Добірка наукової літератури з теми "Guanosine triphosphatase"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Guanosine triphosphatase".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Guanosine triphosphatase"

1

Dunn, P. P. J., A. R. Slabas, and A. L. Moore. "Characterization of cuckoo-pint (Arum maculatum) mitochondrial adenosine triphosphatases." Biochemical Journal 233, no. 3 (February 1, 1986): 839–44. http://dx.doi.org/10.1042/bj2330839.

Повний текст джерела
Анотація:
The catalytic properties of cuckoo-pint (Arum maculatum) mitochondrial adenosine triphosphatase have been analysed. The pH profile, effect of inhibitors, cold-stability and substrate specificity are characteristic of mitochondrial adenosine triphosphatases, although a high guanosine triphosphatase activity does appear to be restricted to plant mitochondrial adenosine triphosphatases. The kinetic properties of nucleoside 5′-triphosphate hydrolysis by membrane-bound and soluble enzymes have been studied by means of double-reciprocal plots. These plots were linear in the absence of an activating anion, which may indicate that the catalytic and/or regulatory mechanism of Arum maculatum adenosine triphosphatase is different from that of other enzyme preparations. It is suggested that the differences in subunit composition of plant and mammalian adenosine triphosphatases reported previously [Dunn, Slabas & Moore (1985) Biochem. J. 225, 821-824] are structurally, rather than functionally, significant.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dey, Sandip, Chiranjit Biswas, and Jayati Sengupta. "The universally conserved GTPase HflX is an RNA helicase that restores heat-damaged Escherichia coli ribosomes." Journal of Cell Biology 217, no. 7 (June 21, 2018): 2519–29. http://dx.doi.org/10.1083/jcb.201711131.

Повний текст джерела
Анотація:
The ribosome-associated GTPase HflX acts as an antiassociation factor upon binding to the 50S ribosomal subunit during heat stress in Escherichia coli. Although HflX is recognized as a guanosine triphosphatase, several studies have shown that the N-terminal domain 1 of HflX is capable of hydrolyzing adenosine triphosphate (ATP), but the functional role of its adenosine triphosphatase (ATPase) activity remains unknown. We demonstrate that E. coli HflX possesses ATP-dependent RNA helicase activity and is capable of unwinding large subunit ribosomal RNA. A cryo–electron microscopy structure of the 50S–HflX complex in the presence of nonhydrolyzable analogues of ATP and guanosine triphosphate hints at a mode of action for the RNA helicase and suggests the linker helical domain may have a determinant role in RNA unwinding. Heat stress results in inactivation of the ribosome, and we show that HflX can restore heat-damaged ribosomes and improve cell survival.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ahmadian, M. R., T. Zor, D. Vogt, W. Kabsch, Z. Selinger, A. Wittinghofer, and K. Scheffzek. "Guanosine triphosphatase stimulation of oncogenic Ras mutants." Proceedings of the National Academy of Sciences 96, no. 12 (June 8, 1999): 7065–70. http://dx.doi.org/10.1073/pnas.96.12.7065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pulk, Arto, and Jamie H. D. Cate. "Control of Ribosomal Subunit Rotation by Elongation Factor G." Science 340, no. 6140 (June 27, 2013): 1235970. http://dx.doi.org/10.1126/science.1235970.

Повний текст джерела
Анотація:
Protein synthesis by the ribosome requires the translocation of transfer RNAs and messenger RNA by one codon after each peptide bond is formed, a reaction that requires ribosomal subunit rotation and is catalyzed by the guanosine triphosphatase (GTPase) elongation factor G (EF-G). We determined 3 angstrom resolution x-ray crystal structures of EF-G complexed with a nonhydrolyzable guanosine 5′-triphosphate (GTP) analog and bound to the Escherichia coli ribosome in different states of ribosomal subunit rotation. The structures reveal that EF-G binding to the ribosome stabilizes switch regions in the GTPase active site, resulting in a compact EF-G conformation that favors an intermediate state of ribosomal subunit rotation. These structures suggest that EF-G controls the translocation reaction by cycles of conformational rigidity and relaxation before and after GTP hydrolysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Joseph, Hazel L., and Gregg Gundersen. "CDC42 guanosine triphosphatase mediates fibroblast migration after wounding." Journal of the American College of Surgeons 191, no. 4 (October 2000): S79—S80. http://dx.doi.org/10.1016/s1072-7515(00)00620-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Iversen, Lars, Hsiung-Lin Tu, Wan-Chen Lin, Sune M. Christensen, Steven M. Abel, Jeff Iwig, Hung-Jen Wu, et al. "Ras activation by SOS: Allosteric regulation by altered fluctuation dynamics." Science 345, no. 6192 (July 3, 2014): 50–54. http://dx.doi.org/10.1126/science.1250373.

Повний текст джерела
Анотація:
Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras–guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sprink, Thiemo, David J. F. Ramrath, Hiroshi Yamamoto, Kaori Yamamoto, Justus Loerke, Jochen Ismer, Peter W. Hildebrand, et al. "Structures of ribosome-bound initiation factor 2 reveal the mechanism of subunit association." Science Advances 2, no. 3 (March 2016): e1501502. http://dx.doi.org/10.1126/sciadv.1501502.

Повний текст джерела
Анотація:
Throughout the four phases of protein biosynthesis—initiation, elongation, termination, and recycling—the ribosome is controlled and regulated by at least one specified translational guanosine triphosphatase (trGTPase). Although the structural basis for trGTPase interaction with the ribosome has been solved for the last three steps of translation, the high-resolution structure for the key initiation trGTPase, initiation factor 2 (IF2), complexed with the ribosome, remains elusive. We determine the structure of IF2 complexed with a nonhydrolyzable guanosine triphosphate analog and initiator fMet-tRNAiMet in the context of the Escherichia coli ribosome to 3.7-Å resolution using cryo-electron microscopy. The structural analysis reveals previously unseen intrinsic conformational modes of the 70S initiation complex, establishing the mutual interplay of IF2 and initator transfer RNA (tRNA) with the ribsosome and providing the structural foundation for a mechanistic understanding of the final steps of translation initiation.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Danilenko, Mikhail P., Vera C. Turmukhambetova, Oleg V. Yesirev, Vsevolod A. Tkachuk, and Mikhail P. Panchenko. "Na+-K+-ATPase-G protein coupling in myocardial sarcolemma: separation and reconstitution." American Journal of Physiology-Lung Cellular and Molecular Physiology 261, no. 4 (October 1, 1991): L87—L91. http://dx.doi.org/10.1152/ajplung.1991.261.4.l87.

Повний текст джерела
Анотація:
The cholinergic agonist carbachol produces a concentration-dependent (half-maximum inhibitory concentration = 0.9 μM) decrease in the Na+-K+-adenosine triphosphatase (ATPase) activity of rabbit cardiac sarcolemma that occurred only in the presence of guanosine 5'-[ggr-thio]triphosphate (0.1 μM GTPggrS) and reached 40% inhibition. The inhibition is blocked by the muscarinic receptor antagonist atropine (10 μM) and is abolished in sarcolemma treated with pertussis toxin (20 μg/ml) in the presence of 100 μM NAD. GTPggrS alone reduces Na+-K+-ATPase activity by 45% (half-maximum inhibitory = 1 μM). The apparent affinity of the enzyme for GTPgγS is increased ≈10-fold in the presence of 1 μM carbachol. In sarcolemma solubilized with the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS, 10 mM), the GTPgγS-dependent inhibition of the Na+-K+-ATPase is also observed. Gel filtration of a CHAPS extract of sarcolemma on a Sepharose CL-6B column resulted in a separation of Na+-K+-ATPase and pertussis toxin-sensitive Gi activities. Na+-K+-ATPase activity that was separated on the column lost its sensitivity to the inhibitory action of guanine nucleotides. Inhibitory effects (20–30%) of guanosine 5'-triphosphate analogues [Gpp(NH)p, GTPggrS, or Gpp(CH2)p] at micromolar concentrations were restored when the Na+-K+-ATPase activity was recombined with fractions that contained the pertussis toxin-sensitive Gi protein(s). Similar concentrations of guanosine 5'-triphosphate, guanosine 5'-diphosphate, guanosine-5' -[beta-thio]diphosphate, or App(NH)p were unable to induce the Gi protein-mediated attenuation of Na+-K+-ATPase activity in the reconstitution system. These results suggest that a pertussis toxin-sensitive Gi protein may act as a transducer of the inhibitory hormonal signals on Na+-K+-ATPase in the sarcolemma. cardiac sarcolemma
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Danilenko, Mikhail P., Vera C. Turmukhambetova, Oleg V. Yesirev, Vsevolod A. Tkachuk, and Mikhail P. Panchenko. "Na+-K+-ATPase-G protein coupling in myocardial sarcolemma: separation and reconstitution." American Journal of Physiology-Heart and Circulatory Physiology 261, no. 4 (October 1, 1991): 87–91. http://dx.doi.org/10.1152/ajpheart.1991.261.4.87.

Повний текст джерела
Анотація:
The cholinergic agonist carbachol produces a concentration-dependent (half-maximum inhibitory concentration = 0.9 μM) decrease in the Na+-K+-adenosine triphosphatase (ATPase) activity of rabbit cardiac sarcolemma that occurred only in the presence of guanosine 5'-[-thio]triphosphate (0.1 μM GTPS) and reached 40% inhibition. The inhibition is blocked by the muscarinic receptor antagonist atropine (10 μM) and is abolished in sarcolemma treated with pertussis toxin (20 μg/ml) in the presence of 100 μM NAD. GTPS alone reduces Na+–K+-ATPaseactivity by 45% (half-maximum inhibitory = 1 μM). The apparent affinity of the enzyme for GTPS is increased 10-fold in the presence of 1 μM carbachol. In sarcolemma solubilized with the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS, 10 mM), the GTPS-dependent inhibition of the Na+-K+-ATPase is also observed. Gel filtration of a CHAPS extract of sarcolemma on a Sepharose CL–6B column resulted in a separation of Na+-K+-ATPase and pertussis toxin-sensitive Gi activities. Na+-K+-ATPase activity that was separated on the column lost its sensitivity to the inhibitory action of guanine nucleotides. Inhibitory effects (20–30%) of guanosine 5'-triphosphate analogues [Gpp(NH)p, GTPS, or Gpp(CH2)p] at micromolar concentrations were restored when the Na+-K+-ATPase activity was recombined with fractions that contained the pertussis toxin-sensitive Gi protein(s). Similar concentrations of guanosine 5'-triphosphate, guanosine 5'-diphosphate, guanosine-5'-[β-thio]diphosphate, or App(NH)p were unable to induce the Gi protein-mediated attenuation of Na+-K+-ATPase activity in the reconstitution system. These results suggest that a pertussis toxin-sensitive Gi protein may act as a transducer of the inhibitory hormonal signals on Na+-K+-ATPase in the sarcolemma. cardiac sarcolemma
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cambot, Marie, Sandra Aresta, Brigitte Kahn-Perlès, Jean de Gunzburg, and Paul-Henri Roméo. "Human Immune Associated Nucleotide 1: a member of a new guanosine triphosphatase family expressed in resting T and B cells." Blood 99, no. 9 (May 1, 2002): 3293–301. http://dx.doi.org/10.1182/blood.v99.9.3293.

Повний текст джерела
Анотація:
Abstract TAL-1 is a basic helix-loop-helix oncoprotein that is expressed in up to 30% of T-cell acute lymphoblastic leukemias but not in the T lineage. We have cloned a complementary DNA, called Human Immune Associated Nucleotide 1 (hIAN1), whose messenger RNA (mRNA) level expression is inversely correlated to the TAL-1 mRNA level in human leukemic T-cell lines. The hIAN1 encodes a 38-kd protein that belongs to a novel family of proteins conserved from plants to humans and characterized by motifs related to, but highly divergent from, the consensus motifs found in guanosine triphosphate (GTP)–binding proteins. Despite these divergent amino acids at positions involved in GTP/guanosine diphosphate (GDP) binding and guanosine triphosphatase (GTPase) activities, we found that hIAN1 specifically binds GDP (Kd = 0.47 μM) and GTP (Kd = 6 μM) and exhibits intrinsic GTPase activity. Among mature hematopoietic cells, hIAN1 is specifically expressed in resting T and B lymphocytes, and its expression level tremendously decreased at the protein but not the mRNA level during B- or T-lymphocyte activation, suggesting a specific role for this new type of GTPase during the immune response.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Guanosine triphosphatase"

1

Fischer, Jeffrey James. "Toward understanding the function of the universally conserved GTPase HflX." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Chemistry and Biochemistry, c2011, 2011. http://hdl.handle.net/10133/3313.

Повний текст джерела
Анотація:
Members of the ubiquitous GTPase superfamily regulate numerous cellular functions. A core group of eight GTPases are present in all domains of life: initiation factor 2, elongation factors Tu and G, protein secretion factors Ffh and FtsY, and the poorly characterized factors YihA, YchF, and HflX. While the first five members have well defined roles in the essential cellular process of protein synthesis, a role for YihA, YchF and HflX in this process has only recently been suggested. Here, a detailed kinetic analysis examining the interaction between HflX and its cellular partners is described. 50S and 70S ribosomal particles function as GTPase activating factors for HflX by stabilizing the nucleotide binding pocket of HflX, inducing a “GTPase activated” state. These data indicates a novel mode of GTPase activation, and suggests a role for HflX in regulating translation.
xii, 185 leaves : ill. (some col.) ; 28 cm
Стилі APA, Harvard, Vancouver, ISO та ін.
2

De, Arpan. "Role of RHO- Family Guanosine Triphosphatase Effectors in Filopodia Dynamics." Bowling Green State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1440176135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sinan, Canan P. School of Microbiology &amp Immunology UNSW. "Investigation into the biological function of the highly conserved GTPase LepA." Awarded by:University of New South Wales. School of Microbiology and Immunology, 2001. http://handle.unsw.edu.au/1959.4/18260.

Повний текст джерела
Анотація:
LepA is a highly conserved GTP-binding protein of unknown function. Its amino acid sequence reveals that it is a GTPase with homology to elongation factor G (EF-G). Previous data led to the hypothesis that LepA negatively regulates a posttranslational process such as protein folding. To examine this possibility, two sets of strains carrying mutated alleles encoding molecular chaperones in E. coli were transformed with a lepA expression vector. LepA had a dominant negative effect specifically in a dnaK25 strain whose product exhibits a 20-fold lower ATPase activity compared to wild-type DnaK. The expression of DnaK and other heat-shock proteins is repressed following temperature downshift. Aptly, it was found that temperature shift from 37 degrees Celcius to 15 degrees Celcius in cells harboring a lepA expression vector led to the induction of lepA and downstream lepB. Furthermore, like cold-shock genes, lepA and lepB are induced by sublethal doses of chloramphenicol, although it appears that lep operon induction is related to the antibiotic's action on the 50S ribosome. Due to LepA's insolubility, it could not be confirmed whether it interacts with DnaK, DnaJ or which other proteins it interacts with. Two-dimensional gel electrophoretic analysis revealed the absence of an isoform of OmpA in two lepA deletion strains. It is possible that LepA is involved in a folding pathway that is responsible for the conformation of this isoform. Phylogenetic analysis showed that while LepA is extremely well conserved and has been identified in all completed Bacterial and Eukaryal genomes, it is not present in the completed genomes of any Archaea. Sequence analysis revealed the existence of N-terminus mitochondrial import sequences in Eukaryal LepA orthologues. Additionally, A. thaliana contains a second LepA orthologue that clusters phylogenetically with Synechocystis LepA and has a chloroplastic import sequence. This indicates that plastidal LepA was acquired in A. thaliana (and probably in all plants) through endosymbiosis of an ancestral cyanobacterium. In constrast, mitochondrial LepA are not closely related to those of a- proteobacteria, believed to be the precursors of mitochondria. These findings imply that in sharp contrast to mitochondrial LepA, chloroplastic LepA is under strong evolutionary pressure to remain conserved.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bedekovic, Tina. "Regulation of the Rsr1 GTPase during polarized growth in Candida albicans." Thesis, University of Aberdeen, 2018. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=235973.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dubyk, Cara W. "The role of Rho and Rac GTPases in prostate cancer bone metastasis." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 96 p, 2009. http://proquest.umi.com/pqdweb?did=1889093521&sid=1&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pereira, Ryan A. "Functional analysis of two conserved regions of Escherichia coli elongation factor G as studied by site-directed mutagenesis /." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486549482669521.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Magie, Craig Robert. "Roles of the Rho1 small GTPase during development in Drosophila melanogaster /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/5261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Smith, Gregory R. "Identification and characterization of GTPase activating proteins for CDC42 /." view abstract or download file of text, 2001. http://wwwlib.umi.com/cr/uoregon/fullcit?p3024536.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of Oregon, 2001.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 90-98). Also available for download via the World Wide Web; free to University of Oregon users.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

De, Laurentiis Evelina Ines. "Kinetic analyses on two translational GTPases : LepA and EF-Tu." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Chemistry and Biochemistry, 2013. http://hdl.handle.net/10133/3450.

Повний текст джерела
Анотація:
Protein synthesis is an essential process for all living organisms and is an effective major target for current antibiotics. Elongation factor Tu (EF-Tu) is a highly conserved and essential protein that functions during protein synthesis. EF-Ts interacts with EF-Tu to help maintain a functionally active state of EF-Tu required for cell growth. Although EF-Ts is essential for Escherichia coli, its sequence is poorly conserved. LepA is a highly conserved protein within bacteria and has a similar structure to EF-Tu. In spite of this, LepA has been shown to be non-essential under ideal conditions and the function of LepA still remains elusive. An analysis on the structurally unique aspects of LepA, EF-Tu and EF-Ts was performed here in an effort to gain an understanding on the functions of these proteins. This knowledge, in combination with their unique structural components will provide important tools in developing new and effective antibiotics.
xiii, 177 leaves : col. ill. ; 29 cm
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ho, Peter D. "Regulation of morphology and intracellular calcium by Ras in rat neonatal cardiac myocytes /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p9984293.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Guanosine triphosphatase"

1

Joan, Marsh, and Goode Jamie, eds. The GTPase superfamily. Chichester: Wiley, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

K, Aktories, Dickey Burton F. 1953-, and Birnbaumer Lutz, eds. GTPases in biology. Berlin: Springer, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

1949-, Balch William Edward, Der Channing J, and Hall A, eds. Regulators and effectors of small GTPases: Rho family. Amsterdam: Elsevier, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ed, Manser, and Leung Thomas, eds. GTPase protocols: The Ras superfamily. Totowa, N.J: Humana Press, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Carlos, Lacal Juan, and McCormick Frank 1950-, eds. The Ras superfamily of GTPases. Boca Raton: CRC Press, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

1949-, Balch William Edward, Der Channing J. 1953-, and Hall A, eds. Small GTPases and their regulators. San Diego: Academic Press, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Media, Springer Science+Business, ed. Ras signaling: Methods and protocols. New York: Humana Press, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

A, Kahn Richard, ed. ARF family GTPases. Dordrecht: Kluwer Academic Publishers, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

1949-, Balch William Edward, Der Channing J, and Hall A, eds. Small GTPases in disease. London: Academic, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Corda, D., H. Hamm, and A. Luini. GTPase-controlled molecular machines. Rome: Ares-Serono Symposia Publications, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Guanosine triphosphatase"

1

Seybert, Anja, and John Ziebuhr. "Guanosine Triphosphatase Activity of the Human Coronavirus Helicase." In Advances in Experimental Medicine and Biology, 255–60. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1325-4_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schomburg, Dietmar, and Dörte Stephan. "Guanosine-triphosphate guanylyltransferase." In Enzyme Handbook, 693–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59025-2_126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Thiriet, Marc. "Guanosine Triphosphatases and Their Regulators." In Intracellular Signaling Mediators in the Circulatory and Ventilatory Systems, 465–646. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4370-4_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schomburg, Dietmar, and Dörte Stephan. "Guanosine-5’-triphosphate,3’-diphosphate pyrophosphatase." In Enzyme Handbook 16, 667–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58903-4_132.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gierschik, P., D. Sidiropoulos, K. Dieterich, and K. H. Jakobs. "Structure and Function of Signal-Transducing, Heterotrimeric Guanosine Triphosphate Binding Proteins." In Growth Factors, Differentiation Factors, and Cytokines, 395–413. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74856-1_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rossignol, Daniel P. "Possible Role for Guanosine 5′-Triphosphate Binding Proteins in Pyrethroid Activity." In ACS Symposium Series, 149–61. Washington, DC: American Chemical Society, 1995. http://dx.doi.org/10.1021/bk-1995-0591.ch009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Snyder, Floyd F., Jack P. Jenuth, Janet L. Noy, and Ernest Fung. "Mapping a Gene that Determines Erythrocytic Guanosine-5’-Triphosphate Concentration (Gtpc) on Mouse Chromosome 9." In Purine and Pyrimidine Metabolism in Man VIII, 735–38. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2584-4_153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Manning, David R., Feng Shen, and Natalia A. Riobo. "Evaluating the Activity of Smoothened Toward G Proteins Using [35S]Guanosine 5′-(3-O-thio)triphosphate ([35S]GTPγS)." In Methods in Molecular Biology, 35–44. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2772-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Muneta-Arrate, I., and R. Diez-Alarcia. "[35S]GTPγS (Guanosine-5′-O-(γ-thio)triphosphate-[35S]) Binding Scintillation Proximity Assay Experiments in Postmortem Brain Tissue." In Methods in Molecular Biology, 31–43. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3307-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Odagaki, Yuji. "Guanosine-5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) Binding/Immunoprecipitation Assay Using Magnetic Beads Coated with Anti-Gα Antibody in Mammalian Brain Membranes." In Co-Immunoprecipitation Methods for Brain Tissue, 97–107. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8985-0_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Guanosine triphosphatase"

1

Cheung, Tracy M., and George A. Truskey. "Aging Endothelial Cells Exhibit Decreased Response to Atheroprotective Shear Stress." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14402.

Повний текст джерела
Анотація:
As endothelial cells (ECs) age, morphological and physiological changes occur that may alter macromolecular transport and cause subsequent disease development. ECs in atherosclerotic regions exhibit high cell turnover and high levels of oxidative stress due to transient flow patterns and low and oscillating shear stress. This leads to replicative or stress-induced senescence. Resveratrol indirectly reverses senescence-associated phenotypes via competitive inhibition of cAMP-degrading phosphodiesterases (PDEs). Elevated levels of membrane-associated cAMP activate the cyclic AMP-regulated guanosine nucleotide exchange factor Epac1 which, in turn, leads to guanosine triphosphate (GTP) binding to the small G protein Rap1. GTP bound Rap1 activates the deacetylase SIRTUIN1 (SIRT1) but also causes changes to the cortical cytoskeleton and organization of VE-cadherin mechanosensor in the endothelial junctions (Figure 1).
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Achyuthan, K. E., M. J. Borowitz, M. A. Shuman, and C. S. Greenberg. "THROMBIN INDEPENDENT TRANSGLUTAMINASE IN VASCULAR CELLS AND TISSUES MAY PROVIDE AN ALTERNATE PATHWAY TOWARD CLOT STABILIZATION." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643775.

Повний текст джерела
Анотація:
Blood coagulation Factor XIIla (FXIIIa) is a thrombin activated transglutaminase (TG) that is involved in the final step of fibrin stabilization. FXIIIa inhibits fibrinolysis by crosslinking α-2-plasmin inhibitor (α-2-PI) to fibrin. A thrombin-independent TG has been identified in vascular cells and tissues -from human, rabbit, rat, porcine and bovine sources. The vascular TG had several properties similar to the well characterized guinea pig liver TG. Both enzymes had similar molecular weights (80-90 kDa) and similar chromatographic and electrophoretic properties. Both enzymes preferentially crosslinked α-chains of fibrinogen and their TG activities were independent of thrombin treatment. Finally, both enzymes reacted with polyclonal and monoclonal antibodies to guinea pig liver TG. However, the TG from cultured adult bovine aortic endothelial (ABAE) cells exhibited a novel Ca++/Mg++ dependence for enzymatic activity which was distinct from purified liver TG. TG from confluent ABAE cells and rabbit vascular smooth muscle cells had between 4-7 fold higher TG activity compared to rapidly dividing (nonconfluent) cells -from the same passage. The difference in activity was not due to enhanced degradation of TG catalyzed isopeptide bonds by nonconfluent cells Upon examination by immunoblots using anti-TG antibodies, the TG antigen in nonconfluent cells appeared extensively degraded. Furthermore, guanosine-5'-triphosphate (GTP) was nearly 3-fold more inhibitory to TG from confluent cells compared to nonconfluent cells. Proteases, GTP and divalent cation levels may be modulating intracellular TG activity. The TG antigen detected by imm-unohistochemical techniques was predominantly associated with endothelial and smooth muscle cells of arteries, veins, venules and capillaries. TG antigen also codistributed with fibronectin antigen along the hepatic sinusoids. The ABAE cell TG crosslinked α-2-PI to fibrinogen. The modified fibrinogen was 40-fold more resistant to plasminolysis compared to unmodified fibrinogen. In conclusion, the presence of a thrombin-independent TG in blood vessels may provide an alternate pathway to inhibit fibrinolysis and promote clot stabilization.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії