Добірка наукової літератури з теми "Harmonic analysis"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Harmonic analysis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Harmonic analysis"

1

Wu, Shan-He, Imran Abbas Baloch, and İmdat İşcan. "On Harmonically(p,h,m)-Preinvex Functions." Journal of Function Spaces 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/2148529.

Повний текст джерела
Анотація:
We define a new generalized class of harmonically preinvex functions named harmonically(p,h,m)-preinvex functions, which includes harmonic(p,h)-preinvex functions, harmonicp-preinvex functions, harmonich-preinvex functions, andm-convex functions as special cases. We also investigate the properties and characterizations of harmonically(p,h,m)-preinvex functions. Finally, we establish some integral inequalities to show the applications of harmonically(p,h,m)-preinvex functions.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhao, Keyu. "Grid-Connected PV System Harmonic Analysis." MATEC Web of Conferences 404 (2024): 02005. http://dx.doi.org/10.1051/matecconf/202440402005.

Повний текст джерела
Анотація:
The inverter’s output impedance can be adjusted to reduce harmonic interference on the grid. Advanced current control strategies like PI and quasi-PR control enable precise control of the inverter’s output current, further reducing harmonics. PI control compensates for error signals to eliminate steady-state errors but has limited ability to suppress harmonics in high-frequency ranges. Quasi-PR control combines proportional, integral, and resonance control to suppress specific frequency harmonics. Establishing a grid-connected photovoltaic inverter and harmonic source model is crucial for grid harmonics management. This model provides insights into harmonic generation by inverters, enabling targeted mitigation measures. It can also assess the impact of control strategies on harmonic suppression, providing a theoretical basis for optimization. Optimizing grid inverter control strategies is critical for maintaining grid stability and enhancing power quality. Thorough research on grid-connected photovoltaic inverter harmonics and effective control strategies contribute to renewable energy development and green, low-carbon energy systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Feng, Jue Long Li, Chong Feng Tian, Zong Jie Liu, Hai Feng Ye, and Xiu Chen Jiang. "Binary Scale Time Windows FFT for Harmonic Analysis." Applied Mechanics and Materials 448-453 (October 2013): 2003–10. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.2003.

Повний текст джерела
Анотація:
Various harmonics exist in the electrical power system, and the harmonics include both integer harmonics and non-integer harmonics. It is hard to analyze all the harmonics accurately. In order to improve the precision of harmonic analysis and the minimum resolution, this paper presents a new algorithm named binary scale time windows FFT based on traditional algorithm.This algorithm considers the calculative time and precision well. The results of the test indicate that this algorithm can both guarantee the accuracy and raise the resolving power in the harmonic analysis without increasing the hardware level and the time of calculation obviously. It can restrain the increasingly serious harmonic pollution in power system effectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vijayalakshmi, V. J., C. S. Ravichandran, and A. Amudha. "Predetermination of Higher Order Harmonics by Dual Phase Analysis." Applied Mechanics and Materials 573 (June 2014): 13–18. http://dx.doi.org/10.4028/www.scientific.net/amm.573.13.

Повний текст джерела
Анотація:
Previous research was mainly concentrated on eliminating the selected lower order harmonics depending on the level of inverter which was assumed to be high. The harmonics may be present even in the higher order also. The analysis of harmonic spectrum by Finite Fourier Transform yields a very accurate result for lower order harmonics. For obtaining accurate Total Harmonic Distortion (THD) value and the harmonic spectrum, inclusion of higher order harmonics is essential. The method for accurate estimation is proposed in this paper. In normal practice, the higher order harmonics present in the output of the inverter are suppressed by using filters. In order to obtain more optimized higher order harmonics, it is necessary to obtain an accurate assessment of the higher order spectrum. The higher order spectrum is predetermined by proposed technique termed as Dual Phase Analysis (DPA) so as to obtain more optimized switching angles with the application of any Optimization Technique. This is an effective tool to analyze the various higher order components of the harmonic spectrum.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bonilla, Axel Rivas, and Ha Thu Le. "Analysis and Mitigation of Harmonics for a Wastewater Treatment Plant Electrical System." WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS 23 (February 9, 2024): 1–13. http://dx.doi.org/10.37394/23201.2024.23.1.

Повний текст джерела
Анотація:
Power quality has become a pressing issue that demands solutions as power electronic equipment has been increasingly used in industrial sectors. One critical problem is how to mitigate harmful harmonics generated by the power electronic equipment. This study investigates harmonic distortion issues in a wastewater treatment plant to verify compliance with IEEE standard 519 using simulation software ETAP and realistic data from the plant. Harmonic quantification shows that the plant harmonic situation violates IEEE Standard 519 where harmonic levels exceed its voltage and current limits. Different methods were used to mitigate the harmonic situation where the core is using passive harmonic filters. It is found that the biggest contributor to the harmonic distortion is the system variable frequency drives. Using high-pulse variable frequency drives, such as 18-pulse, is proven to be beneficial for harmonic reduction. Further, installing passive harmonic filters in appropriate locations helps lower voltage and current harmonics to meet IEEE Std. 519 limits. However, adding a passive harmonic filter higher up the power distribution or adding passive filters to the feeder buses is not effective in lowering the Total Harmonic Distortion (THD) of the system. This would have the drawback of increasing the rating of the system bus voltages. Other findings include a lack of medium voltage passive filters on the market and high costs. The study contributes some insight understanding, experience, and methods for engineers when developing solutions for controlling harmonics in similar plants or industrial applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Karomah, Akhlaqul. "Induction Motor Harmonics Voltage Waveform Analysis based on Machine Constriction." Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems) 14, no. 2 (August 28, 2020): 63–67. http://dx.doi.org/10.21776/jeeccis.v14i2.639.

Повний текст джерела
Анотація:
Abstract— This paper discussed about harmonic analysis in an induction motor. Harmonics on induction motor appear due to the machine construction specially to its slots. The analysis of those harmonic will be one of the problems in the machine observation and design. In this paper a simulated computation of the flux magnet and emf induction voltage containing harmonic is proposed and discussed. FEMM simulation software is used and the result is compared to the mathematical analysis. The result shows that the emf induction harmonics wave derived from mathematic modelling and FEMM conform each other. Each of proposed methods can be used in the machine design or the evaluation analysis.Index Terms—harmonic, induction motorÂ
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bellan, Diego. "Three-Phase Distortion Analysis based on Space-Vector Locus Diagrams." WSEAS TRANSACTIONS ON POWER SYSTEMS 18 (December 31, 2023): 467–73. http://dx.doi.org/10.37394/232016.2023.18.46.

Повний текст джерела
Анотація:
This work deals with the use of the space vector concept to characterize the harmonic content of a three-phase voltage/current. It is shown that the shape of the trajectory of the space vector on the complex plane (i.e., the locus diagram) provides information about its harmonic content. In particular, it is shown that each harmonic contributes to the locus diagram with a number of lobes depending on the relative angular frequency between the harmonic and the fundamental component. To this aim, the different contributions of positive-sequence and negative-sequence harmonics is explained and put into evidence with specific examples. The expressions for the magnitude and phase of the space vector as functions of the harmonics are derived analytically. Numerical examples are provided to show how the locus diagram can represent a three-phase quantity with positive-sequence and negative-sequence harmonics.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jiang, Peiyu, Zhanlong Zhang, Zijian Dong, and Yu Yang. "Vibration Measurement and Numerical Modeling Analysis of Transformer Windings and Iron Cores Based on Voltage and Current Harmonics." Machines 10, no. 9 (September 8, 2022): 786. http://dx.doi.org/10.3390/machines10090786.

Повний текст джерела
Анотація:
The operating condition and structural state of the converter transformer are closely related to vibration. Abundant harmonics aggravate the vibration of windings and iron cores, resulting in frequent mechanical structural failures, which seriously affect the stable operation of the power system. Traditional research mainly focuses on the vibration of AC transformers without harmonics and there is no in-depth discussion of the vibration mechanism and the numerical calculation model of windings and iron cores under harmonics. In addition, the influence of harmonics, winding connection method and other factors on the vibration characteristics are not clear. Therefore, this paper analyzes the voltage and current harmonic components and contents, establishes a harmonic-vibration numerical model and compares the vibration time-frequency characteristics with or without harmonics and different valve side winding connections through vibration measurement experiments. Finally, a combined simulation analysis reveals the contribution of the windings and core to the tank. The results show that the tank vibration amplitude and dominant frequency will increase under harmonica and the valve side current will affect the dominant frequency. Among these results, when there are harmonics, the amplitude increases by three times, the vibration dominant frequency changes from 100 Hz to 400 Hz and the frequency spectrum widens to 2000 Hz. In particular, the contribution of the winding vibration under the harmonic current will exceed the iron core. The research results reveal the influence of converter transformer harmonics on vibration, which can provide a theoretical basis for numerical calculation of vibration and monitoring of operating conditions and guide the design of structural vibration reduction to reduce mechanical failures caused by vibration.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Xiangrong, and Guangtian Shi. "Analysis of harmonic influence of improved PFC circuit on SS4G electric locomotive." Journal of Physics: Conference Series 2260, no. 1 (April 1, 2022): 012032. http://dx.doi.org/10.1088/1742-6596/2260/1/012032.

Повний текст джерела
Анотація:
Abstract Compared with active filter, PFC circuit has simple structure and convenient operation. Introducing it into SS4G electric locomotive can greatly reduce system harmonics. Therefore, firstly, the corresponding PFC circuit is built, and the suppression measures of peak section and discontinuous section are proposed. By improving the discontinuous section, the waveform conduction angle is expanded from 129.564° to 162.882°. Accordingly, the current harmonic at the input side is reduced from 27.38% to 16.19%. After the voltage multiplier is further introduced, the harmonic is reduced to 15.77%. Then, the circuit is designed to absorb the high-order harmonic power in the peak section, and the harmonic is further reduced by about 0.33% to 15.44%. Two small order smoothing capacitors are connected in parallel in the load section to further absorb higher harmonics, which can reduce harmonics to 9.95%. Because the discontinuous section will also produce some spikes in the improvement process, improving the spikes can reduce the harmonics by 4.42% to 5.53%. Then the final improved circuit is introduced into SS4G circuit, and the current harmonic content of the circuit is reduced from 30.02% to 15.59%. The improved PFC circuit has achieved good results in SS4G.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ji, Yanpeng, Bin Li, and Jingcheng Sun. "Harmonic Analysis on Torque Ripple of Brushless DC Motor Based on Advanced Commutation Control." Journal of Control Science and Engineering 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/3530127.

Повний текст джерела
Анотація:
This paper investigates the relationship between current, back electromotive force (back-EMF), and torque for permanent-magnet brushless DC (PM BLDC) motors under advanced commutation control from the perspective of harmonics. Considering that the phase current is the influencing factor of both torque and torque ripple, this paper firstly analyzes the effects of advanced commutation on phase current and current harmonics. And then, based on the harmonics of the phase current and back-EMF, the torque harmonic expressions are deduced. The expressions reveal the relationship of harmonic order between the torque, phase current, and back-EMF and highlight the different contribution of individual torque harmonic to the total torque ripple. Finally, the proposed harmonic analysis method is verified by the experiments with different speed and load conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Harmonic analysis"

1

Wright, P. S. "The accurate analysis of smoothly fluctuating harmonics applied to the calibration of harmonic analysers." Thesis, University of Surrey, 2002. http://epubs.surrey.ac.uk/843265/.

Повний текст джерела
Анотація:
The aim of this research is to develop an accurate method for the analysis of signals composed of fluctuating harmonics. The results obtained of analysis are applied to the calibration of harmonic analysis instruments. A new method is presented suitable for the accurate analysis of smoothly fluctuating harmonic signals. The method is based on a model of signals with a known period, in which the harmonics are individually modulated by polynomial functions normalised over a sampled signal sequence time. Using this model, a decomposition method is developed such that the modulating polynomials can be recovered from a signal. The polynomial decomposition method leads to a piece-wise analysis of the waveform. Two methods based on least squares and splines respectively, are developed with the aim of giving continuity to the piece-wise analysis. Comparisons of the new method with the short time Fourier transform are given. Having defined a test signal and obtained and accurate analysis of it properties, it can be used to calibrate harmonic analysers. For a given applied signal, analysis with these devices can give rise to variation in results as a function of the phase between the signal and the STFT windows. This result distribution due to variable phase (RDVP) is discussed and examples are given for various signals. The RDVP complicates the calibration process due to the spread of results that occur when testing the device. A method is developed to find the RDVP for an applied signal that uses the polynomial decomposition method to find the modulation functions of each harmonic in the applied calibration signal. Having found the RDVP for an applied signal, it is necessary to fit the results of the analyser under test, to the distribution. The random nature of the phase makes the systematic comparison of the theoretical and measured distributions difficult to achieve. A novel method that uses multiple phase shifted modulated harmonics is presented. By comparing the results of the analyser under test to the distributions of each of the phase-shifted harmonics, a best-fit phase shift can be determined and the required calibration comparison made. Key words: time-frequency analysis, demodulation, harmonic analysis, fluctuating harmonics, waveform metrology, calibration of harmonic analysers.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Scurry, James. "One and two weight theory in harmonic analysis." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47565.

Повний текст джерела
Анотація:
This thesis studies several problems dealing with weighted inequalities and vector-valued operators. A weight is a nonnegative locally integrable function, and weighted inequalities refers to studying a given operator's continuity from one weighted Lebesgue space to another. The case where the underlying measure of both Lebesgue spaces is given by the same weight is known as a one weight inequality and the case where the weights are different is called a two weight inequality. These types of inequalities appear naturally in harmonic analysis from attempts to extend classical results to function spaces where the underlying measure is not necessarily Lebesgue measure. For most operators from harmonic analysis, Muckenhoupt weights represent the class of weights for which a one weight inequality holds. Chapters II and III study questions involving these weights. In particular, Chapter II focuses on determining the sharp dependence of a vector-valued singular integral operator's norm on a Muckenhoupt weight's characteristic; we determine that the vector-valued operator recovers the scalar dependence. Chapter III presents material from a joint work with M. Lacey. Specifically, in this chapter we estimate the weak-type norms of a simple class of vector-valued operators, but are unable to obtain a sharp result. The final two chapters consider two weight inequalities. Chapter IV characterizes the two weight inequality for a subset of the vector-valued operators considered in Chapter III. The final chapter presents examples to argue there is no relationship between the Hilbert transform and the Hardy-Littlewood maximal operator in the two weight setting; the material is taken from a joint work with M. Reguera.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lak, Rashad Rashid Haji. "Harmonic analysis using methods of nonstandard analysis." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5754/.

Повний текст джерела
Анотація:
Throughout this research we use techniques of nonstandard analysis to derive and interpret results in classical harmonic analysis particularly in topological (metric) groups and theory of Fourier series. We define monotonically definable subset \(N\) of a nonstandard *finite group \(F\), which is the monad of the neutral element of \(F\) for some invariant *metric \(d\) on \(F\). We prove some nice properties of \(N\) and the nonstandard metrisation version of first-countable Hausdorff topological groups. We define locally embeddable in finite metric groups (LEFM). We show that every abelian group with an invariant metric is LEFM. We give a number of LEFM group examples using methods of nonstandard analysis. We present a nonstandard version of the main results of the classical space \(L\)\(^1\)(T) of Lebesgue integrable complex-valued functions defined on the topological circle group T, to study Fourier series throughout: the inner product space; the DFT of piecewise continuous functions; some useful properties of Dirichlet and Fejér functions; convolution; and convergence in norm. Also we show the relationship between \(L\)\(^1\)(T) and the nonstandard \(L\)\(^1\)(\(F\)) via Loeb measure. Furthermore, we model functionals defined on the test space of exponential polynomial functions on T by functionals in NSA.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Van, der Merwe Marius. "Harmonic mixer analysis and design." Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52872.

Повний текст джерела
Анотація:
Thesis (MScEng) -- Stellenbosch University, 2002.
Some digitised pages may appear illegible due to the condition of the original hard copy.
ENGLISH ABSTRACT: Harmonic mixers are capable of extended frequency operation by mixing with a harmonic of the LO (local oscillator) signal, eliminating the need for a high frequency, high power LO. Their output spectra also have certain characteristics that make them ideal for a variety of applications. The operation of the harmonic mixer is investigated, and the mixer is analyzed using an extension of the classic mixer theory. The synthesis of harmonic mixers is also investigated, and a design procedure is proposed for the design and realization of a variety of harmonic mixers. This design procedure is evaluated with the design and realization of two harmonic mixers, one in X-band and the other in S-band. Measurements suggest that the procedure is successful for the specific applications.
AFRIKAANSE OPSOMMING: Harmoniese mengers kan by hoer frekwensies gebruik word as gewone mengers deurdat hulle gebruik maak van ‘n harmoniek van die LO. ‘n Hoe-frekwensie, hoe-drywing LO word dus nie benodig nie. Die mengers se uittreespektra het ook ‘n aantal karakteristieke wat hulle goeie kandidate maak vir ‘n verskeidenheid van toepassings. Die werking van die harmoniese menger word ondersoek deur uit te brei op die klassieke menger-teorie. Die ontwerp van die harmoniese menger word vervolgens ondersoek, waama ‘n ontwerpsprosedure voorgestel word vir die ontwerp van ‘n verskeidenheid van harmoniese mengers. Hierdie prosedure word getoets met die ontwerp en realisering van twee harmoniese mengers, een in X-band en die ander in S-band. Vanuit die metings is dit duidelik dat die ontwerpsprosedure geslaagd is vir die spesifieke geval.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, Jialun. "Harmonic analysis of stationary measures." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0311/document.

Повний текст джерела
Анотація:
Soit μ une mesure de probabilité borélienne sur SL m+1 (R) tel que le sous-groupe engendré par le support de μ est Zariski dense. Soit V une représentation irréductible de dimension finie de SL m+1 (R). D’après un théorème de Furstenberg, il existe une unique mesure μ-stationnaire sur PV et nous nous somme intéressés à la décroissance de Fourier de cette mesure. Le résultat principal de cette thèse est que la transformée de Fourier de la mesure stationnaire a une décroissance polynomiale. À partir de ce résultat, nous obtenons un trou spectral de l’opérateur de transfert, dont les propriétés nous permettent d’établir un terme d’erreur exponentiel pour le théorème de renouvellement dans le cadre des produits de matrices aléatoires. L’ingrédient essentiel est une propriété de décroissance de Fourier des convolutions multiplicatives de mesures sur R n , qui est une généralisation d’un théorème de Bourgain en dimension 1. Nous établissons cet ingrédient en utilisant un estimée somme produit de He et de Saxcé.Dans la dernière partie, nous généralisons un résultat de Lax et Phillips et un résultat de Hamenstädt sur la finitude des petites valeurs propres de l’opérateur de Laplace sur les variétés hyperboliques géométriquement finies
Let μ be a Borel probability measure on SL m+1 (R), whose support generates a Zariski dense subgroup. Let V be a finite dimensional irreducible linear representation of SL m+1 (R). A theorem of Furstenberg says that there exists a unique μ-stationary probability measure on PV and we are interested in the Fourier decay of the stationary measure. The main result of the thesis is that the Fourier transform of the stationary measure has a power decay. From this result, we obtain a spectral gap of the transfer operator, whose properties allow us to establish an exponential error term for the renewal theorem in the context of products of random matrices. A key technical ingredient for the proof is a Fourier decay of multiplicative convolutions of measures on R n , which is a generalisation of Bourgain’s theorem on dimension 1. We establish this result by using a sum-product estimate due to He-de Saxcé. In the last part, we generalize a result of Lax-Phillips and a result of Hamenstädt on the finiteness of small eigenvalues of the Laplace operator on geometrically finite hyperbolic manifolds
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Thunberg, Erik. "On the Benefit of Harmonic Measurements in Power Systems." Doctoral thesis, Stockholm, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Smith, Zachary J. "The Bochner Identity in Harmonic Analysis." Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/SmithZJ2007.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chung, Kin Hoong School of Mathematics UNSW. "Compact Group Actions and Harmonic Analysis." Awarded by:University of New South Wales. School of Mathematics, 2000. http://handle.unsw.edu.au/1959.4/17639.

Повний текст джерела
Анотація:
A large part of the structure of the objects in the theory of Dooley and Wildberger [Funktsional. Anal. I Prilozhen. 27 (1993), no. 1, 25-32] and that of Rouviere [Compositio Math. 73 (1990), no. 3, 241-270] can be described by considering a connected, finite-dimentional symmetric space G/H (as defined by Rouviere), with ???exponential map???, Exp, from L G/L H to G/H, an action, ???: K ??? Aut??(G) (where Aut?? (G) is the projection onto G/H of all the automorphisms of G which leave H invariant), of a Lie group, K, on G/H and the corresponding action, ???# , of K on L G/L H defined by g ??? L (???g), along with a quadruple (s, E, j, E#), where s is a ???# - invariant, open neighbourhood of 0 in L G/L H, E is a test-function subspace of C??? (Exp s), j ?? C??? (s), and E# is a test-function subspace of C??? (s) which contains { j.f Exp: f ?? E }. Of interest is the question: Is the function ???: ?? ??? ????, where ??: f ??? j.f Exp, a local associative algebra homomorphism from F# with multiplication defined via convolution with respect to a function e: s x s ??? C, to F, with the usual convolution for its multiplication (where F is the space of all ??? - invariant distributions of E and F# is the space of all ???# - invariant distributions of E#)? For this system of objects, we can show that, to some extent, the choice of the function j is not critical, for it can be ???absorbed??? into the function e. Also, when K is compact, we can show that ??? ker ?? = { f ?? E : ???k f (???g) dg = 0}. These results turn out to be very useful for calculations on s2 ??? G/H, where G = SO(3) and H??? SO(3) with H ??? SO(2) with ??? : h ??? Lh, as we can use these results to show that there is no quadruple (s, E, j, E#) for SO(3)/H with j analytic in some neighbourhood of 0 such that ??? is a local homomorphism from F# to F. Moreover, we can show that there is more than one solution for the case where s, E and E# are as chosen by Rouviere, if e is does not have to satisfy e(??,??) = e(??,??).
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Digby, G. "Harmonic analysis of A.C. traction schemes." Thesis, Swansea University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233938.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Xu, Zengfu. "Harmonic analysis on Chébli-Trimèche hypergroups." Thesis, Xu, Zengfu (1994) Harmonic analysis on Chébli-Trimèche hypergroups. PhD thesis, Murdoch University, 1994. https://researchrepository.murdoch.edu.au/id/eprint/51538/.

Повний текст джерела
Анотація:
In this thesis we develop the theory on Chebli-Trimeche hypergroups of such topics as maximal functions, the convergence and boundedness of certain convolution operator families in Lp spaces and Hardy spaces as well as Fourier multipliers. As the basis of the theory we first investigate the Schwartz classes, Plancherel measure and hypergroup characters on these hypergroups, and establish basic facts about approximations to the identity and the important results concerning Fourier transforms and the estimates for the Plancherel measure and characters. These lead to estimates for the translation operator as well as the heat and Poisson kernels, all of which play a significant role in our study of various maximal operators. The latter include the Hardy-Littlewood maximal operator, the heat and Poisson maximal operators, a class of radial maximal operators, and the grand maximal operator. The behaviour of these maximal convolution operators on Lp and Hardy spaces is investigated, and some classical results are extended to Chebli-Trimeche hypergroups. We also develop local Hardy space theory, and give some results concerning Fourier multipliers and Riesz potentials.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Harmonic analysis"

1

Helson, Henry. Harmonic Analysis. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Eymard, Pierre, and Jean-Paul Pier, eds. Harmonic Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0086584.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cheng, Min-Teh, Dong-Gao Deng, and Xing-Wei Zhou, eds. Harmonic Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0087751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ash, J. Marshall, and Roger L. Jones, eds. Harmonic Analysis. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/conm/411.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Helson, Henry. Harmonic Analysis. Gurgaon: Hindustan Book Agency, 2010. http://dx.doi.org/10.1007/978-93-86279-47-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Simon, Barry. Harmonic analysis. Providence, Rhode Island: American Mathematical Society, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Helson, Henry. Harmonic analysis. Pacific Grove, Calif: Wadsworth & Brooks/Cole Advanced Books & Software, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Petrovich, Khavin Viktor, and Nikolʹskiĭ N. K, eds. Commutative harmonic analysis IV: Harmonic analysis in IRn̳. Berlin: Springer-Verlag, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Colella, David, ed. Commutative Harmonic Analysis. Providence, Rhode Island: American Mathematical Society, 1989. http://dx.doi.org/10.1090/conm/091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Delorme, Patrick, and Michèle Vergne, eds. Noncommutative Harmonic Analysis. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8204-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Harmonic analysis"

1

Helson, Henry. "Fourier Series and Integrals." In Harmonic Analysis, 1–49. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Helson, Henry. "The Fourier Integral." In Harmonic Analysis, 51–73. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Helson, Henry. "Hardy Spaces." In Harmonic Analysis, 75–105. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Helson, Henry. "Conjugate Functions." In Harmonic Analysis, 107–42. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Helson, Henry. "Translation." In Harmonic Analysis, 143–63. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Helson, Henry. "Distribution." In Harmonic Analysis, 165–76. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-7181-0_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pier, Jean-Paul. "Some views on the evolution of harmonic analysis." In Harmonic Analysis, 1–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0086585.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mackey, George W. "Induced representations and the applications of harmonic analysis." In Harmonic Analysis, 16–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0086586.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Akkouchi, Mohamed. "Une caracterisation du noyau de Poisson d'un arbre eomogene." In Harmonic Analysis, 52–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0086587.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Anker, Jean-Philippe. "Le noyau de la chaleur sur les espaces symetriques U(p,q)/U(p)×U(q)." In Harmonic Analysis, 60–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0086588.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Harmonic analysis"

1

Clue, Vladimir. "Harmonic analysis." In 2004 IEEE Electro/Information Technology Conference - (EIT). IEEE, 2004. http://dx.doi.org/10.1109/eit.2004.4569366.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhu, Xuanwei, Buping Jin, and Huibin Qin. "Harmonic generator." In 2012 International Conference on Image Analysis and Signal Processing (IASP). IEEE, 2012. http://dx.doi.org/10.1109/iasp.2012.6425078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yu, Jingwen, Boying Wen, and Hui Xue. "Transitory Harmonic Analysis Using Harmonic Distribution Map." In 2009 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2009. http://dx.doi.org/10.1109/appeec.2009.4918945.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wan, Yifan. "Harmonic analysis in tide analysis." In Second International Conference on Statistics, Applied Mathematics, and Computing Science (CSAMCS 2022), edited by Shi Jin and Wanyang Dai. SPIE, 2023. http://dx.doi.org/10.1117/12.2672678.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shimada, Yoshihito. "White noise distribution theory and its application." In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Szafraniec, Franciszek Hugon. "Operators of the q-oscillator." In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Banica, Teodor, Julien Bichon, and Benoît Collins. "Quantum permutation groups: a survey." In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Fendle, Gero, Karlheinz Gröchenig, and Michael Leinert. "On spectrality of the algebra of convolution dominated operators." In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hiai, Fumio, and Dénes Petz. "A new approach to mutual information." In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hinz, Melanie, and Wojciech Młotkowski. "Free cumulants of some probability measures." In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Harmonic analysis"

1

Niederer, J. BNL MAD: Harmonic Analysis Commands. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/1151361.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ferreira, Milton. Harmonic Analysis on the Einstein Gyrogroup. Jgsp, 2014. http://dx.doi.org/10.7546/jgsp-35-2014-21-60.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tolbert, L. M. Completion report harmonic analysis of electrical distribution systems. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/285500.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Casey, Stephen D. Number Theoretic Methods in Harmonic Analysis: Theory and Application. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada413800.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bernatska, Julia, and Petro Holod. • Harmonic Analysis on Lagrangian Manifolds of Integrable Hamiltonian Systems. GIQ, 2012. http://dx.doi.org/10.7546/giq-14-2013-61-73.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bernatska and Petro Holod, Julia Bernatska and Petro Holod. Harmonic Analysis on Lagrangian Manifolds of Integrable Hamiltonian Systems. Journal of Geometry and Symmetry in Physics, 2013. http://dx.doi.org/10.7546/jgsp-29-2013-39-51.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Casey, Stephen D. Signal Reconstruction and Analysis Via New Techniques in Harmonic and Complex Analysis. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada440756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mickens, Ronald, and Kale Oyedeji. Dominant Balance Analysis of the Fractional Power Damped Harmonic Oscillator. Atlanta University Center Robert W. Woodruff Library, 2019. http://dx.doi.org/10.22595/cau.ir:2020_mickens_oyedeji_harmonic_oscillator.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Stoughton, R. S., and J. E. Deibler. Harmonic analysis of a representative Generation One Tank Waste Retrieval Manipulator. Office of Scientific and Technical Information (OSTI), April 1994. http://dx.doi.org/10.2172/10148566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Niederer, J. BNL MAD: Harmonic Analysis Based Orbit Correction Commands AGS Booster Applications. Office of Scientific and Technical Information (OSTI), February 1997. http://dx.doi.org/10.2172/1151363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії