Добірка наукової літератури з теми "Hard magnetic materials"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hard magnetic materials".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Hard magnetic materials"

1

Alymov, M. I., I. M. Milyaev, V. S. Yusupov, and A. I. Milyaev. "Nanocrystalline Hard Magnetic Materials." Advanced Materials & Technologies, no. 2 (2017): 010–18. http://dx.doi.org/10.17277/amt.2017.02.pp.010-018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fruchart, D., M. Bacmann, P. de Rango, O. Isnard, S. Liesert, S. Miraglia, S. Obbade, J. L. Soubeyroux, E. Tomey, and P. Wolfers. "Hydrogen in hard magnetic materials." Journal of Alloys and Compounds 253-254 (May 1997): 121–27. http://dx.doi.org/10.1016/s0925-8388(96)03063-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Coey, J. M. D. "Hard Magnetic Materials: A Perspective." IEEE Transactions on Magnetics 47, no. 12 (December 2011): 4671–81. http://dx.doi.org/10.1109/tmag.2011.2166975.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

McCormick, P. G., J. Ding, E. H. Feutrill, and R. Street. "Mechanically alloyed hard magnetic materials." Journal of Magnetism and Magnetic Materials 157-158 (May 1996): 7–10. http://dx.doi.org/10.1016/0304-8853(95)01268-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Singleton, E. W., and G. C. Hadjipanayis. "Magnetic viscosity studies in hard magnetic materials." Journal of Applied Physics 67, no. 9 (May 1990): 4759–61. http://dx.doi.org/10.1063/1.344777.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hadjipanayis, G. C., S. Nafis, and W. Gong. "A STUDY OF THE HARD MAGNETIC PROPERTIES IN DIFFERENT HARD MAGNETIC MATERIALS." Le Journal de Physique Colloques 49, no. C8 (December 1988): C8–657—C8–658. http://dx.doi.org/10.1051/jphyscol:19888298.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Buschow, K. H. J. "New developments in hard magnetic materials." Reports on Progress in Physics 54, no. 9 (September 1, 1991): 1123–213. http://dx.doi.org/10.1088/0034-4885/54/9/001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kirchmayr, H. R. "Permanent magnets and hard magnetic materials." Journal of Physics D: Applied Physics 29, no. 11 (November 14, 1996): 2763–78. http://dx.doi.org/10.1088/0022-3727/29/11/007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhao, Ruike, Yoonho Kim, Shawn A. Chester, Pradeep Sharma, and Xuanhe Zhao. "Mechanics of hard-magnetic soft materials." Journal of the Mechanics and Physics of Solids 124 (March 2019): 244–63. http://dx.doi.org/10.1016/j.jmps.2018.10.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kronmüller, H., and D. Goll. "Modern nanocrystalline/nanostructured hard magnetic materials." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): E319—E320. http://dx.doi.org/10.1016/j.jmmm.2003.11.384.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Hard magnetic materials"

1

Nguyen, Van Tang. "Nanostructured soft-hard magnetic materials with controlled architecture." Thesis, Le Mans, 2018. http://www.theses.fr/2018LEMA1007.

Повний текст джерела
Анотація:
Parmi les aimants sans terres raresactuellement étudiés, τ-MnAl ferromagnétique est uncandidat à haut potentiel, car il possède despropriétés magnétiques intrinsèques prometteuses.Dans cette thèse, Mn(Fe)AlC a été synthétisé parbroyage mécanique. Les effets du carbone sur lamicrostructure et les propriétés magnétiques ont étéétudiés. Les résultats montrent qu’une pureté élevéede τ-MnAl(C) pouvait être obtenue avec un dopage à2% en atomes de carbone, montrant clairement l’effetstabilisant du carbone. L’alliage Mn54.2Al43.8C2possède les meilleures propriétés magnétiques :aimantation à 2T M2T = 414 kAm-1, aimantationrémanente Mr = 237 kAm-1, coercivité HC = 229 kAm-1et |BH|max = 11,2 kJm-3. HC augmente inversementproportionnellement avec la taille des cristallites de laphase τ et proportionnellement à la teneur en C. Descalculs ab initio confirment l’effet stabilisant etindiquent les positions interstitielles préférentielles ducarbone dans la maille quadratique de la phase τ-MnAl.Les alliages Mn51-xFexAl47C2 (x = 0,25, 0,5, 1, 2, 4, 6)ont également été synthétisés par broyagemécanique, montrant une pureté élevée de la phaseτ jusqu'à un taux de substitution de 2% du Mn par duFe. L'ajout de Fe dans MnAl(C) réduit l'aimantationet TC, mais augmente légèrement la valeur de HC. Laspectrométrie 57Fe Mössbauer à 300K a été utiliséepour sonder l'environnement local dans ε-, τ-, β- etγ2-MnFeAl(C). γ2-, ε- et β-MnFeAl(C) présentent unestructure hyperfine quadripolaire alors que τ-Mn50.5Fe0.5Al47C2 montre une structutr hyperfinemagnétique assez complexe. Une expérience despectrométrie Mössbauer effectuée à bassetempérature (10K) et sous champ magnétique (8T)montre un ordre ferromagnétique local non colinéairedes moments magnétiques de Fer par rapport à ladirection du champ appliqué. Le champ hyperfin del’alliage MnFeAl calculé par Wien2k confirme lespropriétés magnétiques et les résultats despectrométrie Mössbauer
Among currently investigated rare-earth-free magnets, ferromagnetic τ-MnAl is a highly potential candidate as having promising intrinsic magnetic properties. In my thesis, Mn(Fe)AlC was synthesized by mechanical alloying method. Effects of carbon on microstructure and magnetic properties were systematically investigated. It was found that high purity of τ-MnAl(C) could be obtained at 2 at.% C doping, showing clearly stabilizing effect of carbon. Mn54.2Al43.8C2 has the best magnetic properties: magnetization at 2T M2T = 414 kAm-1, remanent magnetization Mr = 237 kAm-1, coercivity HC = 229 kAm-1, and |BH|max = 11.2 kJm-3. HC increased inversely with the crystallite size of τ phase and proportionally with C content. Moreover, first principle calculation showed both stabilizing effect and preferable interstitial positions of carbon in tetragonal τ-MnAl. Mn51-xFexAl47C2 (x= 0.25, 0.5, 1, 2, 4, 6) alloys were also synthesized by mechanical alloying method, showing high purity of τ phase up to 2 at.% Fe doping. Adding of Fe on MnAl(C) reduced both magnetization and TC but likely increased slightly HC. 57Fe Mössbauer spectrometry at 300K was used to probe local enviroment in ε-, τ-, β-, and γ2-MnFeAl(C). In which, γ2-, ε-, and β-MnFeAl(C) exhibited a quadrupolar structure while τ -Mn50.5Fe0.5Al47C2 spectrum showed a rather complex magnetic hyperfine splitting. The interaction between Fe and Mn examined by in-field Mössbauer measurement at 10 K and 8 T showed a non-collinear magnetic structure between Fe and Mn with different canting angles at different sites. Hyperfine field of MnFeAl alloy calculated by Win2k supported both magetic properties and Mossbauer results
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Luo, Haihua. "Synthesis and characterization of rare-earth-iron based hard magnetic materials /." free to MU campus, to others for purchase, 1998. http://wwwlib.umi.com/cr/mo/fullcit?p9924902.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Marashi, Seyed Pirooz Hoveida. "Transmission electron microscopy study of nanostructured Nd-Fe-B hard magnetic materials." Thesis, University of Sheffield, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Méndez, de la Luz Diego A. 1979. "The role of heat assisted magnetic recording in future hard disk drive applications." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28872.

Повний текст джерела
Анотація:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2004.
Includes bibliographical references.
(cont.) portable consumer electronics, such as PDAs, cell phones, music players, digital cameras, etc. make a relatively modest but fast growing market for ultrahigh areal density HAMR-based HDDs. HAMR-based HDD for portable applications could very well be a disruptive technology in the magnetic recording industry. Companies that intend to profit from this technology need to invest on its development and must try to be first-to-volume production to benefit from economies of scale and to build the necessary expertise that could give them leadership roles in future magnetic recording.
The magnetic recording industry keeps up with the demand of high capacity hard disk drives by improving the areal recording density of these devices. The use of conventional longitudinally magnetized media will be truncated by the challenges it faces nowadays, which are related to the instability of the stored information, produced by the aggressive decrease in the volume of the grains in the media. To overcome this problem, the use of large magnetic anisotropy energy density alloys is necessary, but the write fields that are required by such alloys can be prohibitively large, rendering these media effectively unwritable. Fortunately, the magnetocrystalline anisotropy energy density decreases with increasing temperature and so does the required write field. Heat assisted magnetic recording allows the use of such magnetically hard alloys by using both a magnetic and a thermal field during the writing process. Research in HAMR is centered in three major fields: the heat delivery system, the magnetic recording media and the heat dissipation technology. Based on an analysis of several US patents related to HAMR, one can see the real value of such patents is in negotiating and cross-licensing between companies to guarantee the right to participate in the manufacture of HDDs. Trade secrets and know-how are valuable assets for corporations. However, information exchange exists due to the great mobility of highly trained personnel between competing companies. Because the basic application of HAMR is in supplying the computer industry with affordable storage devices, there is a well established market that makes the research efforts in HAMR advisable for individuals, universities and companies. Besides that traditional market,
by Diego A. Méndez del la Luz.
M.Eng.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pickford, Rachael Anne. "A study of magnetic properties of hard and soft magnetic materials by Lorentz transmission electron microscopy and magnetic x-ray circular dichroism." Thesis, University of York, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367489.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Venkataramana, Vikash. "Neutrons to probe nanoscale magnetism in perpendicular magnetic recording media." Thesis, University of St Andrews, 2012. http://hdl.handle.net/10023/3187.

Повний текст джерела
Анотація:
Magnetic recording media refers to the disc shaped thin film magnetic medium present inside the hard disk drive of a computer. Magnetic recording is an important function of the hard disk drive by which information such as text, pictures, audio and videos are stored. Information is broken down to a simple binary format and is stored as magnetised bits along the tracks of the disk forming the hard drive. Over the years advancements in research on the type of magnetic materials used has allowed increased data storage capacities by reducing magnetic bit sizes. It is with this advancement in magnetic data storage, that we have today's hard disk drive technology, which uses a perpendicular magnetic medium to store data. A perpendicular magnetic medium is a multi-layered magnetic thin film structure with the topmost layer comprising nanoscale magnetic grains of high perpendicular anisotropy. The topmost recording layer (RL) is mapped into individual bits of 80-100 nm² area that consist of 5-10 nm diameter CoCrPt grains, embedded in an oxide matrix. A bit area is defined to ensure a significant number of stable grains allowing data to be stored in each bit as a ‘0' or a ‘1' depending on its switched magnetic state. The magnetic grains if sputtered below a threshold grain size tend to suffer from thermal fluctuation and instability due to super-paramagnetic effects, hence bringing limitations to grain size. As a result of this, research in recent years has been directed at introducing a softer magnetic exchange coupled composite (ECC) layer above the recording layer. This layer facilitates the delicate balance of switching smaller grains with strong magneto-crystalline anisotropy at lower magnetic fields, by exchange coupling with the CoCrPt grains in the recording layer. However this technique of increasing the efficiency in the perpendicular magnetic medium by introducing ‘facilitating' layers is an area that is still being widely researched and understood. Although numerous surface and bulk analysis techniques exist to study magnetic and surface properties of these materials, there is limited information on the structural and magnetic properties of these materials at the nanoscale level. The reported work investigates the structural and magnetic properties of the magnetic grains and multi-layers in the perpendicular magnetic medium using polarised neutron scattering and reflectivity techniques. The work investigates the structural and magnetic properties of the CoCrPt grains, apart from understanding the CoCrPt magnetic grain switching. The work also investigates the magnetisation in the layers of the thin film perpendicular media structure using polarised neutron reflectivity (PNR). Using polarised small angle neutron scattering (PolSANS), it has been shown that ferromagnetic ordered core region of the CoCrPt grain in the recording layer is smaller than the physical CoCrPt granular structure. The magnetic switching behaviour of the CoCrPt grain at different magnetic fields is also analysed and the experimental PolSANS data is fitted with non-interacting size-dependent analytical grain switching models. This result provides significant evidence that the magnetic anisotropy increases with grain size, with larger magnetic grains having larger magnetic anisotropy. Polarised neutron scattering experiments are carried out with the magnetically softer exchange coupled composite (ECC) layer included in the thin film magnetic structure. The first experiments investigate if the ECC layer contributes to the nuclear and magnetic interference scattering term in the experimenting scattering data. The experiments clearly show that there is no contribution from the ECC layer in the nuclear and magnetic scattering interference term. The role of the ECC layer in the magnetic switching process is then investigated at different magnetic fields. The ECC layer was found to influence the size-dependent magnetic grain switching of the CoCrPt grains in the recording layer and a detailed investigation is presented in the reported work. Polarised neutron reflectivity (PNR) experiments have also been carried out with the ECC layer on the perpendicular magnetic media samples. These experiments investigate the composition and thickness of the thin film structure, while also providing information on the magnetic state of the thin films under the influence of an in-plane magnetic field. The in-plane magnetisation in the recording and ECC layer is determined at different in-plane magnetic fields. The magnetisation values determined for the ECC layer and the recording layer (RL) at different in-plane magnetic fields help better understand the differences in their magnetic properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bavendiek, Gregor Johannes [Verfasser]. "A contribution to the electromagnetic Finite Element Analysis of soft and hard magnetic materials in electrical machines / Gregor Johannes Bavendiek." Düren : Shaker, 2020. http://d-nb.info/122060996X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sözen, Halil Ibrahim [Verfasser], Gunther [Gutachter] Eggeler, and Jörg [Gutachter] Neugebauer. "Ab initio phase stabilities of Ce-based hard magnetic materials / Halil Ibrahim Sözen ; Gutachter: Gunther Eggeler, Jörg Neugebauer ; Fakultät für Maschinenbau." Bochum : Ruhr-Universität Bochum, 2019. http://d-nb.info/1199614475/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Valkass, Robert Alexander James. "Exploration of the sub-nanosecond magnetisation dynamics of partially built hard disk drive write-head transducers and other topical magnetic and spintronic materials and devices." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/31175.

Повний текст джерела
Анотація:
In this thesis both the static and dynamic magnetic behaviour of complex three-dimensional nanoscale commercial hard disk drive write heads and thin film structures of interest to emerging spintronic devices have been investigated using a plurality of experimental techniques. The magneto-optical Kerr effect (MOKE) provides the basis for an optical microscopy technique sensitive to the magnetisation of a sample, detectable as a change in polarisation of light reflected from the sample surface. With a modelocked laser light source, synchronised electrical pulse generator and lock-in amplifier (LIA), a stroboscopic technique has been used to observe the magnetisation dynamics of hard disk drive write heads at 600 nm spatial resolution and 10 ps time resolution in response to a driving electrical pulse. The equilibrium magnetic state of these devices has been directly imaged by x-ray photo-emission electron microscopy (XPEEM), as well the stability of the equilibrium state in response to the application of an external bias field. Direct images of the equilibrium state obtained by XPEEM were found to agree with inferences made from MOKE images. Time-resolved scanning Kerr microscopy (TRSKM) images of magnetisation dynamics showed that flux does not form in ‘beams’ as commonly believed, but instead nucleates in separate sites across the writer. Static and time-resolved x-ray techniques have also been used to investigate a number of thin films of interest to spintronics. Spin pumping and spin transfer torque in Co2MnGe / Ag / Ni81Fe19 spin valves were explored using time-resolved x-ray ferromagnetic resonance (XFMR) carried out at Diamond Light Source (DLS), a as well as static x-ray magnetic circular dichroism (XMCD) for sample characterisation. This has provided element-specific measurements of the spin state in the source and sink layers of the spin valve, revealing a clear sign of spin transfer torque, while also investigating the role of sink layer thickness in spin pumping and damping. Ferrimagnetic yttrium iron garnet (Y3Fe2(FeO4)3) (YIG), a material of great interest in spintronics, has been studied by static and dynamic XMCD in comparison with ferromagnetic Co. While static and dynamic spectra for Co were identical, those for YIG differed markedly. While this may hint at a phase difference between the precession of Fe moments on different lattice sites, the true source of this difference has not been identified. Comparisons between vector network analyser ferromagnetic resonance (VNA-FMR) and XFMR measurements further suggest the presence of long-range inhomogeneities in the YIG. The spin dynamics of an antiferromagnet being driven by a ferromagnet have also been investigated using XMCD and x-ray magnetic linear dichroism (XMLD). A CoO / Fe / Ni81Fe19 trilayer wherein the thickness of the CoO layer varies across the sample has been thoroughly characterised by static XMCD and XMLD, providing information necessary to fully interpret time-resolved MOKE measurements on these samples. Measurements have shown that even small amounts of ordered CoO significantly modify the resonant field and linewidth of the adjacent ferromagnetic layers. Phase-resolved measurements of CoO spins have shown these spins to precess in phase with those of the adjacent Fe. The viability of dynamic XMLD measurements has also been confirmed. Finally, potential directions for future work in each project are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kevorkian, Brindusa Maria. "Contribution à la modélisation du retournement d'aimantation : application à des systèmes magnétiques nanostructurés ou de dimensions réduites." Université Joseph Fourier (Grenoble ; 1971-2015), 1998. http://www.theses.fr/1998GRE10096.

Повний текст джерела
Анотація:
Nous avons developpe des techniques mathematiques efficaces et un ensemble d'outils numeriques specifiques au micromagnetisme, pour calculer des configurations magnetiques a l'equilibre et hors equilibre. Le modele utilise une methode de minimisation qui repose sur l'integration des equations de precession-dissipation de landau-lifshitz-gilbert (llg). Nous avons mis en evidence l'importance de l'etude de stabilite des equations llg. L'approche numerique mise au point a ete appliquee pour etudier le comportement magnetique de systemes reels fabriques au laboratoire. Dans les tri-couches ferromagnetiques smco/zrco/smco', dont la couche centrale douce est prise en sandwich entre deux couches dures, le mecanisme de renversement de la phase dure est du a la propagation d'une paroi depuis la phase douce. L'essentiel des processus de renversement d'aimantation experimentaux a ete decrit correctement par la simulation, seul un desaccord porte sur le renversement d'aimantation de la couche de smco la plus dure. L'etude menee sur les plots de fer epitaxies fe(110)/w(110) a permis de decrire les distributions d'aimantation et d'estimer les champ de retournement. Le champ coercitif calcule pour un plot carre de l = 5000 a de cote et de e = 58 a d'epaisseur est proche de la valeur obtenue experimentalement. Un bon accord entre l'experience et la simulation a ete observe pour la dependance angulaire du champ coercitif d'une particule ronde de diametre 2000 a et d'epaisseur 10 a. Le comportement calcule, comme observe, tendent vers celui decrit par le modele de stoner-wohlfarth. Dans le cas des materiaux nanostructures doux-durs, l'approche micromagnetique utilisee nous a permis d'identifier les parametres pertinents et les mecanismes impliques dans le renversement d'aimantation. Les contributions de chaque phase a la susceptibilite totale ont ete deduites. La contribution reversible a la susceptibilite totale a ete determinee par une approche qui mime le procede experimental. La comparaison de nos resultats avec ceux de l'experience tend a prouver qu'une amelioration des performances des systemes nanostructures reels est possible en diminuant la taille des grains.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Hard magnetic materials"

1

Long, Gary J., and Fernande Grandjean, eds. Supermagnets, Hard Magnetic Materials. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3324-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Long, Gary J. Supermagnets, Hard Magnetic Materials. Dordrecht: Springer Netherlands, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

1941-, Long Gary J., and Grandjean Fernande 1947-, eds. Supermagnets, hard magnetic materials. Dordrecht: Kluwer Academic Publishers, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Betancourt, Israel. Magnetic materials: Current topics in amorphous wires, hard magnetic alloys, ceramics, characterization and modelling 2007. Trivandrum: Research Signpost, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

A, Salsgiver J., American Society for Metals. Transformer Steels Committee., American Society for Metals. Permanent Magnet Committee., Symposium on Soft and Hard Magnetic Materials with Applications (2nd : 1986 : Lake Buena Vista, Fla.), and ASM's Materials Week '86 (1986 : Lake Buena Vista, Fla.), eds. Soft and hard magnetic materials with applications: Proceedings of a symposium held in conjunction with ASM's Materials Week '86, Lake Buena Vista, Florida, 4-9 October 1986. [Metals Park, Ohio]: American Society for Metals, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Men, Boris. Russian advances in atomic structure theory and applications: Solid solutions properties, hard alloys and magnetic materials. [Alexandria, Va.]: Global Consultants, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

National Register of Foreign Collaborations (India) and India. Dept. of Scientific & Industrial Research., eds. Technology in Indian hard ferrite industry: A status report prepared under the National Register of Foreign Collaborations. New Delhi: Govt. of India, Dept. of Scientific & Industrial Research, Ministry of Science and Technology, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Coey, Michael, Laura H. Lewis, Bao-Min Ma, Thomas Schrefl, and Ludwig Schultz. Advanced Hard and Soft Magnetic Materials: Volume 577. University of Cambridge ESOL Examinations, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Solymar, L., D. Walsh, and R. R. A. Syms. Magnetic materials. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198829942.003.0011.

Повний текст джерела
Анотація:
Macroscopic and microscopic theories of magnetic polarization are discussed. The origin of domains, domain walls, and of the hysteresis curve and the contrast between soft and hard magnetic materials are explained. The more important elements of the quantum theory of magnetism are discussed. The principles of the alignments in antiferromagnetic and ferromagnetic materials are explained. Magnetic resonance phenomena are discussed. Magnetoresistance and spintronics and their device prospects are also discussed at some length.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

(Editor), G. J. Long, and F. Grandjean (Editor), eds. Supermagnets, Hard Magnetic Materials (NATO Science Series C:). Springer, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Hard magnetic materials"

1

Jiles, David. "Hard Magnetic Materials." In Introduction to Magnetism and Magnetic Materials, 299–321. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3868-4_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Horiishi, N., and S. Takaragi. "Hard magnetic materials: Bonded magnets." In Powder Metallurgy Data, 625–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/10689123_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Warlimont, H. "Hard magnetic materials: Alnico." In Powder Metallurgy Data, 592–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/10689123_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Buschow, K. H. J. "Novel Permanent Magnet Materials." In Supermagnets, Hard Magnetic Materials, 49–67. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3324-1_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kronmüller, H. "Micromagnetic Background of Hard Magnetic Materials." In Supermagnets, Hard Magnetic Materials, 461–98. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3324-1_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Henig, E.-Th, and B. Grieb. "Phase Diagrams for Permanent Magnet Materials." In Supermagnets, Hard Magnetic Materials, 171–226. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3324-1_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wu, Chen, and Jiaying Jin. "Introduction to Hard Magnetic Materials." In Frontiers in Magnetic Materials, 45–59. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003216346-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wu, Chen, and Jiaying Jin. "Other Emerging Hard Magnetic Materials." In Frontiers in Magnetic Materials, 129–50. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003216346-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bartolome, J. "Thermal, Magnetic, Magnetoelastic and Transport Characterization of Hard Magnetic Alloys." In Supermagnets, Hard Magnetic Materials, 391–413. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3324-1_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Long, Gary J., and Fernande Grandjean. "Historical Background and Introduction to Hard Magnetic Materials." In Supermagnets, Hard Magnetic Materials, 1–5. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3324-1_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Hard magnetic materials"

1

Schrefl, T., H. F. Schmidts, J. Fidler, and H. Kronmuller. "Nucleation Fields And Grain Boundaries In Hard Magnetic Materials." In 1993 Digests of International Magnetics Conference. IEEE, 1993. http://dx.doi.org/10.1109/intmag.1993.642443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Frigura-Iliasa, Mihaela, Lucian Petrescu, Emil Cazacu, and Flaviu Mihai Frigura-Iliasa. "Computer aided study of the hard-magnetic materials anisotropy." In 2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES). IEEE, 2017. http://dx.doi.org/10.1109/ines.2017.8118538.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Swetha, Juturu, Ganesh Tamadapu, and Shaikh Faruque Ali. "Workspace Evolution of Hard Magnetic Soft Elastica." In ASME 2022 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/smasis2022-91001.

Повний текст джерела
Анотація:
Abstract Workspace, the set of all possible positions reached by the end effector, must be large for a continuum robot for safe steer-ability. Magnetically actuated soft robots have high workspace due to their millimetre-scale size and large flexibility, enabling them to navigate constrained environments. When subjected to an external magnetic field, they undergo large deflections by interacting with magnetic particles. This work develops closed-form (assuming 2D planar) and numerical solutions to rotation and deflection for uniformly magnetised elastica at an angle using Cosserat rod theory. They are derived in terms of the elliptic function and shooting method, respectively, and are in good agreement with the experimental results provided in the literature. Deflection and rotation plots are presented for various input conditions. The analytical solutions show pitchfork bifurcation when the external field is antiparallel to the magnetic direction with a peak normalised half workspace of 0.103. In contrast, perturbed pitchfork bifurcation is observed for the other angles; increasing the workspace to 0.416 is not yet studied in the existing literature.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Leonowicz, Marcin, Marzena Spyra, Elżbieta Jezierska, Amitabha Ghoshray, Bilwadal Bandyopadhyay, and Chandan Mazumdar. "Hard Magnetic, Low Neodymium Nd-Fe-B Melt-Spun Alloys Containing Refractory Metals." In INTERNATIONAL CONFERENCE ON MAGNETIC MATERIALS (ICMM-2010). AIP, 2011. http://dx.doi.org/10.1063/1.3601796.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

"Research on hot-pressing technology of ferrite hard magnetic materials of light performance." In International Magnetics Conference. IEEE, 1989. http://dx.doi.org/10.1109/intmag.1989.690321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

von Lockette, Paris, and Robert Sheridan. "Folding Actuation and Locomotion of Novel Magneto-Active Elastomer (MAE) Composites." In ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3222.

Повний текст джерела
Анотація:
Magneto-active elastomers (also called magnetorheological elastomers) are most often used in vibration attenuation application due to their ability to increase in shear modulus under a magnetic field. These shear-stiffening materials are generally comprised of soft-magnetic iron particles embedded in a rubbery elastomer matrix. More recently researchers have begun fabricating MAEs using hard-magnetic particles such as barium ferrite. Under the influence of uniform magnetic fields these hard-magnetic MAEs have shown large deformation bending behaviors resulting from magnetic torques acting on the distributed particles and consequently highlight their ability for use as remotely powered actuators. Using the magnetic-torque-driven hard-magnetic MAE materials and an unfilled silicone elastomer, this work develops novel composite geometries for actuation and locomotion. MAE materials are fabricated using 30% v/v 325 mesh barium ferrite particles in Dow Corning HS II silicone elastomers. MAE materials are cured in a 2T magnetic field to create magnetically aligned (anisotropic) materials as confirmed by vibrating sample magnetometry (VSM). Gelest optical encapsulant is used as the uniflled elastomer material. Mechanical actuation tests of cantilevers in bending and of accordion folding structures highlight the ability of the material to perform work in moderate, uniform fields of μ0H = 150 mT. Computational simulations are developed for comparison. Folding structures are also investigated as a means to produce untethered locomotion across a flat surface when subjected to an alternating field similar to scratch drive actuators; geometries investigated show promising results.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jain, V. K., Pankaj Singh, Puneet Kumar, Ajay Sidpara, Manas Das, V. K. Suri, and R. Balasubramaniam. "Some Investigations Into Magnetorheological Finishing (MRF) of Hard Materials." In ASME 2009 International Manufacturing Science and Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/msec2009-84335.

Повний текст джерела
Анотація:
Magnetorheological finishing (MRF) process is one of the fine abrasive finishing processes used to get better surface finish on a semi finished part. The present work is aimed at investigating the effectiveness and validity of magnetorheological finishing process and finding out the process parameters (such as finishing time, rotational speed of carrier wheel, abrasive concentration, and working gap) and their effectiveness on surface finish characteristics. MRF process is applied on brass and nonmagnetic stainless steel workpieces which were initially finished by the grinding process. The results of experiments were statistically analyzed by response surface methodology (RSM) to form an empirical model for the responses generated during the process. Also, an attempt has been made to model and simulate the finishing operation in MRF process. Apart from this, the micro structure of the mixture of magnetic and abrasive particles in magnetorheological polishing fluid (MR Fluid) has been proposed. Thereafter the normal force on the abrasive particles is calculated from the applied magnetic field and a model for the prediction of surface roughness has also been presented. Finally, theoretical results calculated using the proposed model, have been compared with the experimental results to validate the model developed.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Reece, Adam, and Jeong-Hoi Koo. "Investigation of Dynamic Behaviors of Flexible Beam Actuators Based on Magnetic Polymers." In ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9290.

Повний текст джерела
Анотація:
This study investigates the dynamic properties of Magneto-Rheological Elastomers (MRE) with hard magnetic particles used as bending actuators under an alternating magnetic field. As earlier studies demonstrated that a dispersion of hard magnetic particles in polymeric materials, aligned in a preferred orientation, cause rotational motion in the sample when a magnetic field is applied perpendicularly to the magnetization direction of the particles. They focused on static responses of MREs with hard magnetic particles. The primary goal of this study is to characterize the dynamic behavior of a flexible bending actuator based on MREs under alternating magnetic fields. In this study, samples from a previous study, consisting of barium hexaferrite particles at 30% concentrations by volume, were tested. A C-shaped electromagnet was constructed to apply alternating magnetic fields along the length of the sample. By securing only one end of the sample to the electromagnet, the sample is free to bend similar to a cantilever beam. Using this setup, the tip displacement of the sample was recorded using a precision load cell and a laser displacement sensor under various input magnetic field strengths and frequencies. The results show that increasing the voltage output or the magnetic field strength increases the displacement of the sample. The results also show that, as the frequency of the sinusoidal voltage input increases, the amplitude of the tip displacement of the sample decrease.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

I., Hishigdemberel, Bobrikov I. A., Balagurov A. M., Sangaa D., and Tsugita H. "NEUTRON DIFFRACTION STUDY OF THE HARD MAGNETIC MATERIALS Nd2Fe14B DOPED BY Dy." In НАНОМАТЕРИАЛЫ И ТЕХНОЛОГИИ. Buryat State University Publishing department, 2016. http://dx.doi.org/10.18101/978-5-9793-0898-2-149-154.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ustyukhin, A. S., V. A. Zelensky, I. M. Milyaev, and A. B. Ankudinov. "The study of the magnetic properties of Fe-30Cr-(8-16)Co powder hard magnetic alloys." In MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2020): Proceeding of the 14th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0036903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Hard magnetic materials"

1

Tsui, T. Y., G. M. Pharr, W. C. Oliver, Y. W. Chung, E. C. Cutiongco, C. S. Bhatia, R. L. White, R. L. Rhodes, and S. M. Gorbatkin. Nanoindentation and nanoscratching of hard coating materials for magnetic disks. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/34426.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Thomas Austin, Evan, Paul Kang, Chinedu Mmeje, Joseph Mashni, Mark Brenner, Phillip Koo, and John C Chang. Validation of PI-RADS v2 Scores at Various Non-University Radiology Practices. Science Repository, December 2021. http://dx.doi.org/10.31487/j.aco.2021.02.02.

Повний текст джерела
Анотація:
Purpose: The purpose of this study was to validate the second version of the Prostate Imaging Reporting and Data System (PI-RADSv2) scores in predicting positive in-bore MRI-guided targeted prostate biopsy results across different non-university related institutions. The study focuses on PI-RADS v2 scoring because during the study period, PI-RADS v2.1 had not been released. Materials and Methods: This was a retrospective review of 147 patients who underwent multiparametric magnetic resonance imaging (mpMRI) of the pelvis followed by in-bore MRI-guided targeted prostate biopsy from December 2014 to May 2018. All lesions on mpMRI were rated according to PI-RADS v2 criteria. PI-RADS v2 scores were then compared to MR-guided biopsy results and pre-biopsy PSA values. Results: Prostate Cancer (PCa) was detected in 54% (80/147) of patients, with more prostate cancer being detected with each subsequent increase in PI-RADS scores. Specifically, biopsy results in patients with PI-RADS 3, 4, and 5 lesions resulted in PCa in 25.6% (10/39), 58.1% (33/55), and 86.0% (37/43) respectively. Clinically significant PCa (Gleason score ≥7) was detected in 17.9% (7/39), 52.7% (29/55), and 72% (31/43) of cases for PI-RADS 3, 4, and 5 lesions respectively. When the PI-RADS scoring and biopsy results were compared across different institutions, there was no difference in the PI-RADS scoring of lesions or in the positive biopsy rates of the lesions. The sensitivity, specificity, PPV, and NPV for PI-RADS 3-4 lesions were also not statistically different across the institutions for detecting Gleason 7 or greater lesions. Conclusion: Our results agree with prior studies that higher PI-RADS scores are associated with the presence of clinically significant PCa and suggest prostate lesions with PI-RADS scores 3-5 have sufficient evidence to warrant targeted biopsy. The comparison of PI-RADS score across different types of non-university practices revealed no difference in scoring and biopsy outcome, suggesting that PI-RADS v2 can be easily applied outside of the university medical center setting. Clinical Relevance: PI-RADS v2 can be applied homogeneously in the non-university setting without significant difference in outcome.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії