Добірка наукової літератури з теми "Ground structures"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ground structures".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Ground structures"

1

SHEINA, Tatiana V., and Elena A. AVDEEVA. "GABION AND REINFORCED GROUND STRUCTURES." Urban construction and architecture 7, no. 3 (September 15, 2017): 50–56. http://dx.doi.org/10.17673/vestnik.2017.03.9.

Повний текст джерела
Анотація:
In world practice, gabion structures are used more than 100 years. The on-currently a variety of gabion containers are widely used for a wide-range of applications of road construction. Years of experience shows that the utilization of the gabion structures is one of the highly eff ective and versatile way not only to strengthen the slopes, slopes of embankments and depressions, but also strengthening, stabilization and protection of exploited subgrade and devices podmostovyh cones, bridge supports, regulatory dams, drainage facilities.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Della Rocca, Michael. "Razing Structures to the Ground." Analytic Philosophy 55, no. 3 (August 26, 2014): 276–94. http://dx.doi.org/10.1111/phib.12048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hauck, J., and K. Mika. "Ground-state structures of polymers." Journal of Computational Chemistry 22, no. 16 (2001): 1944–55. http://dx.doi.org/10.1002/jcc.1144.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Okajima, Riku, Yuki Ohki, Shinji Taenaka, Shunsuke Moriyasu, Takeji Deji, Hideki Ueda, Katsumi Seki, and Taro Arikawa. "VERIFICATION OF SEEPAGE FLOW CALCULATION BASED ON FLUID-GROUND WEAK COUPLING ANALYSIS MODEL." Coastal Engineering Proceedings, no. 36 (December 30, 2018): 68. http://dx.doi.org/10.9753/icce.v36.structures.68.

Повний текст джерела
Анотація:
In order to evaluate destruction of coastal structure caused by tsunami, it is essential to establish coupling method of fluid and ground. Arikawa et. Al.(2009) developed the model using weak coupling method of fluid analysis and ground analysis (named as CADMAS-STR). It is performed by mutual communication between pressure on fluid side and displacement on structure side. Based on boundary pressure from the fluid side, the ground side calculates seepage flow analysis using Biot's equation. On the other hand, the fluid side converts the ground region to porosity and calculates the resistance force to calculate seepage on the fluid side. In this study, based on Yoshioka's research, we applied Dupuit-Forchheimer's rule in CADMAS-STR's fluid resistance calculation, and verify its validity by comparing it with physical experiment. Furthermore, we compared pore water pressure
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ohtomo, Keizo. "Load Characteristics of Ground Lateral Flow on In-Ground Structures." Doboku Gakkai Ronbunshu, no. 591 (1998): 283–97. http://dx.doi.org/10.2208/jscej.1998.591_283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gorskii, Yu A., P. A. Gavrilov, and A. I. Borovkov. "Virtual proving ground for aircraft structures." IOP Conference Series: Materials Science and Engineering 986 (December 12, 2020): 012020. http://dx.doi.org/10.1088/1757-899x/986/1/012020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Prokopyeva, T., V. Danilov, A. Dobroserdova, S. Kantorovich, and C. Holm. "Ground state structures in ferrofluid monolayers." Journal of Magnetism and Magnetic Materials 323, no. 10 (May 2011): 1298–301. http://dx.doi.org/10.1016/j.jmmm.2010.11.034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

de Ruiter, Peter C. "Ecosystem structures above and below ground." Trends in Ecology & Evolution 17, no. 12 (December 2002): 584–85. http://dx.doi.org/10.1016/s0169-5347(02)02594-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

De Natale, Giuseppe, and Folco Pingue. "Ground deformations in collapsed caldera structures." Journal of Volcanology and Geothermal Research 57, no. 1-2 (September 1993): 19–38. http://dx.doi.org/10.1016/0377-0273(93)90029-q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lee, Bok-Hee, Hyun-Uk Jung, and Young-Hwan Baek. "Ground Surface Potential Distribution near Ground Rod Associated with Soil Structures." Journal of the Korean Institute of Illuminating and Electrical Installation Engineers 21, no. 1 (January 31, 2007): 142–47. http://dx.doi.org/10.5207/jieie.2007.21.1.142.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Ground structures"

1

Trygstad, Steinar. "Structural Behaviour of Post Tensioned Concrete Structures : Flat Slab. Slabs on Ground." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Engineering Science and Technology, 2001. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-114.

Повний текст джерела
Анотація:

In this investigation strength and structural behaviour of prestressed concrete is studied with one full scale test of one flat slab, 16000 mm x 19000 mm, and three slabs on ground each 4000 mm x 4000 mm with thickness 150 mm. The flat slab was constructed and tested in Aalesund. This slab has nine circular columns as support, each with diameter 450 mm. Thickness of this test slab was 230 mm and there were two spans in each direction, 2 x 9000 mm in x-direction and 2 x 7500 mm in y-direction from centre to centre column. The slab was reinforced with twenty tendons in the middle column strip in y-direction and eight tendons in both outer column strips. In x-direction tendons were distributed with 340 mm distance. There were also ordinary reinforcement bars in the slab. Strain gauges were welded to this reinforcement, which together with the deflection measurements gives a good indication of deformation and strains in the structure.

At a live load of 6.5 kN/m2 shear failure around the central column occurred: The shear capacity calculated after NS 3473 and EuroCode2 was passed with 58 and 69 %, respectively. Time dependent and non-linear FE analyses were performed with the program system DIANA. Although calculated and measured results partly agree well, the test show that this type of structure is complicated to analyse by non-linear FEM.

Prestressed slabs on ground have no tradition in Norway. In this test one reinforced and two prestressed slabs on ground were tested and compared to give a basis for a better solution for slabs on ground. This test was done in the laboratory at Norwegian University of Science and Technology in Trondheim. The first slab is reinforced with 8 mm bars in both directions distributed at a distance of 150 mm in top and bottom. Slab two and three are prestressed with 100 mm2 tendons located in the middle of slab thickness, and distributed at a distance of 630 mm in slab two and 930 mm in slab three. Strain gauges were glued to the reinforcement in slab one and at top and bottom surface of all three slabs. In slab two and three there were four load cells on the tendons.

Each slab were loaded with three different load cases, in the centre of slab, at the edge and finally in the corner. This test shows that stiffness of sub-base is one of the most important parameters when calculating slabs on ground. Deflection and crack load level depends of this parameter. Since the finish of slabs on ground is important, it can be more interesting to find the load level when cracks start, than deflection for the slab. It is shown in this test that crack load level was higher in prestressed slabs than in reinforced slab. There was no crack in the top surface with load in the centre, but strain gauges in the bottom surface indicate that crack starts at a load of 28 kN in the reinforced slab, and 45 kN in the prestressed slabs. Load at the edge give a crack load of 30 kN in reinforced slab, 45 kN and 60 kN in prestressed slabs. The last load case gives crack load of 30 kN in reinforced slab, 107 kN and 75 kN in prestressed slabs. As for the flat slab, FE analyses were performed for all of the three slabs on ground, and analyses shows that a good understanding of parameters like stiffness of sub-base and tension softening model, is needed for correct result of the analyses.

Стилі APA, Harvard, Vancouver, ISO та ін.
2

Barlow, Mark S. (Mark Steven). "Modeling and ground modal identification of space structures." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/43247.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Annam, Kaushik. "Design of Bandstop Filters Using Defected Ground Structures." University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1438420662.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hassani, Nezhad Gashti E. (Ehsan). "Thermo-mechanical behaviour of ground-source thermo-active structures." Doctoral thesis, Oulun yliopisto, 2016. http://urn.fi/urn:isbn:9789526214061.

Повний текст джерела
Анотація:
Abstract High energy prices and new environmental policies have made geothermal energy increasingly popular. The EU, including Finland, aims to increase the use of renewable energy resources and reduce carbon emissions. Geothermal energy pile foundations, so-called energy piles, are considered a viable alternative technology for producing energy instead of traditional methods. Geothermal heat pump systems are economically efficient and renewable environmentally friendly energy production systems in which the ground acts as a heat source in winter and as a heat sink in summer. Energy piles are economical systems, as they act as dual-purpose structures in energy production and load transfer from buildings to the ground, avoiding extra expenses in ground boring solely for energy production. However, use of ground heat exchangers (GHE) for energy production in energy piles can result in temperature variations in the pile shaft and surrounding soil, in turn affecting the thermo-mechanical behaviour of pile shaft and soil in both structural and geotechnical terms. Despite large numbers of energy piles being installed, there is still a lack of reliable information and experience about the thermo-mechanical behaviour of these structures and their energy efficiency in cold climates. This thesis investigated the efficiency performance of energy pile foundations and their productivity in cold climates by considering different groundwater flow effects and short-term imbalanced seasonal thermal loadings. The structural and geotechnical bearing capacity of different types of energy piles fitted with GHEs were also evaluated, using numerical models, and the possibility of collapse due to use of thermal systems was examined. Use of the model to compare the performance of different GHEs in terms of their efficiency revealed that at a particular fluid flow rate, double U-tube systems had greater productivity than other systems tested. The results also indicated that using energy piles under medium groundwater flow can improve the productivity of systems by around 20% compared with saturated conditions with no groundwater flow. It was also concluded that in a design context, the structural bearing capacity of piles needs to be reduced due to the additional thermal stresses induced by heating/cooling pile operations
Tiivistelmä Kasvaneet energiakustannukset ja kiristyneet ympäristösäädökset ovat lisänneet geotermisten energiaratkaisujen suosiota. EU, mukaan lukien Suomi, on asettanut tavoitteekseen lisätä uusiutuvien energialähteiden käyttöä ja vähentää hiilidioksidipäästöjä. Geotermistä energiaa hyödyntävä paaluperustukset, niin kutsutut energiapaalut, tarjoavat uudenlaisen teknologian vähäpäästöisen energian tuottamiseen. Geotermiset lämpöpumppujärjestelmät, maalämpöpumput, ovat taloudellisia ja ympäristöystävällisiä energiantuotantomenetelmiä, jotka talviaikaan siirtävät maaperään varastoitunutta energiaa rakennuksen lämmittämiseen ja vastaavasti jäähdyttävät rakennusta kesällä siirtämällä lämpöä maaperään. Energiapaalujen taloudellisuus syntyy siitä, että ne pystyvät palvelemaan rakennusta kahdessa roolissa. Ne ovat osa rakennuksen energiajärjestelmää ja toimivat samalla myös kantavana rakenteena, joka siirtää rakennuksen kuormia perustuksilta maaperään. Lämpöpumppujärjestelmän kytkeminen paaluihin voi johtaa lämpötilan vaihteluun paaluissa sekä niitä ympäröivässä maaperässä, mikä puolestaan vaikuttaa paalujen ja maaperän lämpömekaanisiin, rakenteellisiin sekä geoteknisiin ominaisuuksiin. Vaikka energiapaaluja on asennettu jo paljon, ei paalujen lämpömekaanisesta käyttäytymisestä tai energiatehokkuudesta kylmien ilmastojen alueilla ole vielä paljoa tutkittua tietoa. Tässä väitöstutkimuksessa selvitettiin numeerisesti energiapaalujen rakennuspaikan pohjaolosuhteista riippuvaa tuottopotentiaalia Skandinaavisissa olosuhteissa ja ilmastossa. Tarkastelut kohdistuivat erityisesti pohjavesivirtauksen sekä vuodenaikojen ja ilman lämpötilan vaihtelun vaikutuksiin. Tutkimuksessa arvioitiin myös paalujen lämpötilan vaihtelujen vaikutuksia paalujen geoteknisiin ja rakenteellisiin ominaisuuksia sekä kestävyyteen. Numeeristen simulaatiotulosten perusteella betonipaaluun asennetun U-putkirakenteen avulla saavutetaan paras tuottopotentiaali. Tulokset osoittivat, että kohtalainen pohjaveden virtaus parantaa systeemin tuottoa noin 20 % verrattuna tilanteeseen, jossa vedellä kyllästetyssä maassa ei tapahdu pohjaveden virtausta. Analyysitulokset osoittavat myös, että paalujen lämpötilavaihteluista aiheutuvat lisäjännitykset vähentävät paalujen kantokykyä, mikä tulee ottaa huomioon paalujen mitoituksessa
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Crawford, James MacKenzie. "Ground testing and model updating for flexible space structures." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ63579.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Boxill, Lois E. C. "Foundation remediation of existing structures using ground densification methods." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/21792.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tsioulou, Alexandra. "Simulated ground motions for seismic risk assessment of structures." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10062053/.

Повний текст джерела
Анотація:
The recent advances in computational efficiency and the scarcity/absence of recorded ground motions for specific seismicity scenarios have led to an increasing interest in the use of ground motion simulations for seismic hazard analysis, structural demand assessment through response-history analysis, and ultimately seismic risk assessment. Two categories of ground motion simulations, physics-based and stochastic site-based are considered in this study. Physics-based ground motion simulations are generated using algorithms that solve the fault rupture and wave propagation problems and can be used for simulating past and future scenarios. Before being used with confidence, they need to be validated against records from past earthquakes. The first part of the study focuses on the development of rating/testing methodologies based on statistical and information theory measures for the validation of ground motion simulations obtained through an online platform for past earthquake events. The testing methodology is applied in a case-study utilising spectral-shape and duration-related intensity measures (IMs) as proxies for the nonlinear peak and cyclic structural response. Stochastic site-based ground motion simulations model the time-history at a site by fitting a statistical process to ground motion records with known earthquake and site characteristics. To be used in practice, it is important that the output IMs from the developed time-histories are consistent with these prescribed at the site of interest, something that is not necessarily guaranteed by the current models. The second part of the study presents a computationally efficient framework that addresses the modification of stochastic ground motion models for given seismicity scenarios with a dual goal of matching target IMs for specific structures, while preserving desired trends in the physical characteristics of the resultant time-histories. The modification framework is extended to achieve a match to the full probability model of the target IMs. Finally, the proposed modification is validated by comparison to seismic demand of hazard-compatible recorded ground motions. This study shows that ground motion simulation is a promising tool that can be used for many engineering applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chan, Elim. "Radiation and scattering of structures above perfect and imperfect ground." Thesis, University of Ottawa (Canada), 1988. http://hdl.handle.net/10393/5204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cropley, Ford. "Coherent vortical structures in the atmospheric boundary layer near ground." Thesis, Cranfield University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.281042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wu, Shuanglan. "Near-fault Ground Motions for Seismic Design of Bridge Structures." Kyoto University, 2018. http://hdl.handle.net/2433/232017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Ground structures"

1

Bouassida, Mounir, and Mohamed A. Meguid, eds. Ground Improvement and Earth Structures. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63889-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ground anchors and anchored structures. New York: Wiley, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Satyanarayana Reddy, C. N. V., Sireesh Saride, and A. Murali Krishna, eds. Ground Improvement and Reinforced Soil Structures. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-1831-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Establishment, Building Research, ed. Damage to structures from ground-bourne vibration. Watford: Building Research Establishment, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Coal mine structures. London: Chapman and Hall, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

R, Gold Ronald, United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., and Langley Research Center, eds. Suspension systems for ground testing large space structures. [Washington, D.C.?]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

International Conference on Ground Movements and Structures (4th 1991 University of Wales, College of Cardiff). 4th International Conference on Ground Movements and Structures. [Cardiff]: Division of Civil Engineering, School of Engineering, UWCC, in association with the Institution of Civil Engineers, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Evstaf'ev, Andrey, Aleksandr Maznev, Dmitriy Pegov, Anton Sychugov, and Vitaliy Vasil'ev. Structures and electrical equipment for high-speed ground transport. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1012744.

Повний текст джерела
Анотація:
The issues of the history of the development of high-speed transport, the principles of operation and the device of mechanical and electrical equipment, the features of maintenance and operation of modern high-speed trains are considered. Meets the requirements of the federal state educational standards of higher education of the latest generation. It is intended for students of railway transport universities studying in the specialty "Rolling Stock of railways" and the direction "Electric power and electrical Engineering", and can also be useful for engineering and technical workers associated with the operation and maintenance of high-speed trains.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hekal, Sherif, Ahmed Allam, Adel B. Abdel-Rahman, and Ramesh K. Pokharel. Compact Size Wireless Power Transfer Using Defected Ground Structures. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8047-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Crawford, James MacKenzie. Ground testing and model updating for flexible space structures. Toronto: Department of Aerospace Science and Engineering, University of Toronto, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Ground structures"

1

Millais, Malcolm. "Below-ground structures." In Building Structures, 183–202. Third edition. | New York : Routledge, 2017.: Routledge, 2017. http://dx.doi.org/10.4324/9781315652139-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Malhotra, Praveen K. "Ground Motions from Past Earthquakes." In Seismic Analysis of Structures and Equipment, 1–31. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57858-9_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Malhotra, Praveen K. "Ground Motions for Future Earthquakes." In Seismic Analysis of Structures and Equipment, 33–61. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57858-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Plum, Sabrina. "Emergency Medical Structures." In AD Reader Ground Rules for Humanitarian Design, 98–109. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119148784.ch6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sahoo, Jagdish Prasad, and R. Ganesh. "Active Earth Pressure on Retaining Walls with Unsaturated Soil Backfill." In Ground Improvement and Earth Structures, 1–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63889-8_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Benazzoug, Mouloud, and Ramdane Bahar. "Effect of the Addition of Chemical Stabilizers on the Characteristics of Clays." In Ground Improvement and Earth Structures, 121–32. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63889-8_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Farid, Ahmed Fady, and Youssef F. Rashed. "Boundary Element Analysis of Shear-Deformable Plates on Tension-Less Winkler Foundation." In Ground Improvement and Earth Structures, 133–45. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63889-8_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Reda, Marina, and Youssef F. Rashed. "Efficient BEM Formulation for Analysis of Plates on Tensionless Half Space." In Ground Improvement and Earth Structures, 146–56. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63889-8_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dang, Liet Chi, Cong Chi Dang, and Hadi Khabbaz. "Numerical Analysis on the Performance of Fibre Reinforced Load Transfer Platform and Deep Mixing Columns Supported Embankments." In Ground Improvement and Earth Structures, 157–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63889-8_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mane, A. S., Shubham Shete, and Ankush Bhuse. "Effect of Geofoam Inclusion on Deformation Behavior of Buried Pipelines in Cohesive Soils." In Ground Improvement and Earth Structures, 20–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63889-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Ground structures"

1

PI, W., J. YAMANE, and M. SMITH. "Generic aircraft ground operation simulation." In 27th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-989.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tatsuoka, Fumio, and Masaru Tateyama. "Geosynthetic-Reinforced Soil Structures for Railways in Japan." In International Conference on Ground Improvement & Ground Control. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-3559-3_101-0007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bouazza, Abdelmalek, Michel Wojnarowicz, and Taril El Malki. "Soil Improvement by Rigid Inclusions for Heavily Loaded Structures." In International Conference on Ground Improvement & Ground Control. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-3559-3_02-0209.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ausilio, Ernesto. "Bearing Capacity of Footings Resting on Georeinforced Soil Structures." In International Conference on Ground Improvement & Ground Control. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-3560-9_03-0306.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hong, Young Ki, and Rashaunda M. Henderson. "Spiral defected ground structures in grounded coplanar waveguide." In 2011 IEEE Radio and Wireless Symposium (RWS). IEEE, 2011. http://dx.doi.org/10.1109/rws.2011.5725499.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dunne, James, Dale Pitt, Edward White, and Ephrahim Garcia. "Ground demonstration of the Smart Inlet." In 41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-1630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kunz, Donald. "Nonlinear analysis of helicopter ground resonance." In 41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-1690.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Frankel, Arthur D. "Earthquake Ground Motions in Sedimentary Basins." In Structures Congress 2001. Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40558(2001)65.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

JANG, JINSEOK, and INDERJIT CHOPRA. "Ground and air resonance of bearingless rotors in hover." In 28th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-924.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gandhi, Farhan, Eric Hathaway, Farhan Gandhi, and Eric Hathaway. "Optimized aeroelastic couplings for alleviation of helicopter ground resonance." In 38th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Ground structures"

1

Lowe, C., J. Baker, and J. M. Journeay. Ground-magnetic investigations of Cenozoic structures in the northern Cascadia forearc, British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2001. http://dx.doi.org/10.4095/212010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yarlagadda, Shridhar. Virtual Manufacturing of Composite Structures for Ground Platforms, A DARPA Instant Foundry Adaptive Through Bits (iFAB) Program. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada566598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wei, X., J. Braverman, M. Miranda, M. E. Rosario, and C. J. Costantino. Depth-dependent Vertical-to-Horizontal (V/H) Ratios of Free-Field Ground Motion Response Spectra for Deeply Embedded Nuclear Structures. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1176998.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zevotek, Robin, Keith Stakes, and Joseph Willi. Impact of Fire Attack Utilizing Interior and Exterior Streams on Firefighter Safety and Occupant Survival: Full-Scale Experiments. UL Firefighter Safety Research Institute, January 2018. http://dx.doi.org/10.54206/102376/dnyq2164.

Повний текст джерела
Анотація:
As research continues into how fire department interventions affect fire dynamics in the modern fire environment, questions continue to arise on the impact and implications of interior versus exterior fire attack on both occupant survivability and firefighter safety. This knowledge gap and lack of previous research into the impact of fire streams has driven the need for further research into fire department interventions at structure fires with a focus on hose streams and suppression tactics. As the third report in the project “Impact of Fire Attack Utilizing Interior and Exterior Streams on Firefighter Safety and Occupant Survival”, this report expands upon the fire research conducted to date by analyzing how firefighting tactics, specifically suppression methods, affect the thermal exposure and survivability of both building occupants and firefighters in residential structures. • Part I: Water Distribution • Part II: Air Entrainment • Part III: Full-Scale Residential Fire Experiments. This report evaluates fire attack in residential structures through twenty-six full-scale structure fire experiments. Two fire attack methods, interior and transitional, were preformed at UL’s large fire lab in Northbrook, IL, in a single-story 1,600 ft2 ranch test structure utilizing three different ventilation configurations. To determine conditions within the test structure it was instrumented for temperature, pressure, gas velocity, heat flux, gas concentration, and moisture content. Ad- ditionally, to provide information on occupant burn injuries, five sets of instrumented pig skin were located in pre-determined locations in the structure. The results were analyzed to determine consistent themes in the data. These themes were evaluated in conjunction with a panel of fire service experts to develop 18 tactical considerations for fire ground operations. As you review the following tactical considerations it is important to utilize both these research results and your per- sonal experience to develop your department’s polices and implement these considerations during structural firefighting.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Stakes, Keith, and Joseph Willi. Study of the Fire Service Training Environment: Safety, Fidelity, and Exposure -- Acquired Structures. UL Firefighter Safety Research Institute, March 2019. http://dx.doi.org/10.54206/102376/ceci9490.

Повний текст джерела
Анотація:
Previous FSRI led research projects have focused on examining the fire environment with regards to current building construction methods, synthetic fuel loading, and best-practices in firefighting strategies and tactics. More than 50 experiments have been previously conducted utilizing furniture to produce vent-limited fire conditions, replicating the residential fire environment, and studying the methods of horizontal ventilation, vertical ventilation, and positive pressure attack. Tactical considerations generated from the research are intended to provide fire departments with information to evaluate their standard operating procedures and make improvements, if necessary, to increase the safety and effectiveness of firefighting crews. Unfortunately, there still exists a long standing disconnect between live-fire training and the fireground as evident by continued line of duty injury and death investigations that point directly to a lack of realistic yet safe training, which highlights a continued misunderstanding of fire dynamics within structures. The main objective of the Study of the Fire Service Training Environment: Safety, Fidelity, and Exposure is to evaluate training methods and fuel packages in several different structures commonly used across the fire service to provide and highlight considerations to increase both safety and fidelity. This report is focused on the evaluation of live-fire training in acquired structures. A full scale structure was constructed using a similar floor plan as in the research projects for horizontal ventilation, vertical ventilation, and positive pressure attack to provide a comparison between the modern fire environment and the training ground. The structure was instrumented which allowed for the quantification of fire behavior, the impact of various ventilation tactics, and provided the ability to directly compare these experiments with the previous research. Twelve full scale fire experiments were conducted within the test structure using two common training fuel packages: 1) pallets, and 2) pallets and oriented strand board (OSB). To compare the training fuels to modern furnishings, the experiments conducted were designed to replicate both fire and ventilation location as well as event timing to the previous research. Horizontal ventilation, vertical ventilation, and positive pressure attack methods were tested, examining the proximity of the vent location to the fire (near vs. far). Each ventilation configuration in this series was tested twice with one of the two training fuel loads. The quantification of the differences between modern furnishings and wood-based training fuel loads and the impact of different ventilation tactics is documented through a detailed comparison to the tactical fireground considerations from the previous research studies. The experiments were compared to identify how the type of fuel used in acquired structures impacts the safety and fidelity of live-fire training. The comparisons in this report characterized initial fire growth, the propensity for the fire to become ventilation limited, the fires response to ventilation, and peak thermal exposure to students and instructors. Comparisons examined components of both functional and physical fidelity. Video footage was used to assess the visual cues, a component of the fire environment that is often difficult to replicate in training due to fuel load restrictions. The thermal environment within the structure was compared between fuel packages with regards to the potential tenability for both students and instructors.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Harris, L. B., P. Adiban, and E. Gloaguen. The role of enigmatic deep crustal and upper mantle structures on Au and magmatic Ni-Cu-PGE-Cr mineralization in the Superior Province. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328984.

Повний текст джерела
Анотація:
Aeromagnetic and ground gravity data for the Canadian Superior Province, filtered to extract long wavelength components and converted to pseudo-gravity, highlight deep, N-S trending regional-scale, rectilinear faults and margins to discrete, competent mafic or felsic granulite blocks (i.e. at high angles to most regional mapped structures and sub-province boundaries) with little to no surface expression that are spatially associated with lode ('orogenic') Au and Ni-Cu-PGE-Cr occurrences. Statistical and machine learning analysis of the Red Lake-Stormy Lake region in the W Superior Province confirms visual inspection for a greater correlation between Au deposits and these deep N-S structures than with mapped surface to upper crustal, generally E-W trending, faults and shear zones. Porphyry Au, Ni, Mo and U-Th showings are also located above these deep transverse faults. Several well defined concentric circular to elliptical structures identified in the Oxford Stull and Island Lake domains along the S boundary of the N Superior proto-craton, intersected by N- to NNW striking extensional fractures and/or faults that transect the W Superior Province, again with little to no direct surface or upper crustal expression, are spatially associated with magmatic Ni-Cu-PGE-Cr and related mineralization and Au occurrences. The McFaulds Lake greenstone belt, aka. 'Ring of Fire', constitutes only a small, crescent-shaped belt within one of these concentric features above which 2736-2733 Ma mafic-ultramafic intrusions bodies were intruded. The Big Trout Lake igneous complex that hosts Cr-Pt-Pd-Rh mineralization west of the Ring of Fire lies within a smaller concentrically ringed feature at depth and, near the Ontario-Manitoba border, the Lingman Lake Au deposit, numerous Au occurrences and minor Ni showings, are similarly located on concentric structures. Preliminary magnetotelluric (MT) interpretations suggest that these concentric structures appear to also have an expression in the subcontinental lithospheric mantle (SCLM) and that lithospheric mantle resistivity features trend N-S as well as E-W. With diameters between ca. 90 km to 185 km, elliptical structures are similar in size and internal geometry to coronae on Venus which geomorphological, radar, and gravity interpretations suggest formed above mantle upwellings. Emplacement of mafic-ultramafic bodies hosting Ni-Cr-PGE mineralization along these ringlike structures at their intersection with coeval deep transverse, ca. N-S faults (viz. phi structures), along with their location along the margin to the N Superior proto-craton, are consistent with secondary mantle upwellings portrayed in numerical models of a mantle plume beneath a craton with a deep lithospheric keel within a regional N-S compressional regime. Early, regional ca. N-S faults in the W Superior were reactivated as dilatational antithetic (secondary Riedel/R') sinistral shears during dextral transpression and as extensional fractures and/or normal faults during N-S shortening. The Kapuskasing structural zone or uplift likely represents Proterozoic reactivation of a similar deep transverse structure. Preservation of discrete faults in the deep crust beneath zones of distributed Neoarchean dextral transcurrent to transpressional shear zones in the present-day upper crust suggests a 'millefeuille' lithospheric strength profile, with competent SCLM, mid- to deep, and upper crustal layers. Mechanically strong deep crustal felsic and mafic granulite layers are attributed to dehydration and melt extraction. Intra-crustal decoupling along a ductile décollement in the W Superior led to the preservation of early-formed deep structures that acted as conduits for magma transport into the overlying crust and focussed hydrothermal fluid flow during regional deformation. Increase in the thickness of semi-brittle layers in the lower crust during regional metamorphism would result in an increase in fracturing and faulting in the lower crust, facilitating hydrothermal and carbonic fluid flow in pathways linking SCLM to the upper crust, a factor explaining the late timing for most orogenic Au. Results provide an important new dataset for regional prospectively mapping, especially with machine learning, and exploration targeting for Au and Ni-Cr-Cu-PGE mineralization. Results also furnish evidence for parautochthonous development of the S Superior Province during plume-related rifting and cannot be explained by conventional subduction and arc-accretion models.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kennedy, R. P., R. H. Kincaid, and S. A. Short. Engineering characterization of ground motion. Task II. Effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects. Volume 2. Office of Scientific and Technical Information (OSTI), March 1985. http://dx.doi.org/10.2172/5817815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Misiak, T. ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/891529.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

T. Misiak. ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/862353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Costantino, C., and A. Philippacopoulos. Influence of ground water on soil-structure interaction. Office of Scientific and Technical Information (OSTI), December 1987. http://dx.doi.org/10.2172/5529456.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії