Добірка наукової літератури з теми "GUIDED FILTERS"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "GUIDED FILTERS".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "GUIDED FILTERS"
Vizilter, Y. V., A. Y. Rubis, and S. Y. Zheltov. "CHANGE DETECTION VIA SELECTIVE GUIDED CONTRASTING FILTERS." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-1/W1 (May 31, 2017): 403–10. http://dx.doi.org/10.5194/isprs-archives-xlii-1-w1-403-2017.
Повний текст джерелаToet, Alexander. "Alternating guided image filtering." PeerJ Computer Science 2 (June 27, 2016): e72. http://dx.doi.org/10.7717/peerj-cs.72.
Повний текст джерелаWu, Wenze, Leonard Weber, Finn-Niclas Stapelfeldt, Peter Hinze, Thomas Weimann, Bernd Bodermann, Stefanie Kroker, Joan Daniel Prades, Hutomo Suryo Wasisto, and Andreas Waag. "Pixel-Wise Multispectral Sensing System Using Nanostructured Filter Matrix for Biomedical Applications." Proceedings 2, no. 13 (November 29, 2018): 880. http://dx.doi.org/10.3390/proceedings2130880.
Повний текст джерелаRoth, Zachary A., Pradeep Srinivasan, Menelaos K. Poutous, Aaron J. Pung, Raymond C. Rumpf, and Eric G. Johnson. "Azimuthally Varying Guided Mode Resonance Filters." Micromachines 3, no. 1 (March 15, 2012): 180–93. http://dx.doi.org/10.3390/mi3010180.
Повний текст джерелаMagnusson, R., and S. S. Wang. "Transmission bandpass guided-mode resonance filters." Applied Optics 34, no. 35 (December 10, 1995): 8106. http://dx.doi.org/10.1364/ao.34.008106.
Повний текст джерелаMousa, Mohamed A., Nadia H. Rafat, and Amr A. E. Saleh. "Toward spectrometerless instant Raman identification with tailored metasurfaces-powered guided-mode resonances (GMR) filters." Nanophotonics 10, no. 18 (October 20, 2021): 4567–77. http://dx.doi.org/10.1515/nanoph-2021-0444.
Повний текст джерелаUddin, Mohammad Jalal, and Robert Magnusson. "Efficient Guided-Mode-Resonant Tunable Color Filters." IEEE Photonics Technology Letters 24, no. 17 (September 2012): 1552–54. http://dx.doi.org/10.1109/lpt.2012.2208453.
Повний текст джерелаVallius, Tuomas, Pasi Vahimaa, and Jari Turunen. "Pulse deformations at guided-mode resonance filters." Optics Express 10, no. 16 (August 12, 2002): 840. http://dx.doi.org/10.1364/oe.10.000840.
Повний текст джерелаLiu, Wenxing, Zhenquan Lai, Hao Guo, and Ying Liu. "Guided-mode resonance filters with shallow grating." Optics Letters 35, no. 6 (March 15, 2010): 865. http://dx.doi.org/10.1364/ol.35.000865.
Повний текст джерелаCannistra, Aaron T., Menelaos K. Poutous, Eric G. Johnson, and Thomas J. Suleski. "Performance of conformal guided mode resonance filters." Optics Letters 36, no. 7 (March 25, 2011): 1155. http://dx.doi.org/10.1364/ol.36.001155.
Повний текст джерелаДисертації з теми "GUIDED FILTERS"
Boye, Robert Russell. "Physical optics approach to guided-mode resonance filters." Diss., The University of Arizona, 2000. http://hdl.handle.net/10150/284141.
Повний текст джерелаLai, Lin-Ying. "Suboptimal period design for a maneuvering missile to evade tracking filters." Diss., Virginia Polytechnic Institute and State University, 1988. http://hdl.handle.net/10919/53564.
Повний текст джерелаPh. D.
Boonruang, Sakoolkan. "TWO-DIMENSIONAL GUIDED MODE RESONANT STRUCTURES FOR SPECTRAL FILTERING APPLICATIONS." Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3940.
Повний текст джерелаPh.D.
Optics and Photonics
Optics and Photonics
Optics PhD
Melgarejo, Lermas Juan Carlos. "Advanced Techniques for the Design and Optimization of Multi-Band and Reconfigurable Microwave Waveguide Filters." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/172728.
Повний текст джерела[CA] El creixent nombre de dispositius intercanviant dades ha empés a les empreses del sector espacial a utilitzar bandes de freqüència cada vegada més altes, com Ku, K i Ka, ja que permeten fer servir canals de freqüència més amples. A mesura que la longitud d'ona disminueix, la mida dels filtres es redueix i, per tant, són més sensibles a les desviacions de fabricació. Per compensar aquests errors, és necessari fer servir elements de sintonia en l'etapa de disseny. En aquest context presentem una estratègia de disseny que permet incloure tots els factors no ideals, com a elements de sintonia o cantonades arrodonides, en les simulacions finals de filtres i multiplexors. Una vegada s'han fabricat els filtres és necessari ajustar manualment els elements de sintonia fins a recuperar la resposta objectiu. Però, per realitzar aquesta tasca amb èxit és necessari tenir molta experiència prèvia i, així i tot, comporta un temps considerable. Per tant, també proposem un procediment de sintonització eficient i sistemàtic que permet a qualsevol persona, independentment de la seua experiència prèvia en sintonització, realitzar aquesta tasca amb èxit. A més de l'augment de les taxes de transmissió, altres desafiaments de el sector espacial són reduir la mida i pes dels seus components, així com dotar-los de capacitat de reconfiguració. Emprar dispositius multifunció com filtres multibanda o dispositius reconfigurables és una possible solució. En aquest context, proposem una nova família de filtres multibanda en guia d'ones que pot adaptar-se a les futures necessitats del sector espacial. Amb el mateix objectiu, també proposem una família de dispositius reconfigurables de diversos estats discrets que poden modificar el seu comportament de forma remota.
[EN] The need for ever increasing data rate of modern communication systems has motivated companies in the space sector to exploit higher frequency bands, such as Ku, K and Ka, in order to offer wider bandwidths to their customers. However, as the frequency increases, the wavelength decreases, and all waveguide hardware becomes smaller and more sensitive to deviations from the ideal dimensions that normally occur when manufacturing the devices. In order to compensate for these deviations (or errors), tuning elements must then be added to the hardware and included in the design process. In this context, therefore, we focus on the investigation of novel design strategies for filters and multiplexers with the objective of including all necessary non-ideal factors in the design process. It is important to note in this context that, once the filters are manufactured, the tuning elements are usually adjusted manually until the desired target performance has been achieved. However, successfully performing this task requires a considerable amount of time and very significant previous experience in tuning microwave filters. Consequently, an additional goal of our research work is to propose efficient and systematic tuning procedures so that anyone, regardless of their previous tuning experience, can successfully perform this difficult task. In addition to the increasing data rates, another current challenge of advanced communication systems is the ability to be reconfigured remotely to adjust to changes in costumer demands. The use of multi-function or reconfigurable devices is then an attractive possible solution. In this context, therefore, we also investigate new families of multi-band waveguide filters that can be used to accommodate several pass bands in the same filtering device. Furthermore, we also propose a new family of reconfigurable devices with several discrete states that can be easily controlled remotely.
Melgarejo Lermas, JC. (2021). Advanced Techniques for the Design and Optimization of Multi-Band and Reconfigurable Microwave Waveguide Filters [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172728
TESIS
Dancer, Michael William. "Analysis of the theta-D filter as applied to hit-to-kill interceptors and satellite orbit determination." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2010. http://scholarsmine.mst.edu/thesis/pdf/Dancer_09007dcc807855a7.pdf.
Повний текст джерелаVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 7, 2010) Includes bibliographical references (p. 70-77).
Srinivasan, Pradeep. "DESIGN AND FABRICATION OF SPACE VARIANT MICRO OPTICAL ELEMENTS." Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2817.
Повний текст джерелаPh.D.
Optics and Photonics
Optics and Photonics
Optics PhD
Fong, Chung Yan. "Silicon-based laterally waveguide-coupled square microcavity channel add-drop filters /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202004%20FONG.
Повний текст джерелаIncludes bibliographical references (leaves 98-103). Also available in electronic version. Access restricted to campus users.
Lilonga-Boyenga, Désiré. "Contribution à la nouvelle formulation variationnelle : Application aux études des discontinuités et des filtres en guides d'ondes métalliques." Phd thesis, Toulouse, INPT, 2005. http://oatao.univ-toulouse.fr/7312/1/lilonga.pdf.
Повний текст джерелаZheng, Shengmei. "Circular microresonator cross-connect filters and hexagonal microresonator add-drop filters in silicon nitride /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202005%20ZHENG.
Повний текст джерелаMartin, Tifenn. "Air-Filled Substrate Integrated Waveguide (AFSIW) Filters and multiplexers for space application." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0391.
Повний текст джерелаThe emergence of novel microwave and millimeter wave applications in the automotive and communication sectors including the internet of things (IoT), the fifth generation of mobile (5G), and the new space, require the development of new alternative technologies providing a suitable tradeoff in terms of size, weight, power, and cost (SWaP C). This change of paradigm is essentially due to the increase of data rate, leading to the growth of bandwidth. As a substantially increasing number of systems are competing for frequency spectrum occupancy, the microwave community is pushed to develop new innovative systems at higher frequency with an increased efficiency.This change of paradigm has highly stimulated the development of low cost, high performance, highly integrated, compact, and mass producible microwave and millimeter wave systems. At the heart of a system, microwave and millimeter wave filters are essential devices allowing to select the desired information. Low loss filters are highly desired in transmitter and receiver circuits to achieve high efficiency and low noise figures. The conventional way to achieve low loss performance is to use high quality factor resonators. For most high performance applications, the air-filled rectangular waveguide (RWG) technology is used to comply with the severe specifications requested by the industry. Nevertheless, this technology becomes prohibitive in terms of cost where a mass production is needed. To reduce the cost of such components, the use of the so called substrate integrated waveguide (SIW) emerging technology has been proposed. This technology benefits from low cost and highly integrated properties. The SIW technology is a good candidate for application that needs low cost with medium insertion loss, but for high performance applications, such as the emerging new space, the achieved performances are not compliant with the severe specifications, making the implementation of the SIW technology for high performance applications restrictive.Recently, the alternative air filled substrate integrated waveguide (AFSIW), based on multilayer printed circuit board (PCB) is expected to fulfill satellite constellation application requirements as it offers a compromise between the conventional RWG and SIW technologies. This structure aims to dramatically reduce the insertion loss of the propagation medium, while maintaining the high integration and low cost aspect. Hence making it a potential good candidate for future generation of satellite payloads.Taking into consideration the presented context, the work carried out during this Ph.D. thesis has been led towards the implementation of the AFSIW for the new space applications. A particular attention has been given to the proposal, analysis, development, and implementation of innovative and original concepts for microwave filtering functions. The proposed work is based on the classic waveguide theory taking advantage of the standard PCB process to allow the development of improved and novel filters and multiplexer for space applications.This Ph.D. thesis highlights the last advances made on the development of microwave filters and multiplexer using the AFSIW technology. This includes the starting ideas, theoretical demonstrations, simulations, and experimental validations with fabricated prototypes. The results of this work are promising and demonstrate the relevance of the technology for its implementation in future satellite payload systems. In fact, a sub system of a satellite payload has been developed in this thesis to answer the need of the European Space Agency (ESA) and the Centre National d’Études Spatiales (CNES). The demonstrated concepts gained from this thesis can be considered as a good base to further develop and popularize the AFSIW technology not only for space applications but also for ground systems
Книги з теми "GUIDED FILTERS"
Bernard, Piette. VHF/UHF filters and multicouplers. London, UK: ISTE, 2010.
Знайти повний текст джерелаVHF/UHF filters and multicouplers. London, UK: ISTE, 2010.
Знайти повний текст джерелаBernard, Piette. VHF/UHF filters and multicouplers. London, UK: ISTE, 2010.
Знайти повний текст джерелаSmith, Norman E. Practical guide to SGML filters. Plano, Tex: Wordware Pub., 1997.
Знайти повний текст джерелаFrost, Lee. The photographer's guide to filters. Newton Abbot: David & Charles, 2002.
Знайти повний текст джерелаE, Smith Norman. Practical guide to SGML/XML filters. Plano, Tex: Wordware Pub., 1998.
Знайти повний текст джерелаSchneider, Karen G. A practical guide to Internet filters. New York: Neal-Schuman Publishers, 1997.
Знайти повний текст джерелаThe photographer's guide to using filters. New York: Amphoto Books, 1998.
Знайти повний текст джерелаMeehan, Joseph. The photographer's guide to using filters. New York: Amphoto, 1992.
Знайти повний текст джерелаThe photographer's guide to using filters. New York: Amphoto, 1992.
Знайти повний текст джерелаЧастини книг з теми "GUIDED FILTERS"
Haus, Hermann A., Jay N. Damask, and Mohammad J. Khan. "Distributed Feedback Channel Dropping Filters." In Guided-Wave Optoelectronics, 299–311. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1039-4_38.
Повний текст джерелаEknoyan, O., and H. F. Taylor. "Electrooptic Tunable Filters for WDM Networks." In Guided-Wave Optoelectronics, 17–24. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1039-4_5.
Повний текст джерелаChen, J. C., H. A. Haus, J. N. Winn, S. Fan, and J. D. Joannopoulos. "Wide Stop Band Optical Filters from Photonic Band Gap Air Bridges." In Guided-Wave Optoelectronics, 477–83. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1039-4_56.
Повний текст джерелаHewa-Gamage, G., and P. L. Chu. "Single Band and Multi-Band Optical Waveguide Wavelength Filters Using Ion-Exchange Process." In Guided-Wave Optoelectronics, 167–75. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1039-4_22.
Повний текст джерелаDulhare, Uma N., and Areej Mohammed Khaleed. "Taj-Shanvi Framework for Image Fusion Using Guided Filters." In Data Management, Analytics and Innovation, 419–27. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9364-8_30.
Повний текст джерелаMarques, Tunai Porto, Alexandra Branzan Albu, and Maia Hoeberechts. "Enhancement of Low-Lighting Underwater Images Using Dark Channel Prior and Fast Guided Filters." In Pattern Recognition and Information Forensics, 55–65. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05792-3_6.
Повний текст джерелаYin, Hui, Yuanhao Gong, and Guoping Qiu. "Guided Filter Bank." In Lecture Notes in Networks and Systems, 783–92. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80119-9_50.
Повний текст джерелаMijalković, Slobodan. "Filters." In A Practical Guide to Verilog-A, 201–14. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-6351-8_14.
Повний текст джерелаFisher, Bryan T., and Thomas C. Naslund. "Ultrasound-Guided Cava Filter Placement." In Noninvasive Vascular Diagnosis, 519–28. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4005-4_42.
Повний текст джерелаArce-Santana, Edgar R., Daniel U. Campos-Delgado, and Alfonso Alba. "Image Registration Guided by Particle Filter." In Advances in Visual Computing, 554–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10331-5_52.
Повний текст джерелаТези доповідей конференцій з теми "GUIDED FILTERS"
Mecozzi, Antonio. "Soliton dynamics with fixed and sliding filters." In Nonlinear Guided Waves and Their Applications. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/nlgw.1996.sab.1.
Повний текст джерелаHenry, C. H., Y. Shani, R. C. Kistler, T. E. Jewell, V. Pol, N. A. Olsson, R. F. Kazarinov, and K. J. Orlowsky. "Compound Bragg Reflection Filters Made by a High Resolution Deep Ultraviolet Stepper." In Integrated and Guided Wave Optics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/igwo.1989.tubb4.
Повний текст джерелаJacket, Janet Lehr, and John Johnson. "Voltage-tunable wavelength filtering with a non-symmetric interferometer." In Integrated and Guided Wave Optics. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/igwo.1988.tuc7.
Повний текст джерелаHeismann, F., W. Warzanskyj, R. C. Alferness, and L. L. Buhl. "Narrowband Double-Pass Wavelength Filter with Broad Tuning Range." In Integrated and Guided Wave Optics. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/igwo.1988.me2.
Повний текст джерелаKodama, Y., S. Wabnitz, M. Romagnoli, and M. Midrio. "Theoretical Analysis of Soliton Transmission with Sliding Filters." In Nonlinear Guided-Wave Phenomena. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/nlgwp.1993.tua.3.
Повний текст джерелаTibuleac, S., D. Shin, R. Magnusson, and C. Zuffada. "Guided-mode resonance filters generated with genetic algorithms." In Diffractive Optics and Micro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/domo.1998.dmb.3.
Повний текст джерелаAlferness, R. C., T. L. Koch, L. L. Buhl, F. Storz, F. Heismann, and M. J. R. Martyak. "Grating Assisted InGaAsP/InP Vertical Co-directional Coupler Filter." In Integrated and Guided Wave Optics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/igwo.1989.waa6.
Повний текст джерелаWilliams, William J. "Time-frequency-guided quadratic filters." In International Symposium on Optical Science and Technology, edited by Franklin T. Luk. SPIE, 2002. http://dx.doi.org/10.1117/12.455785.
Повний текст джерелаMorgan, Robert A., J. Allen Cox, Robert Wilke, and Carol Ford. "Applications of Guided-mode resonant filters to VCSELs." In Diffractive Optics and Micro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/domo.1998.dmb.1.
Повний текст джерелаMatsumoto, Masayuki. "Analysis of stabilizing effect of filters in dispersion-managed soliton systems." In Nonlinear Guided Waves and Their Applications. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/nlgw.1998.nwc.3.
Повний текст джерелаЗвіти організацій з теми "GUIDED FILTERS"
CORSCADDENorscadden, Louise, and Arpaporn Sutipatanasomboon. The Definite Guide to Flow Cytometry for Scientists. ConductScience, December 2022. http://dx.doi.org/10.55157/cs20221213.
Повний текст джерелаWang, Sean X., Vladimir Pelekhaty, Jolanta Rosemeier, Keith Li, and Robert Scheerer. A Miniature Biosensor Based on Guided Wave Technology and An Acousto-Optic Tunable Filter. Phase 2. Fort Belvoir, VA: Defense Technical Information Center, June 1997. http://dx.doi.org/10.21236/ada367934.
Повний текст джерелаChapman and Keshavarz-Valian. L51988 Development of Turbocharger-Reciprocating Engine Simulation (T-RECS). Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2002. http://dx.doi.org/10.55274/r0010947.
Повний текст джерелаZhao, George, Grang Mei, Bulent Ayhan, Chiman Kwan, and Venu Varma. DTRS57-04-C-10053 Wave Electromagnetic Acoustic Transducer for ILI of Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2005. http://dx.doi.org/10.55274/r0012049.
Повний текст джерелаBrug, William. Earth Filter Mathematica Toolbox V4 User’s Guide: Simplifying, Visualizing and Quick Modeling of All Fission Products from 60 Nuclear Sources. Office of Scientific and Technical Information (OSTI), July 2023. http://dx.doi.org/10.2172/1992246.
Повний текст джерела