Добірка наукової літератури з теми "Helicon wave"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Helicon wave".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Helicon wave"

1

Petržílka, V. "Variations of Helicon Wave-induced Radial Plasma Transport in Different Experimental Conditions." Australian Journal of Physics 47, no. 3 (1994): 315. http://dx.doi.org/10.1071/ph940315.

Повний текст джерела
Анотація:
Variations of the helicon wave-induced radial plasma transport are presented depending on values of the plasma radius, magnetostatic field, plasma density and the frequency of the helicon wave. It is shown that the value of the helicon wave-induced transport may be significant for plasma confinement; this is demonstrated, for the experiments BASIL and SHEILA. Whereas m = +1 helicons induce an inward-directed transport and thus improve the confinement, m = -1 helicons induce an outward-directed transport velocity.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lau, Cornwall, Michael Brookman, Andris Dimits, Ben Dudson, Elijah Martin, Robert I. Pinsker, Matt Thomas, and Bart Van Compernolle. "Helicon full-wave modeling with scrape-off-layer turbulence on the DIII-D tokamak." Nuclear Fusion 61, no. 12 (November 25, 2021): 126072. http://dx.doi.org/10.1088/1741-4326/ac36f3.

Повний текст джерела
Анотація:
Abstract Helicon waves have been recently proposed as an off-axis current drive actuator due to their expected high current drive efficiency in the mid-radius region in high beta tokamaks. This paper focuses on a numerical study to better understand effects of scrape-off-layer (SOL) turbulence on helicon wave propagation and absorption on the DIII-D tokamak using a recently developed helicon full-wave model with turbulent density inputs from synthetic single wavelength SOL turbulence and first-principles HERMES multi-wavelength turbulence models. With both input turbulence models, three key effects are observed: the helicon wave can scatter to undesirable locations in the plasma, large helicon wave electric fields can form in localized regions near the SOL turbulence, and the helicon wave can mode convert to slow waves in the SOL. This is shown to cause helicon wave refraction to undesirable locations and strong helicon wave absorption in the SOL resulting in significantly less helicon wave power in the core plasma. Using synthetic SOL turbulence, the simulations additionally show that high amplitudes and long wavelengths greater than a few cm on average have the largest effect on modifying the helicon wave propagation and absorption; the modeling predicts, for example, that approximately 60% of helicon power can be absorbed in the SOL for ñ/n ∼ 0.8 and lambda_perp ∼ 0.05 m. Several potential physical mechanisms that may explain the interaction of helicon waves with SOL turbulence in these simulations are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Light, Max, and Francis F. Chen. "Helicon wave excitation with helical antennas." Physics of Plasmas 2, no. 4 (April 1995): 1084–93. http://dx.doi.org/10.1063/1.871461.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhu, Wanying, Ruilin Cui, Feng He, Tianliang Zhang, and Jiting Ouyang. "On the mechanism of density peak at low magnetic field in argon helicon plasmas." Physics of Plasmas 29, no. 9 (September 2022): 093511. http://dx.doi.org/10.1063/5.0091471.

Повний текст джерела
Анотація:
Helicon plasma density may show a non-monotonic dependence on the magnetic field at low strength, so-called “low-field peak (LFP).” We presented the multiple LFPs and the formation mechanism in argon helicon plasmas in this paper. Propagating conditions of helicon (H) and Trivelpiece–Gould (TG) waves in collisional plasmas were calculated based on the dispersion relation. It is demonstrated that there are two mechanisms during mode transition responsible for LFP, i.e., resonance of H- and TG-waves and anti-resonance of TG-wave. Especially, H-TG resonance of the highest axial mode in the helicon plasma results in a density jump rather than a density peak due to the mode transition from non-wave to co-H/TG-wave mode. Higher plasma density in lower magnetic fields is helpful for achievement of multiple LFPs in argon helicon plasmas.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

JANKAUSKAS, ZIGMANTAS, VYGAUDAS KVEDARAS, and SAULIUS BALEVIČIUS. "RAMAN SCATTERING IN THE MAGNETIZED SEMICONDUCTOR PLASMA." International Journal of Modern Physics B 18, no. 27n29 (November 30, 2004): 3825–29. http://dx.doi.org/10.1142/s0217979204027530.

Повний текст джерела
Анотація:
Radio frequency (RF) magnetoplasmic waves known as helicons will propagate in solid-state plasmas when a strong magnetic field is applied. In our device the helicons were excited by RFs (the range 100-2000 MHz) much higher than the helicon generation frequency (the main peak at 20 MHz). The excitation of helicons in this case may be described by the effect similar to the Combination Scattering (Raman effect) when a part of the high RF wave energy that passes through the active material is absorbed and re-emitted by the magnetized solid-state plasma. It is expedient to call this experimental device a Helicon Maser (HRM) and the higher frequency e/m field - a pumping field. In full analogy with the usual Raman maser (or laser) the magnetized semiconductor sample plays the role of active material and the connecting cable - the role of high quality external resonator.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vountesmery, V. S., and Yu V. Vountesmery. "Quarter-wave helicon resonator." Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, no. 67 (December 30, 2016): 25–29. http://dx.doi.org/10.20535/radap.2016.67.25-29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Petržílka, V., and RL Dewar. "Chirality-dependent Plasma Density Profile Changes from Helicon Wave Ponderomotive Forces." Australian Journal of Physics 48, no. 4 (1995): 691. http://dx.doi.org/10.1071/ph950691.

Повний текст джерела
Анотація:
It is shown that nonresonant helicon-wave-induced transport may result in significant changes in the plasma density radial profile; this is illustrated using parameters appropriate to the cylindrical experiment BASIL and the toroidal experiment SHEILA. Whereas m = +1 helicon waves induce an inward-directed transport and change the density profile to a more centrally peaked one with a higher density on the axis, m = −1 helicon waves induce an outward-directed transport velocity and change the density profile to a hollow one. This may be the clue to the puzzle as to why m = −1 helicon waves are frequently difficult or impossible to excite, as the plasma column is effectively blown off to the discharge chamber walls by the ponderomotive force density of the waves with this chirality (sense of rotation of the wavevector with respect to the axial or toroidal magnetic field).
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nakamura, Keiji, Keiji Suzuki, and Hideo Sugai. "Helicon Wave Measurements in an Inductively Coupled Magnetoplasma." Australian Journal of Physics 48, no. 3 (1995): 461. http://dx.doi.org/10.1071/ph950461.

Повний текст джерела
Анотація:
Small-amplitude test waves at 30-100 MHz are externally excited in an inductive rf plasma for a magnetic field of rv100 G, to obtain a full dispersion relation for helicon waves. Measured wavelengths agree well with theoretical ones, not only for the test waves but also for largeamplitude principal waves at the discharge frequency of 13�56 MHz. Absolute measurements of the radial magnetic field B; of the large-amplitude helicon wave are carried out, and the r, q and z components of the wave electric field are estimated to be E; rv Eo rv 8 V cm-1 and Ez rv 0�7Vcm-1 at an rf power of 800 W.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shoucri, M. "Helicon waves in a cylindrical plasma column." Journal of Plasma Physics 52, no. 3 (December 1994): 465–70. http://dx.doi.org/10.1017/s0022377800027264.

Повний текст джерела
Анотація:
Helicon waves have been used for efficiently coupling radio-frequency power to plasmas, and are studied for their potential application for low-frequency current drive in tokamks. In this paper the electromagnetic field components and the dispersion relation for azimuthally independent helicon-wave oscillations in a cylindrical plasma column are derived. The coupling of transverse electric TE and transverse magnetic TM modes associated with these oscillations is discussed. The effect of the collisional damping on determining the nature of the TM mode (either surface wave or body wave) is analysed.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Paul, Manash Kr, and Dhiraj Bora. "Wave-induced helicity current drive by helicon waves." Physics of Plasmas 14, no. 8 (August 2007): 082507. http://dx.doi.org/10.1063/1.2762130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Helicon wave"

1

Podesta, M. de. "Helicon wave studies in potassium." Thesis, University of Sussex, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370431.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kline, John L. "Slow wave ion heating and parametric instabilities in the HELIX helicon source." Morgantown, W. Va. : [West Virginia University Libraries], 2002. http://etd.wvu.edu/templates/showETD.cfm?recnum=2292.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--West Virginia University, 2002.
Title from document title page. Document formatted into pages; contains viii, 176 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

LOPES, DANIEL T. "Caracterização de estruturas de ondas lentas helicoidais para utilização em, TWT de potência." reponame:Repositório Institucional do IPEN, 2007. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11596.

Повний текст джерела
Анотація:
Made available in DSpace on 2014-10-09T12:53:40Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T13:58:44Z (GMT). No. of bitstreams: 0
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Dissertação (Mestrado)
IPEN/D
Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
FAPESP:05/03612-0
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Balkey, Matthew M. "Optimization of a helicon plasma source for maximum density with minimal ion heating." Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1686.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--West Virginia University, 2000.
Title from document title page. Document formatted into pages; contains v, 127 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 94-98).
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sun, Xuan. "A study of ion acceleration, asymmetric optical pumping and low frequency waves in two expanding helicon plasmas." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4319.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--West Virginia University, 2005.
Title from document title page. Document formatted into pages; contains v, 152 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vassilikos, Evangelos. "A study of the input impedance of travelling wave antennae." Thesis, Cranfield University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385793.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Katkevičius, Andrius. "Investigation of Frequency Properties of Helical and Meander Slow-Wave Systems." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130620_163759-77674.

Повний текст джерела
Анотація:
There are investigated issues of modeling techniques improvement and investigation of improved design of helical and meander slow-wave systems with periodical inhomogeneities in the dissertation. Objects of research – models of slow-wave systems with periodical inhomogeneities and their methods of investigation. Aim of the work – improvement of sophisticated helical and meander slow-wave systems with periodical inhomogeneities and investigation of their methods of analysis, in order to reveal general characteristics of inhomogeneous slow-wave systems and capabilities of using computer-aided design.
Disertacijoje sprendžiama spiralinių ir meandrinių lėtinimo sistemų su periodiniais netolygumais modeliavimo metodų tobulinimo ir jų tobulesnių konstrukcijų paieškos problema. Pagrindiniai tyrimo objektai – nevienalytės periodinės lėtinimo sistemos ir jų modeliai bei analizės metodai. Darbo tikslas yra tobulinti sudėtingas turinčias periodinių netolygumų spiralines ir meandrines lėtinimo sistemas ir ištirti jų analizės metodus, siekiant atskleisti nevienalyčių lėtinimo sistemų savybes ir jų automatizuoto projektavimo galimybes.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Puglia, Paulo Giovane Paschoali Pereira. "Excitação de ondas de helicon e de Alfvén em tokamak TCABR." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-30092011-155130/.

Повний текст джерела
Анотація:
O objetivo do trabalho é a investigação da excitação de ondas no plasma com o uso de uma antena externa e fazer uma análise das ressonâncias de Alfvén encontradas. O sistema de antenas de Alfvén no tokamak TCABR foi desenhado para aquecimento do plasma por meio de ressonâncias. Al em do aquecimento, é possível usar a detecção de ondas excitadas com o uso da antena para objetivos de diagnóstico do plasma, encontrando o valor do perfil de segurança e massa efetiva dos íons. Por causa de uma falha nos diodos do campo toroidal usamos o regime de disparos de limpeza, com campo magnético toroidal mais fraco que de disparos tópicos do TCABR, para os testes do método de excitação e identificação de ressonâncias no plasma. Com o uso do circuito demodulador foram medidas ondas de helicon excitadas com a antena de Alfvén no plasma de limpeza usando as sondas magnéticas e de Langmuir. Com simulação foi possível idênticas as ondas medidas. Há disponível um gerador de frequência variável que foi utilizado junto desse experimento. Ambos os equipamentos se encontram preparados para uso, sendo a próxima etapa usar o plasma tópico de disparo do TCABR, que tem maior densidade que o plasma de limpeza. As medidas realizadas foram um teste para o circuito demodulador e gerador de frequência variável, que teve seu comportamento comparado com os dados de um osciloscópio de alta frequência de amostragem. Os equipamentos do TCABR usados nos experimentos, as antenas e sondas magnéticas, um gerador de baixa potência com frequência variável, um circuito demodulador, sonda de Langmuir e o reflectômetro, que tem alta taxa de amostragem (200MHz) e varredura de frequência na banda de 18 40GHz. São todos descritos na dissertação. Para modelagem das ressonâncias de Alfvén foi feito o cálculo do tensor dielétrico do plasma para o modelo cinético e para o limite magnetohidrodinâmico. Por meio de simulação computacional e cálculos considerando plasma como um fluido de 2 componentes, no caso prótons e elétrons, é possível determinar alguns tipos de onda que podem ser excitadas no plasma e sua relação de dispersão, foram calculadas a onda magnetossônica rápida e a onda global de Alfvén. Determinamos radialmente a posição dos campos eletromagnéticos no plasma. Usando o reactômetro foram medidas as ressonâncias das ondas de Alfvén na borda do plasma induzidas pelas antenas, com o plasma tópico do tokamak, com densidade mais alta e o gerador de alta potência com frequência fixa. O método para achar as ressonâncias nos dados do reflectômetro foi com o uso de sidebands que aparecem em torno da frequência da ressonância não sinal do reflectômetro, que é a frequência do gerador. As sidebands foram analisadas com um espectrograma dos dados. As ondas excitadas na borda do plasma puderam ser identificadas também nas simulações. Os resultados da análise mostram que foi possível medir as ondas no plasma que foram excitadas com o uso das antenas e tanto o circuito demodulador com o uso de sondas magnéticas como o reflectômetro são adequados para se achar ressonâncias no plasma.
The objective of this work is to investigate the excitation of waves in a plasma using an antenna and to analyse the Alfvén resonances found. The Alfvén antenna heating system of the TCABR tokamak was designed to heat the plasma due to resonances. As the diodes of the toroidal field had burned down we used cleaning discharges, with low toroidal magnetic field, to test the excitation method and the identification of plasma resonances. With the demodulator circuit we measured helicon waves excited with the Alfv en antenna in the cleaning plasma using Langmuir and magnetic probes. With computational simulation we found the measured waves. A generator of variable frequency was used in this experiment. Both equipments are prepared for future experiments with the typical plasma of the TCABR, which has higher density than the cleaning plasma. This work was aimed to test to the demodulator circuit and the variable frequency generator, the data obtained were compared to that of a high sampling frequency oscilloscope. It is presented the description of the TCABR equipments used, antenna, magnetic probe, variable frequency generator of low power, demodulator circuit, Langmuir probe and a reflectometer which has a high sampling frequency (200MHZ) and frequency scanning in the range 18 40GHz, and was built in Portugal. In order to have a model of Alfv en resonances we calculated the plasma dieletric tensor both in the kinetic and magnetohydrodynamic limits. With computational simulation and using a two uid model, protons and electrons, it is possible to find some of the excited waves in the plasma and its dispersion relation, we calculated the fast magnetosonic wave and the global Alfvén wave. We found the radial position of the electromagnetic fields in the plasma. With the re ectometer we measured resonances of Alfvén waves induced by the antenna at the plasma border in a typical TCABR tokamak plasma discharge, with higher density and a high power fixed frequency generator. We used sidebands as a method to find out the resonances in the reflectometer data. These sidebands are localized around the resonance frequency, which is the Alfvén wave generator frequency. The sidebands were analysed with spectrograms of the data. The waves excited at the plasma border were also found in the simulation. The analysis results show that we could detect the plasma waves excited with the antennas. The demodulator circuit along with magnetic probes and the reflectometer can be used to find plasma resonances.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Durickovic, Bojan. "Waves on Elastic Rods and Helical Spring Problems." Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/202750.

Повний текст джерела
Анотація:
This work examines problems in the statics and traveling wave propagation on uniform elastic rods with constant curvature and torsion, i.e. a straight rod and a helical rod. The first set of problems concerns planar traveling loop-like waves on intrinsically straight rods. It is shown that loops with compact support can exist on homogeneous rods with a nonlinear constitutive relation, where the strain-energy density contains a quartic term. Next, the effect of heterogeneity in the material properties on the shape of the loop is examined using a homogenization method. The second set of problems deals with a system consisting of a helical spring with a force and a torque applied along the helix axis. First, an overview is presented of problems of finding the stresses given the strains, or vice-versa, assuming that the elastic parameters of the spring are known. Then, the inverse problem is examined, where both stresses and strains are measured, and optimal elastic parameters within the linear consitutive model are sought. Various forms of measured strains are considered. Finally, the special problem with zero axial torque is considered, and criteria when the spring overwinds with a tensile axial force applied are established.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Waizner, Johannes [Verfasser], Markus [Gutachter] Garst, and Achim [Gutachter] Rosch. "Spin wave excitations in magnetic helices and skyrmion lattices / Johannes Waizner ; Gutachter: Markus Garst, Achim Rosch." Köln : Universitäts- und Stadtbibliothek Köln, 2017. http://d-nb.info/1149794127/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Helicon wave"

1

Kory, Carol L. Validation of an accurate three-dimensional helical slow-wave circuit model. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Palmer, Raymond W. User's guide for a large-signal computer model of the helical traveling wave tube. Cleveland, Ohio: Lewis Research Center, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Haq, Qureshi A., and United States. National Aeronautics and Space Administration., eds. Review of slow-wave structures. [Washington, DC]: National Aeronautics and Space Administration, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Review of slow-wave structures. [Washington, DC]: National Aeronautics and Space Administration, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Haq, Qureshi A., and United States. National Aeronautics and Space Administration., eds. Review of slow-wave structures. [Washington, DC]: National Aeronautics and Space Administration, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Haq, Qureshi A., and United States. National Aeronautics and Space Administration., eds. Review of slow-wave structures. [Washington, DC]: National Aeronautics and Space Administration, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., ed. Validation of an accurate three-dimensional helical slow-wave circuit model: Under contract NAS3-27600. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., ed. Validation of an accurate three-dimensional helical slow-wave circuit model: Under contract NAS3-27600. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

M, Wallett Thomas, and Lewis Research Center, eds. Technical characteristics of a novel helical-groove traveling-wave tube structure. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

User's guide for a large-signal computer model of the helical traveling wave tube. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Helicon wave"

1

Chen, Francis F., and Jane P. Chang. "Helicon Wave Sources and HDPs." In Lecture Notes on Principles of Plasma Processing, 61–69. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0181-7_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Junfeng, Tao Li, Hua Zhao, Qiongying Ren, Yi Zong, Yanqiang Bi, Zhenyu Tang, Yuchuan Peng, Qinghai Liu, and Liang Ding. "The Design and Analysis on Structure of Helicon Wave Electric Propulsion System on Satellite." In Lecture Notes in Electrical Engineering, 181–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4163-6_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Brandenburg, Axel. "Gravity Wave Generation by Large Scale Bubbles." In Advances in Helio- and Asteroseismology, 383–86. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-4009-3_78.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zloh, Mire, Diego Esposito, and William A. Gibbons. "Helical Net Plots and Surface Lipophilicity Mapping of Transmembrane Helices of Integral Membrane Proteins: Aids to 3D Structure Determination of Integral Membrane Proteins." In Peptides: The Wave of the Future, 843–44. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0464-0_394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fields, Gregg B., Janelle L. Lauer-Fields, Thilaka Sritharan, and Hideaki Nagase. "Triple-Helical Peptide Analysis of Collagenolytic Protease Activity." In Peptides: The Wave of the Future, 975–77. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0464-0_455.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Renno, Jamil, Sadok Sassi, and Mohammad R. Paurobally. "Modelling Wave Behaviour of Elastic Helical Waveguides." In Lecture Notes in Mechanical Engineering, 925–40. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8049-9_56.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Branlard, Emmanuel. "Far-Wake Analyses and the Rigid Helical Wake." In Research Topics in Wind Energy, 215–22. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55164-7_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Palian, Michael M., Nura Elmagbari, Peg Davis, Hong-Bing Wei, Richard Egleton, Frank Porecca, Henry I. Yamamura, Victor J. Hruby, Edward J. Bilsky, and Robin Polt. "α-Helical Glycopeptide Analgesics: β-Endorphin Mimics with Good in vivo Potency." In Peptides: The Wave of the Future, 499–501. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0464-0_231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Malkar, Navdeep, Neal Niemczyk, and Gregg B. Fields. "Peptide-Amphiphile Induction of α-Helical Molecular Architecture and Interaction with Biomaterial Surfaces." In Peptides: The Wave of the Future, 1063–64. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0464-0_497.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Barber-Armstrong, Wendy, Mohini Sridharan, and Sean M. Decatur. "Stabilization of Helical Conformation in Model Peptides by 2,2,2-Trifluoroethanol: An FTIR Study." In Peptides: The Wave of the Future, 367–68. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0464-0_169.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Helicon wave"

1

Sasaki, Y., B. Mizuno, S. Akama, R. Higaki, K. Tsutsui, S. Ohomi, and H. Iwai. "Helicon wave plasma doping system." In Extended Abstracts of the Third International Workshop on Junction Technology. IWJT. IEEE, 2002. http://dx.doi.org/10.1109/iwjt.2002.1225195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Molvik, A. W., B. W. Stallard, and E. B. Hooper. "Wave-electron coupling in helicon source." In International Conference on Plasma Science (papers in summary form only received). IEEE, 1995. http://dx.doi.org/10.1109/plasma.1995.531631.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vountesmery, Vladimir S., and Youry V. Vountesmery. "Helicon isolator with quarter-wave nonreciprocal transformer." In 2017 XI International Conference on Antenna Theory and Techniques (ICATT). IEEE, 2017. http://dx.doi.org/10.1109/icatt.2017.7972656.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tian, Bin, Eduardo Ahedo, and Jaume Navarro. "Investigation of Plasma-wave Interaction in Helicon Antenna Thrusters." In 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-3475.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Morimoto, Shigeyuki. "Production of Helicon Wave Plasmas in Heliotron Magnetic Field." In PLASMA PHYSICS: 11th International Congress on Plasma Physics: ICPP2002. AIP, 2003. http://dx.doi.org/10.1063/1.1593858.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Houshmandyar, Saeid, and Earl E. Scime. "Waves in wave-produced plasmas: Ducted kinetic Alfvén waves in helicon sources." In 2014 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM). IEEE, 2014. http://dx.doi.org/10.1109/usnc-ursi-nrsm.2014.6928094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sun-Ho Kim and Y. S. Hwang. "A TG wave as an instability suppressor in helicon plasmas." In The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record - Abstracts. IEEE, 2006. http://dx.doi.org/10.1109/plasma.2006.1707095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Grulke, O., S. Ullrich, T. Windisch, T. Klinger, Hans-Jürgen Hartfuss, Michel Dudeck, Jozef Musielok, and Marek J. Sadowski. "Spatiotemporal dynamics of drift wave turbulence in a helicon discharge." In PLASMA 2007: International Conference on Research and Applications of Plasmas; 4th German-Polish Conference on Plasma Diagnostics for Fusion and Applications; 6th French-Polish Seminar on Thermal Plasma in Space and Laboratory. AIP, 2008. http://dx.doi.org/10.1063/1.2909181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Vountesmery, Youry. "Heat Transfer Analysis for Quarter-Wave Helicon Isolator with Cooling Substrate." In 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2018. http://dx.doi.org/10.1109/elnano.2018.8477561.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Carlsson, Johan, Daniele Pavarin, Mitchell Walker, Volodymyr Bobkov, and Jean-Marie Noterdaeme. "Analytic wave solution with helicon and Trivelpiece-Gould modes in an annular plasma." In RADIO FREQUENCY POWER IN PLASMAS: Proceedings of the 18th Topical Conference. AIP, 2009. http://dx.doi.org/10.1063/1.3273836.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Helicon wave"

1

Reilly, Michael P., George H. Miley, David E. Kirtley, Justin Koo, Jr Hargus, and William A. Effects of Helicon Wave Propagation Based on a Conical Antenna Design: Part I (Preprint). Fort Belvoir, VA: Defense Technical Information Center, August 2007. http://dx.doi.org/10.21236/ada473488.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wissink, Andrew, Jude Dylan, Buvana Jayaraman, Beatrice Roget, Vinod Lakshminarayan, Jayanarayanan Sitaraman, Andrew Bauer, James Forsythe, Robert Trigg, and Nicholas Peters. New capabilities in CREATE™-AV Helios Version 11. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40883.

Повний текст джерела
Анотація:
CREATE™-AV Helios is a high-fidelity coupled CFD/CSD infrastructure developed by the U.S. Dept. of Defense for aeromechanics predictions of rotorcraft. This paper discusses new capabilities added to Helios version 11.0. A new fast-running reduced order aerodynamics option called ROAM has been added to enable faster-turnaround analysis. ROAM is Cartesian-based, employing an actuator line model for the rotor and an immersed boundary model for the fuselage. No near-body grid generation is required and simulations are significantly faster through a combination of larger timesteps and reduced cost per step. ROAM calculations of the JVX tiltrotor configuration give a comparably accurate download prediction to traditional body-fitted calculations with Helios, at 50X less computational cost. The unsteady wake in ROAM is not as well resolved, but wake interactions may be a less critical issue for many design considerations. The second capability discussed is the addition of six-degree-of-freedom capability to model store separation. Helios calculations of a generic wing/store/pylon case with the new 6-DOF capability are found to match identically to calculations with CREATE™-AV Kestrel, a code which has been extensively validated for store separation calculations over the past decade.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ribe, F., and B. Nelson. Experiments on linear high beta helical axis stellarators to study simulated toroidal effects and Alfven-Wave heating. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5394168.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hussain, Fazle. Vortex Core Dynamics, Complex Helical Wave Decomposition, Organization of Fine-Scale Turbulence and Other Related Theoretical/Numerical Studies. Fort Belvoir, VA: Defense Technical Information Center, April 1995. http://dx.doi.org/10.21236/ada299198.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії