR)"
Clark, Brian Sean. "Time lapse HDR: time lapse photography with high dynamic range images." Texas A&M University, 2005. http://hdl.handle.net/1969.1/2408.
Повний текст джерелаRamírez, Orozco Raissel. "High dynamic range content acquisition from multiple exposures." Doctoral thesis, Universitat de Girona, 2016. http://hdl.handle.net/10803/371162.
Повний текст джерелаEl limitado rango dinámico de las imágenes digitales puede ampliarse mezclando varias imágenes adquiridas con diferentes valores de exposición. Esta tesis incluye un detallado resumen del estado del arte y tres métodos diferentes para alinear las imágenes y corregir el efecto ’ghosting’ en imágenes HDR. El primer método está centrado en detectar las áreas afectadas por el movimiento y registrar los objetos dinámicos sobre una imagen de referencia de modo que se logre recuperar información a lo largo de toda la imagen. Nuestra segunda propuesta es un método para obtener imágenes HDR multiscópicas a partir de diferentes exposiciones LDR. Está basado en un algoritmo de ’patch match’ que ha sido adaptado para aprovechar las ventajas de las restricciones de la geometría epipolar de imágenes estéreo. Por último proponemos reemplazar los píxeles saturados en la imagen de referencia usando valores correctos de otras imágenes de la secuencia.
Griffiths, David John. "Developmemt of High Speed High Dynamic Range Videography." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/74990.
Повний текст джерелаPh. D.
Zhou, Fanping. "Omnidirectional High Dynamic Range Imaging with a Moving Camera." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31324.
Повний текст джерелаVančura, Jan. "Tone-mapping HDR obrazů." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2010. http://www.nusl.cz/ntk/nusl-237159.
Повний текст джерелаGuarnieri, Gabriele. "High dynamic range images: processing, display and perceptual quality assessment." Doctoral thesis, Università degli studi di Trieste, 2009. http://hdl.handle.net/10077/3121.
Повний текст джерелаThe intensity of natural light can span over 10 orders of magnitude from starlight to direct sunlight. Even in a single scene, the luminance of the bright areas can be thousands or millions of times greater than the luminance in the dark areas; the ratio between the maximum and the minimum luminance values is commonly known as dynamic range or contrast. The human visual system is able to operate in an extremely wide range of luminance conditions without saturation and at the same time it can perceive fine details which involve small luminance differences. Our eyes achieve this ability by modulating their response as a function of the local mean luminance with a process known as local adaptation. In particular, the visual sensation is not linked to the absolute luminance, but rather to its spatial and temporal variation. One consequence of the local adaptation capability of the eye is that the objects in a scene maintain their appearance even if the light source illuminating the scene changes significantly. On the other hand, the technologies used for the acquisition and reproduction of digital images are able to handle correctly a significantly smaller luminance range of 2 to 3 orders of magnitude at most. Therefore, a high dynamic range (HDR) image poses several challenges and requires the use of appropriate techniques. These elementary observations define the context in which the entire research work described in this Thesis has been performed. As indicated below, different fields have been considered; they range from the acquisition of HDR images to their display, from visual quality evaluation to medical applications, and include some developments on a recently proposed class of display equipment. An HDR image can be captured by taking multiple photographs with different exposure times or by using high dynamic range sensors; moreover, synthetic HDR images can be generated with computer graphics by means of physically-based algorithms which often involve advanced lighting simulations. An HDR image, although acquired correctly, can not be displayed on a conventional monitor. The white level of most devices is limited to a few hundred cd/m² by technological constraints, primarily linked to the power consumption and heat dissipation; the black level also has a non negligible luminance, in particular for devices based on the liquid crystal technology. However, thanks to the aforementioned properties of the human visual system, an exact reproduction of the luminance in the original scene is not strictly necessary in order to produce a similar sensation in the observer. For this purpose, dynamic range reduction algorithms have been developed which attenuate the large luminance variations in an image while preserving as far as possible the fine details. The most simple dynamic range reduction algorithms map each pixel individually with the same nonlinear function commonly known as tone mapping curve. One operator we propose, based on a modified logarithmic function, has a low computational cost and contains one single user-adjustable parameter. However, the methods belonging to this category can reduce the visibility of the details in some portions of the image. More advanced methods also take into account the pixel neighborhood. This approach can achieve a better preservation of the details, but the loss of one-to-one mapping from input luminances to display values can lead to the formation of gradient reversal effects, which typically appear as halos around the object boundaries. Different solutions to this problem have been attempted. One method we introduce is able to avoid the formation of halos and intrinsically prevents any clipping of the output display values. The method is formulated as a constrained optimization problem, which is solved efficiently by means of appropriate numerical methods. In specific applications, such as the medical one, the use of dynamic range reduction algorithms is discouraged because any artifacts introduced by the processing can lead to an incorrect diagnosis. In particular, a one-to-one mapping from the physical data (for instance, a tissue density in radiographic techniques) to the display value is often an essential requirement. For this purpose, high dynamic range displays, capable of reproducing images with a wide luminance range and possibly a higher bit depth, are under active development. Dual layer LCD displays, for instance, use two liquid crystal panels stacked one on top of the other over an enhanced backlight unit in order to achieve a dynamic range of 4 ÷ 5 orders of magnitude. The grayscale reproduction accuracy is also increased, although a “bit depth” can not be defined unambiguously because the luminance levels obtained by the combination of the two panels are partially overlapped and unevenly spaced. A dual layer LCD display, however, requires the use of complex splitting algorithms in order to generate the two images which drive the two liquid crystal panels. A splitting algorithm should compensate multiple sources of error, including the parallax introduced by the viewing angle, the gray-level clipping introduced by the limited dynamic range of the panels, the visibility of the reconstruction error, and glare effects introduced by an unwanted light scattering between the two panels. For these reasons, complex constrained optimization techniques are necessary. We propose an objective function which incorporates all the desired constraints and requirements and can be minimized efficiently by means of appropriate techniques based on multigrid methods. The quality assessment of high dynamic range images requires the development of appropriate techniques. By their own nature, dynamic range reduction algorithms change the luminance values of an image significantly and make most image fidelity metrics inapplicable. Some particular aspects of the methods can be quantified by means of appropriate operators; for instance, we introduce an expression which describes the detail attenuation introduced by a tone mapping curve. In general, a subjective quality assessment is preferably performed by means of appropriate psychophysical experiments. We conducted a set of experiments, targeted specifically at measuring the level of agreement between different users when adjusting the parameter of the modified logarithmic mapping method we propose. The experimental results show a strong correlation between the user-adjusted parameter and the image statistics, and suggest a simple technique for the automatic adjustment of this parameter. On the other hand, the quality assessment in the medical field is preferably performed by means of objective methods. In particular, task-based quality measures evaluate by means of appropriate observer studies the clinical validity of the image used to perform a specific diagnostic task. We conducted a set of observer studies following this approach, targeted specifically at measuring the clinical benefit introduced by a high dynamic range display based on the dual layer LCD technology over a conventional display with a low dynamic range and 8-bit quantization. Observer studies are often time consuming and difficult to organize; in order to increase the number of tests, the human observers can be partially replaced by appropriate software applications, known as model observers or computational observers, which simulate the diagnostic task by means of statistical classification techniques. This thesis is structured as follows. Chapter 1 contains a brief background of concepts related to the physiology of human vision and to the electronic reproduction of images. The description we make is by no means complete and is only intended to introduce some concepts which will be extensively used in the following. Chapter 2 describes the technique of high dynamic range image acquisition by means of multiple exposures. In Chapter 3 we introduce the dynamic range reduction algorithms, providing an overview of the state of the art and proposing some improvements and novel techniques. In Chapter 4 we address the topic of quality assessment in dynamic range reduction algorithms; in particular, we introduce an operator which describes the detail attenuation introduced by tone mapping curves and describe a set of psychophysical experiments we conducted for the adjustment of the parameter in the modified logarithmic mapping method we propose. In Chapter 5 we move to the topic of medical images and describe the techniques used to map the density data of radiographic images to display luminances. We point out some limitations of the current technical recommendation and propose an improvement. In Chapter 6 we describe in detail the dual layer LCD prototype and propose different splitting algorithms for the generation of the two images which drive the two liquid crystal panels. In Chapter 7 we propose one possible technique for the estimation of the equivalent bit depth of a dual layer LCD display, based on a statistical analysis of the quantization noise. Finally, in Chapter 8 we address the topic of objective quality assessment in medical images and describe a set of observer studies we conducted in order to quantify the clinical benefit introduced by a high dynamic range display. No general conclusions are offered; the breadth of the subjects has suggested to draw more focused comments at the end of the individual chapters.
XXI Ciclo
1982
Silk, Simon. "High Dynamic Range Panoramic Imaging with Scene Motion." Thesis, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20394.
Повний текст джерелаUrbano, António Carlos Alves. "Visualização de imagens HDR em dispositivos com ecrã pequeno." Doctoral thesis, Universidade de Trás-os-Montes e Alto Douro, 2013. http://hdl.handle.net/10400.8/976.
Повний текст джерелаNas duas últimas décadas, assistimos ao desenvolvimento de um número crescente de técnicas, designadas por tone mapping operators (TMO), para reprodução de imagens com elevada gama dinâmica (high dynamic range – HDR) em ecrãs tradicionais. Apesar de recentemente terem surgido TMO que têm em conta a característica específica de cada dispositivo de visualização, nenhum desses algoritmos foi desenvolvido especificamente para dispositivos com ecrã pequeno (DEP). Assim, nesta tese foi realizado um estudo sobre a visualização de imagens HDR em DEP, tendo como propósito a proposta de soluções para a melhoria da sua visualização. Inicialmente foi realizada uma avaliação dos TMO atualmente existentes que mostrou que os DEP com tamanho limitado, resolução e profundidade de cor, exigem uma investigação específica para encontrar ou criar uma solução adequada. Esse estudo permitiu, também, identificar um conjunto de características dos TMO que precisam ser enfatizadas para obter imagens mapeadas com uma maior fidelidade nos DEP, especialmente o realce dos detalhes. Com base nesse estudo foi proposta uma solução para visualização de imagens HDR em DEP, que tem por base a construção de um TMO híbrido. O TMO proposto, tendo por base um qualquer TMO, tenta melhorar os detalhes das imagens mapeadas com o TMO original. Através da realização de experiências psicofísicas foi demonstrado que este novo TMO produz melhores resultados em DEP que os obtidos com o TMO original. Apesar de ter sido desenvolvido um protótipo em J2ME do novo TMO, a sua atual implementação ainda é pouco eficiente para a realização de testes diretamente em DEP. Em conclusão, com este trabalho é identificada a problemática da visualização de imagens HDR em DEP, sendo apontadas sugestões de como melhorar esse processo e fica ainda a proposta de um novo TMO.
Lluis-Gomez, Alexis L. "Algorithms for the enhancement of dynamic range and colour constancy of digital images & video." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/19580.
Повний текст джерелаBonnard, Jennifer. "Génération d'images 3D HDR." Thesis, Reims, 2015. http://www.theses.fr/2015REIMS014/document.
Повний текст джерелаHDR imaging and 3D imaging are two areas in which the simultaneous but separate development has been growing in recent years. On the one hand, HDR (High Dynamic Range) imaging allows to extend the dynamic range of traditionnal images called LDR (Low Dynamic Range). On the other hand, 3Dimaging offers immersion in the shown film with the feeling to be part of the acquired scene. Recently, these two areas have been combined to provide 3D HDR images or videos but few viable solutions existand none of them is available to the public. In this thesis, we propose a method to generate 3D HDR images for autostereoscopic displays by adapting a multi-viewpoints camera to several exposures acquisition.To do that, neutral density filters are fixed on the objectives of the camera. Then, pixel matchingis applied to aggregate pixels that represent the same point in the acquired scene. Finally, radiance is calculated for each pixel of the set of images by using a weighted average of LDR values. An additiona lstep is necessary because some pixels have wrong radiance. We proposed a method based on the color of adjacent pixels and two methods based on the correction of the disparity of those pixels. The first method is based on the disparity of pixels of the neighborhood and the second method on the disparity independently calculated on each color channel. This pipeline allows the generation of 3D HDR image son each viewpoint. A tone-mapping algorithm is then applied on each of these images. Their composition with filters corresponding to the autostereoscopic screen used allows the visualization of the generated 3DHDR image
Книги з теми "High Dynamic Range images (HDR)"
Davis, Harold. Creating HDR photos. New York: Amphoto Books, 2012.
Знайти повний текст джерелаB, Hoefflinger, ed. High-dynamic-range (HDR) vision: Microelectronics, image processing, computer graphics. Berlin: Springer, 2007.
Знайти повний текст джерелаB, Hoefflinger, ed. High-dynamic-range (HDR) vision: Microelectronics, image processing, computer graphics. Berlin: Springer, 2007.
Знайти повний текст джерелаConcepcion, Rafael. The HDR book: Unlocking the secrets of high dynamic range photography. [United States]: Peachpit Press, 2011.
Знайти повний текст джерелаMcCann, John J. The art and science of HDR imaging. Chichester, West Sussex, U.K: Wiley, 2012.
Знайти повний текст джерелаHoefflinger, Bernd, ed. High-Dynamic-Range (HDR) Vision. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-44433-6.
Повний текст джерелаWagner, Reinhard. Profibuch HDR-Fotografie: [atemberaubende Bilder mit HDR-Effekt erstellen ; richtig belichten für perfekte HDR-Bilder ; HDR-Bilder per Software optimieren]. Poing: Franzis, 2010.
Знайти повний текст джерелаKircher, Ju rgen. DRI und HDR - das perfekte Bild: [inklusive DVD-ROM; von der Planung u ber die Aufnahme bis zur Fertigstellung; alles zur Ausru stung fu r die Erstellung eindrucksvoller DRI- und HDR-Fotos; Vorstellung geeigneter Software, Workshops, verwandte Techniken, das HDR-Panorama]. [Heidelberg]: mitp, 2008.
Знайти повний текст джерелаA world in HDR. Berkeley, Calif. : London: New Riders ; Pearson Education [distributor], 2010.
Знайти повний текст джерелаPractical HDRI: High dynamic range imaging for photographers. Santa Barbara, CA: Rocky Nook, 2008.
Знайти повний текст джерелаЧастини книг з теми "High Dynamic Range images (HDR)"
Banterle, Francesco, Alessandro Artusi, Kurt Debattista, and Alan Chalmers. "HDR Images Compression." In Advanced High Dynamic Range Imaging, 197–219. Second edition. | Boca Raton : Taylor & Francis, CRC Press,: A K Peters/CRC Press, 2017. http://dx.doi.org/10.1201/9781315119526-8.
Повний текст джерелаMyszkowski, Karol, Rafał Mantiuk, and Grzegorz Krawczyk. "HDR Image Quality." In High Dynamic Range Video, 35–40. Cham: Springer International Publishing, 2008. http://dx.doi.org/10.1007/978-3-031-79528-2_4.
Повний текст джерелаSá, Asla M., Paulo Cezar Carvalho, and Luiz Velho. "HDR Reconstruction." In High Dynamic Range Image Reconstruction, 19–36. Cham: Springer International Publishing, 2007. http://dx.doi.org/10.1007/978-3-031-79522-0_4.
Повний текст джерелаMyszkowski, Karol, Rafał Mantiuk, and Grzegorz Krawczyk. "Representation of an HDR Image." In High Dynamic Range Video, 9–16. Cham: Springer International Publishing, 2008. http://dx.doi.org/10.1007/978-3-031-79528-2_2.
Повний текст джерелаMyszkowski, Karol, Rafał Mantiuk, and Grzegorz Krawczyk. "HDR Image and Video Acquisition." In High Dynamic Range Video, 17–33. Cham: Springer International Publishing, 2008. http://dx.doi.org/10.1007/978-3-031-79528-2_3.
Повний текст джерелаMyszkowski, Karol, Rafał Mantiuk, and Grzegorz Krawczyk. "HDR Display Devices." In High Dynamic Range Video, 89–97. Cham: Springer International Publishing, 2008. http://dx.doi.org/10.1007/978-3-031-79528-2_7.
Повний текст джерелаBanterle, Francesco, Alessandro Artusi, Kurt Debattista, and Alan Chalmers. "HDR Pipeline." In Advanced High Dynamic Range Imaging, 13–43. Second edition. | Boca Raton : Taylor & Francis, CRC Press,: A K Peters/CRC Press, 2017. http://dx.doi.org/10.1201/9781315119526-2.
Повний текст джерелаBanterle, Francesco, Alessandro Artusi, Kurt Debattista, and Alan Chalmers. "HDR Video Compression." In Advanced High Dynamic Range Imaging, 221–39. Second edition. | Boca Raton : Taylor & Francis, CRC Press,: A K Peters/CRC Press, 2017. http://dx.doi.org/10.1201/9781315119526-9.
Повний текст джерелаSá, Asla M., Paulo Cezar Carvalho, and Luiz Velho. "HDRI Acquisition and Visualization." In High Dynamic Range Image Reconstruction, 37–41. Cham: Springer International Publishing, 2007. http://dx.doi.org/10.1007/978-3-031-79522-0_5.
Повний текст джерелаBanterle, Francesco, Alessandro Artusi, Kurt Debattista, and Alan Chalmers. "HDR Video Tone Mapping." In Advanced High Dynamic Range Imaging, 115–34. Second edition. | Boca Raton : Taylor & Francis, CRC Press,: A K Peters/CRC Press, 2017. http://dx.doi.org/10.1201/9781315119526-5.
Повний текст джерелаТези доповідей конференцій з теми "High Dynamic Range images (HDR)"
Yoo, Hyun Jin, Kang Yeon Kim, Hoe Min Kim, Kang Su Park, Seung Joo Lee, Kwang Hee Ko, and Kwan H. Lee. "Color correction of high dynamic range images at HDR-level." In SIGGRAPH07: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2007. http://dx.doi.org/10.1145/1280720.1280794.
Повний текст джерелаGunawan, Irwan Prasetya, Ocarina Cloramidina, Salmaa Badriatu Syafa'ah, Guson Prasamuarso Kuntarto, and Berkah I. Santoso. "High Dynamic Range (HDR) Image Quality Assessment: A Survey." In International Conferences on Information System and Technology. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0009354900330040.
Повний текст джерелаLo, Raymond Chun Hing, Steve Mann, Jason Huang, Valmiki Rampersad, and Tao Ai. "High dynamic range (HDR) video image processing for digital glass." In the 20th ACM international conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2393347.2396525.
Повний текст джерелаKumar, V. Abhinau, Shashank Gupta, Sai Sheetal Chandra, Shanmuganathan Raman, and Sumohana S. Channappayya. "No-reference quality assessment of tone mapped High Dynamic Range (HDR) images using transfer learning." In 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2017. http://dx.doi.org/10.1109/qomex.2017.7965668.
Повний текст джерелаHuang, Yu-Ming, Jui-Chiu Chiang, and Sau-Gee Chen. "HDR-AGAN: Ghost-Free High Dynamic Range Imaging with Attention Guided Adversarial Network." In 2022 IEEE International Conference on Image Processing (ICIP). IEEE, 2022. http://dx.doi.org/10.1109/icip46576.2022.9897556.
Повний текст джерелаWang, Hu, Mao Ye, Xiatian Zhu, Shuai Li, Ce Zhu, and Xue Li. "KUNet: Imaging Knowledge-Inspired Single HDR Image Reconstruction." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/196.
Повний текст джерелаBanterle, Francesco, Alessandro Artusi, Alejandro Moreo, and Fabio Carrara. "Nor-Vdpnet: A No-Reference High Dynamic Range Quality Metric Trained On Hdr-Vdp 2." In 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020. http://dx.doi.org/10.1109/icip40778.2020.9191202.
Повний текст джерелаNatale, Donald J., Matthew S. Baran, and Richard L. Tutwiler. "High dynamic range (HDR) video processing for the exploitation of high bit-depth sensors in human-monitored surveillance." In 2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). IEEE, 2014. http://dx.doi.org/10.1109/aipr.2014.7041912.
Повний текст джерелаXi, Lv, and Luo Ming Ronnier. "TWO-DIMENSIONAL COLOUR APPEARANCE SCALES FOR COLOUR STIMULI HAVING HIGH DYNAMIC RANGE." In CIE 2021 Conference. International Commission on Illumination, CIE, 2021. http://dx.doi.org/10.25039/x48.2021.op45.
Повний текст джерелаWang, Xinyang, Bram Wolfs, Jan Bogaerts, Guy Meynants, and Ali BenMoussa. "A high-dynamic range (HDR) back-side illuminated (BSI) CMOS image sensor for extreme UV detection." In IS&T/SPIE Electronic Imaging, edited by Ralf Widenhorn, Valérie Nguyen, and Antoine Dupret. SPIE, 2012. http://dx.doi.org/10.1117/12.906617.
Повний текст джерелаЗвіти організацій з теми "High Dynamic Range images (HDR)"
Engel, Bernard, Yael Edan, James Simon, Hanoch Pasternak, and Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, July 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Повний текст джерела