Добірка наукової літератури з теми "Ground based synthetic aperture radar"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ground based synthetic aperture radar".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Ground based synthetic aperture radar"
Pieraccini, Massimiliano, Neda Rojhani, and Lapo Miccinesi. "Compressive Sensing for Ground Based Synthetic Aperture Radar." Remote Sensing 10, no. 12 (December 5, 2018): 1960. http://dx.doi.org/10.3390/rs10121960.
Повний текст джерелаLee, Hoonyol, Younghun Ji, and Hyangsun Han. "Experiments on a Ground-Based Tomographic Synthetic Aperture Radar." Remote Sensing 8, no. 8 (August 18, 2016): 667. http://dx.doi.org/10.3390/rs8080667.
Повний текст джерелаHosseiny, Benyamin, Jalal Amini, and Hossein Aghababaei. "Structural displacement monitoring using ground-based synthetic aperture radar." International Journal of Applied Earth Observation and Geoinformation 116 (February 2023): 103144. http://dx.doi.org/10.1016/j.jag.2022.103144.
Повний текст джерелаHamdi, I., Y. Tounsi, M. Benjelloun, and A. Nassim. "Evaluation of the change in synthetic aperture radar imaging using transfer learning and residual network." Computer Optics 45, no. 4 (July 2021): 600–607. http://dx.doi.org/10.18287/2412-6179-co-814.
Повний текст джерелаLim, Chee Siong, Voon Chet Koo, and Yee Kit Chan. "The Integrated Simulation and Processing Tool for Ground Based Synthetic Aperture Radar (GBSAR)." Journal of Engineering Technology and Applied Physics 1, no. 2 (December 17, 2019): 20–24. http://dx.doi.org/10.33093/jetap.2019.1.2.5.
Повний текст джерелаSiong Lim, Chee, Voon Chet Koo, and Yee Kit Chan. "The Integrated Simulation and Processing Tool for Ground Based Synthetic Aperture Radar (GBSAR)." Journal of Engineering Technology and Applied Physics 1, no. 2 (December 17, 2019): 20–24. http://dx.doi.org/10.33093/jetap.2019.1.2.50.
Повний текст джерелаHu, Jiyuan, Jiming Guo, Yi Xu, Lv Zhou, Shuai Zhang, and Kunfei Fan. "Differential Ground-Based Radar Interferometry for Slope and Civil Structures Monitoring: Two Case Studies of Landslide and Bridge." Remote Sensing 11, no. 24 (December 4, 2019): 2887. http://dx.doi.org/10.3390/rs11242887.
Повний текст джерелаJirousek, Matthias, Sebastian Iff, Simon Anger, and Markus Peichl. "GigaRad – a multi-purpose high-resolution ground-based radar – system concept, error correction strategies and performance verification." International Journal of Microwave and Wireless Technologies 7, no. 3-4 (April 16, 2015): 443–51. http://dx.doi.org/10.1017/s175907871500063x.
Повний текст джерелаNoferini, L., M. Pieraccini, D. Mecatti, G. Macaluso, G. Luzi, and C. Atzeni. "Long term landslide monitoring by ground‐based synthetic aperture radar interferometer." International Journal of Remote Sensing 27, no. 10 (May 2006): 1893–905. http://dx.doi.org/10.1080/01431160500353908.
Повний текст джерелаAnghel, Andrei, Zegang Ding, Holger Nies, Otmar Loffeld, David Atencia, Samuel G. Huaman, Aleksander Medella, et al. "Compact Ground-Based Interferometric Synthetic Aperture Radar: Short-Range Structural Monitoring." IEEE Signal Processing Magazine 36, no. 4 (July 2019): 42–52. http://dx.doi.org/10.1109/msp.2019.2894987.
Повний текст джерелаДисертації з теми "Ground based synthetic aperture radar"
Jungner, Andreas. "Ground-Based Synthetic Aperture Radar Data processing for Deformation Measurement." Thesis, KTH, Geodesi och satellitpositionering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199677.
Повний текст джерелаDet här examensarbetet bygger på erfarenheter av arbete med en mark-baserad syntetisk apertur radar (GB-SAR) vid Geomatiska Institutet i Castelldefels (Barcelona, Spanien). SAR tekniken tillåter radar interferometri som är en vanligt förekommande teknik både på satellit och flygburna platformar. Det här arbetet beskriver instrumentets tekniska egenskaper samt behandlingen av data for att uppmäta deformationer. En stor del av arbetet har ägnats åt utveckling av GB-SAR data applikationer som koherens och interferogram beräkning, automatisering av bild matchning med skript, geokodning av GB-SAR data samt anpassning av befintliga SAR program till GB-SAR data. Slutligen har mätningar gjorts i fält for att samla in data nödvändiga for GB-SAR applikations utvecklingen samt få erfarenhet av instrumentets egenskaper och begränsningar. Huvudresultatet av fältmätningarna är att hög koherens nödvändig för interferometriska mätningar går att uppnå med relativ lång tid mellan mätepokerna. Flera faktorer som påverkar resultatet diskuteras, som det observerade områdets reflektivitet, radar bild matchningen och den illuminerande geometrin.
Preston, Stephen Joseph. "Design and Feasibility Testing for a Ground-based, Three-dimensional, Ultra-high-resolution, Synthetic Aperture Radar to Image Snowpacks." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2709.
Повний текст джерелаRödelsperger, Sabine [Verfasser], Carl [Akademischer Betreuer] Gerstenecker, and Matthias [Akademischer Betreuer] Becker. "Real-time Processing of Ground Based Synthetic Aperture Radar (GB-SAR) Measurements / Sabine Rödelsperger. Betreuer: Carl Gerstenecker ; Matthias Becker." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2011. http://d-nb.info/110610983X/34.
Повний текст джерелаFALABELLA, FRANCESCO. "Spaceborne and Terrestrial Synthetic Aperture Radar (SAR) Systems: Innovative Multi-temporal SAR Interferometric Methods and Applications." Doctoral thesis, Università degli studi della Basilicata, 2023. https://hdl.handle.net/11563/162987.
Повний текст джерелаMulti-temporal SAR interferometric (Mt-InSAR) techniques are nowadays mature tools to measure the temporal evolution of the Earth’s surface with millimetric accuracy. The reliability of crustal measurements is closely related to the goodness of the used Mt-InSAR algorithms in isolating the deformation-related signal from the overall signal, and this becomes increasingly complex as the noise levels of each interferogram increase. Canonical techniques are highly reliable in monitoring the displacement evolution of targets that are found to be largely stable or coherent over the entire period of analysis. Otherwise, when the scatterers are particularly affected by decorrelation problems, the obtained deformation estimates turn out to be corrupted and unreliable. Thus, there is a strong demand for new advanced Mt-InSAR processors that can provide accurate estimates of crustal deformation even in scenarios with more or less severe decorrelation problems. This thesis work focuses on the study of multi-temporal InSAR techniques applicable in both satellite and terrestrial case. Specifically, the canonical Mt-InSAR multigrid techniques for analyzing targets at the finest resolution grid will be discussed extensively highlighting their criticality in medium to low coherence areas, and in this context an innovative technique is proposed to better operate in decorrelated environments. The new method relies on efficient phase-unwrapping (PhU) operations performed at the native spatial scales. In particular, a set of multi-look (ML) interferograms is first unwrapped using conventional (or advanced) PhU algorithms at the regional scale. Subsequently, ML unwrapped interferograms are used to facilitate the PhU operations performed at the local scale (single-look). Specifically, the unwrapped multi-look interferograms are resampled to the single-look grid and modulo-2π subtracted to the single-look interferograms. These phase residuals are then unwrapped and added back to the multi-look resampled interferograms. To accomplish these operations, at variance with alternative multiscale methods, no (linear/nonlinear) models are used to fit the spatial high-pass phase residuals. Finally, the unwrapped single-look interferograms are properly inverted to retrieve the ground displacement time series using any small baseline (SB)-oriented multitemporal InSAR tool. Experimental results are performed by processing a set of SAR data acquired by the X-band COSMO-SkyMed sensor over the coastal area of Shanghai, China. Then, the focusing moves on the Weighted Least-squares (WLS) techniques applied within the InSAR framework for improving the performance of the phase unwrapping operations as well as for better conveying the inversion of sequences of unwrapped interferograms to generate ground displacement maps. In both cases, the identification of low-coherent areas, where the standard deviation of the phase is high, is requested. Therefore, a WLS method that extends the usability of the Mt-InSAR Small BAseline Subset (SBAS) algorithm in regions with medium-to-low coherence is presented. In particular, the proposed method relies on the adaptive selection and exploitation, pixel-by-pixel, of the medium-to-high coherent interferograms, only, so as to discard the noisy phase measurements. The selected interferometric phase values are then inverted by solving a WLS optimization problem. Noteworthy, the adopted, pixel-dependent selection of the “good” interferograms to be inverted may lead the available SAR data to be grouped into several disjointed subsets, which are then connected, exploiting the Weighted Singular Value Decomposition (WSVD) method. However, in some critical noisy regions, it may also happen that discarding of the incoherent interferograms may lead to rejecting some SAR acquisitions from the generated ground displacement time-series, at the cost of the reduced temporal sampling of the data measurements. Thus, variable-length ground displacement time-series are generated. The presented experiments have been carried out by applying the developed technique to a SAR dataset acquired by the COSMO-SkyMed (CSK) sensors over the Basilicata region, Southern Italy. In the continuation of the thesis work, the properties characterizing the phase non-closure of multi-look SAR interferograms are explored. Precisely, we study the implications of multi-look phase time incongruences on the generation of ground displacement time-series through SB Mt-InSAR methods. Our research clarifies how these phase inconsistencies can propagate through a time-redundant network of SB interferograms and contribute, along with PhU errors, to the quality of the generated ground displacement products. Moreover, we analyze the effects of short-lived phase bias signals that could happen in sequences of short baseline interferograms and propose a strategy for their mitigation. The developed methods have been tested using both simulated and real SAR data. The latter were collected by the Sentinel-1A/B (C-band) sensors over the study areas of Nevada state, U.S., and Sicily Island, Italy. After the development of algorithms for the satellite part, the work veers to ground-based SAR (GB-SAR) sensors. In this field, we propose a method for estimating and compensating the atmospheric phase screen (APS) in sets of SAR interferograms generated with a GB-SAR instrument. We address the presented approach’s physical, statistical, and mathematical framework by discussing its potential and limitations. In contrast with other existing algorithms that estimate the APS from the unwrapped phase signals, our methodology is based on the straightforward analysis of the wrapped phases, directly. Therefore, the method is not affected by any potential phase unwrapping mistake, and it is suitable for Mt-InSAR applications. The effects of the local topography, the decorrelation noise, and the ground deformation on the APS estimates are deeply studied. Experiments performed on simulated and real GB-SAR InSAR data corroborate the validity of the theory. In particular, the simulated results show that the method is beneficial in zones with medium-to-high topographic slopes (e.g., for Alpine and mountainous regions). Further, an interferometric SAR application for the study of three-dimensional (3-D) deformation through the joint and integrated use of satellite and ground SAR data is presented. More precisely, the interferometric data-combining technique exploits the innovative Mt-InSAR algorithms mentioned above, and allows obtaining 3-D mean displacement velocity maps at the finest spatial grid among the available data. In conclusion, also some interested satellite SAR applications in prevention and analysis of particular natural and human-induced disasters are given.
Penner, Justin Frank. "Development of a Grond-Based High-Resolution 3D-SAR System for Studying the Microwave Scattering Characteristics of Trees." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2889.
Повний текст джерелаSikaneta, Ishuwa C. "Detection of ground moving objects with synthetic aperture radar." Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/29164.
Повний текст джерелаWu, Di. "Sparsity driven ground moving target indication in synthetic aperture radar." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31329.
Повний текст джерелаWanwiwake, Tippawan. "A microsatellite based synthetic aperture radar (SAR)." Thesis, University of Surrey, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.548360.
Повний текст джерелаKnight, Chad P. "Convex Model-Based Synthetic Aperture Radar Processing." DigitalCommons@USU, 2014. https://digitalcommons.usu.edu/etd/2340.
Повний текст джерелаWest, Roger D. "Model-Based Stripmap Synthetic Aperture Radar Processing." DigitalCommons@USU, 2011. https://digitalcommons.usu.edu/etd/962.
Повний текст джерелаКниги з теми "Ground based synthetic aperture radar"
G, Douglas Dennis, and Risk Reduction Engineering Laboratory (U.S.), eds. A Study to determine the feasibility of using a ground-penetrating radar for more effective remediation of subsurface contamination. Cincinnati, Ohio: Risk Reduction Engineering Laboratory, Office of Research and Development, U.S. Environmental Protection Agency Washington, D.C., 1992.
Знайти повний текст джерелаSAR, United States Interagency Ad Hoc Working Group on. Operational use of civil space-based Synthetic Aperture Radar (SAR). [Washington, D.C.?: U.S. National Aeronautics and Space Administration, 1996.
Знайти повний текст джерелаPolidori, Laurent. Cartographie radar. Amsterdam: Gordon and Breach Science Publishers, 1997.
Знайти повний текст джерелаEuropean, Conference on Synthetic Aperture Radar (1996 Königswinter Germany). EUSAR '96, European Conference on Synthetic Aperture Radar, 26-28 March 1996, Königswinter, Germany. Berlin: VDE-Verlag, 1996.
Знайти повний текст джерелаDevelopment, North Atlantic Treaty Organization Advisory Group for Aerospace Research and. High resolution air- and spaceborne radar. Neuilly sur Seine, France: AGARD, 1989.
Знайти повний текст джерелаEuropean Conference on Synthetic Aperture Radar (5th 2004 Ulm, Germany). EUSAR 2004: Proceedings : 5th European Conference on Synthetic Aperture Radar : May 25-27, 2004, Ulm, Germany. Berlin: VDE-Verlag, 2004.
Знайти повний текст джерелаEuropean Conference on Synthetic Aperture Radar (5th 2004 Ulm, Germany). EUSAR 2004: Proceedings : 5th European Conference on Synthetic Aperture Radar : May 25-27, 2004, Ulm, Germany. Berlin: VDE-Verlag, 2004.
Знайти повний текст джерелаHeywood, Charles E. Ground displacements caused by aquifer-system water-level variations observed using interferometric synthetic aperture radar near Albuquerque, New Mexico. Albuquerque, N.M: U.S. Dept. of the Interior, U.S. Geological Survey, 2002.
Знайти повний текст джерелаHeywood, Charles E. Ground displacements caused by aquifer-system water-level variations observed using interferometric synthetic aperture radar near Albuquerque, New Mexico. Albuquerque, N.M: U.S. Geological Survey, Water Resources Division, 2002.
Знайти повний текст джерелаHeywood, Charles E. Ground displacements caused by aquifer-system water-level variations observed using interferometric synthetic aperture radar near Albuquerque, New Mexico. Albuquerque, N.M: U.S. Geological Survey, Water Resources Division, 2002.
Знайти повний текст джерелаЧастини книг з теми "Ground based synthetic aperture radar"
Galati, Gaspare. "From Ground to Space-Based Radar—The Adventure of the Italian Synthetic Aperture Radar." In 100 Years of Radar, 253–64. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-00584-3_8.
Повний текст джерелаWang, Yuexiang, Hongyong Yang, and Gaohuan Lv. "Ground Moving Target Indication Based on Doppler Spectrum in Synthetic Aperture Radar Images." In Lecture Notes in Electrical Engineering, 53–61. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6499-9_6.
Повний текст джерелаMitri, Hani, and Isaac Vennes. "Rock Slope Surface Monitoring Technologies with Focus on Ground-Based Synthetic Aperture Radar." In Mine Planning and Equipment Selection, 1251–63. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02678-7_121.
Повний текст джерелаHuntley, David, Drew Rotheram-Clarke, Roger MacLeod, Robert Cocking, Philip LeSueur, Bill Lakeland, and Alec Wilson. "Scalable Platform for UAV Flight Operations, Data Capture, Cloud Processing and Image Rendering of Landslide Hazards and Surface Change Detection for Disaster-Risk Reduction." In Progress in Landslide Research and Technology, Volume 1 Issue 2, 2022, 49–61. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18471-0_4.
Повний текст джерелаMarino, Armando. "Synthetic Aperture Radar." In A New Target Detector Based on Geometrical Perturbation Filters for Polarimetric Synthetic Aperture Radar (POL-SAR), 9–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27163-2_2.
Повний текст джерелаLopez-Sanchez, J. M., J. D. Ballester-Berman, F. Vicente-Guijalba, S. R. Cloude, H. McNairn, J. Shang, H. Skriver, et al. "Agriculture and Wetland Applications." In Polarimetric Synthetic Aperture Radar, 119–78. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56504-6_3.
Повний текст джерелаHajnsek, I., G. Parrella, A. Marino, T. Eltoft, M. Necsoiu, L. Eriksson, and M. Watanabe. "Cryosphere Applications." In Polarimetric Synthetic Aperture Radar, 179–213. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56504-6_4.
Повний текст джерелаSemenov, Alexander, Maciej Rysz, and Garrett Demeyer. "Synthetic Aperture Radar Image Based Navigation Using Siamese Neural Networks." In Synthetic Aperture Radar (SAR) Data Applications, 79–89. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-21225-3_4.
Повний текст джерелаKumar, Anil, Rajat Garg, and Shashi Kumar. "Implementation of Neural Network-Based Classification Models on Multifrequency Band SAR Dataset." In Spaceborne Synthetic Aperture Radar Remote Sensing, 107–21. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003204466-5.
Повний текст джерелаKumar, Vinay, Nyamaa Tserendulam, and Rajat Subhra Chatterjee. "Scatterer-Based Deformation Monitoring Induced Due to Coal Mining by DInSAR Techniques." In Spaceborne Synthetic Aperture Radar Remote Sensing, 351–62. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003204466-16.
Повний текст джерелаТези доповідей конференцій з теми "Ground based synthetic aperture radar"
Schartel, Markus, Ralf Burr, Winfried Mayer, Nando Docci, and Christian Waldschmidt. "UAV-Based Ground Penetrating Synthetic Aperture Radar." In 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM). IEEE, 2018. http://dx.doi.org/10.1109/icmim.2018.8443503.
Повний текст джерелаYigit, Enes, Atilla Unal, Adem Kaya, Sevket Demirci, Harun Cetinkaya, Caner Ozdemir, and Alexey Vertiy. "Millimeter-wave ground based synthetic aperture radar measurements." In 2011 XXXth URSI General Assembly and Scientific Symposium. IEEE, 2011. http://dx.doi.org/10.1109/ursigass.2011.6050826.
Повний текст джерелаSilvestru, Nicusor Ciprian, Mirel Paun, and Razvan D. Tamas. "Software-defined ground-based synthetic aperture radar interferometry." In Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies XI, edited by Marian Vladescu, Ionica Cristea, and Razvan D. Tamas. SPIE, 2023. http://dx.doi.org/10.1117/12.2642460.
Повний текст джерелаHe, Qian, Cheng Hu, Shouchang Guo, Weiming Tian, and Yunkai Deng. "Image enhancement based on lognormal distribution in ground-based synthetic aperture radar." In 2016 CIE International Conference on Radar (RADAR). IEEE, 2016. http://dx.doi.org/10.1109/radar.2016.8059215.
Повний текст джерелаPieraccini, Massimiliano, Neda Rojhani, and Lapo Miccinesi. "Ground Based Synthetic Aperture Radar with 3D Imaging Capability." In 2018 15th European Radar Conference (EuRAD). IEEE, 2018. http://dx.doi.org/10.23919/eurad.2018.8546555.
Повний текст джерелаQi, Lin, Mingzhi Zhang, Weixian Tan, Pingping Huang, Wei Xu, and Yaolong Qi. "Slope Sliding Direction Estimate Based on Ground-based D-InSAR." In 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2019. http://dx.doi.org/10.1109/apsar46974.2019.9048484.
Повний текст джерелаPaun, Mirel. "Stepped-frequency software-defined ground-based synthetic aperture radar." In Advanced Topics in Optoelectronics, Microelectronics and Nanotechnologies 2020, edited by Marian Vladescu, Ionica Cristea, and Razvan D. Tamas. SPIE, 2020. http://dx.doi.org/10.1117/12.2570389.
Повний текст джерелаWang, Suyun, Weike Feng, Kazutaka Kikuta, Grigory Chernyak, and Motoyuki Sato. "Ground-Based Bistatic Polarimetric Interferometric Synthetic Aperture Radar System." In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019. http://dx.doi.org/10.1109/igarss.2019.8900455.
Повний текст джерелаAllen, Christopher, John Paden, David Dunson, and Prasad Gogineni. "Ground-based multi-channel synthetic-aperture radar for mapping the ice-bed interface." In 2008 IEEE Radar Conference (RADAR). IEEE, 2008. http://dx.doi.org/10.1109/radar.2008.4720992.
Повний текст джерелаYing, Liu, Zhuang long, Hao Ming, Nie Xin, and Nie Song. "Ground Moving Target Imaging Based on Joint CSI-MD Method." In 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2019. http://dx.doi.org/10.1109/apsar46974.2019.9048343.
Повний текст джерелаЗвіти організацій з теми "Ground based synthetic aperture radar"
John Kirk. Signal based motion compensation for synthetic aperture radar. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/764587.
Повний текст джерелаMatzner, Shari. Model-Based Information Extraction From Synthetic Aperture Radar Signals. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.248.
Повний текст джерелаDogaru, Traian. Model-Based Radar Power Calculations for Ultra-Wideband (UWB) Synthetic Aperture Radar (SAR). Fort Belvoir, VA: Defense Technical Information Center, June 2013. http://dx.doi.org/10.21236/ada583569.
Повний текст джерелаDudley, J. P., and S V Samsonov. The Government of Canada automated processing system for change detection and ground deformation analysis from RADARSAT-2 and RADARSAT Constellation Mission Synthetic Aperture Radar data: description and user guide. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2020. http://dx.doi.org/10.4095/327790.
Повний текст джерелаDudley, J. P., and S. V. Samsonov. Système de traitement automatisé du gouvernement canadien pour la détection des variations et l'analyse des déformations du sol à partir des données de radar à synthèse d'ouverture de RADARSAT-2 et de la mission de la Constellation RADARSAT : description et guide de l'utilisateur. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/329134.
Повний текст джерелаDudley, J. P., and S. V. Samsonov. SAR interferometry with the RADARSAT Constellation Mission. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329396.
Повний текст джерелаWerle, D. Radar remote sensing for application in forestry: a literature review for investigators and potential users of SAR data in Canada. Natural Resources Canada/CMSS/Information Management, 1989. http://dx.doi.org/10.4095/329188.
Повний текст джерелаGround displacements caused by aquifer-system water-level variations observed using interferometric synthetic aperture radar near Albuquerque, New Mexico. US Geological Survey, 2002. http://dx.doi.org/10.3133/wri024235.
Повний текст джерела