Добірка наукової літератури з теми "Graphons de probabilités"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Graphons de probabilités".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Graphons de probabilités"
McMillan, Audra, and Adam Smith. "When is non-trivial estimation possible for graphons and stochastic block models?‡." Information and Inference: A Journal of the IMA 7, no. 2 (August 23, 2017): 169–81. http://dx.doi.org/10.1093/imaiai/iax010.
Повний текст джерелаHATAMI, HAMED, and SERGUEI NORINE. "The Entropy of Random-Free Graphons and Properties." Combinatorics, Probability and Computing 22, no. 4 (May 16, 2013): 517–26. http://dx.doi.org/10.1017/s0963548313000175.
Повний текст джерелаBackhausz, Ágnes, and Dávid Kunszenti-Kovács. "On the dense preferential attachment graph models and their graphon induced counterpart." Journal of Applied Probability 56, no. 2 (June 2019): 590–601. http://dx.doi.org/10.1017/jpr.2019.34.
Повний текст джерелаKalampakas, Antonios. "Graph Automata and Graph Colorability." European Journal of Pure and Applied Mathematics 16, no. 1 (January 29, 2023): 112–20. http://dx.doi.org/10.29020/nybg.ejpam.v16i1.4629.
Повний текст джерелаZhang, Yuan, Elizaveta Levina, and Ji Zhu. "Estimating network edge probabilities by neighbourhood smoothing." Biometrika 104, no. 4 (September 15, 2017): 771–83. http://dx.doi.org/10.1093/biomet/asx042.
Повний текст джерелаShi, Tan, Qing Peng, Zhitong Bai, Fei Gao, and Igor Jovanovic. "Proton irradiation of graphene: insights from atomistic modeling." Nanoscale 11, no. 43 (2019): 20754–65. http://dx.doi.org/10.1039/c9nr06502d.
Повний текст джерелаPeng, Songang, Zhi Jin, Dayong Zhang, Jingyuan Shi, Yanhui Zhang, and Guanghui Yu. "Evidence of electric field-tunable tunneling probability in graphene and metal contact." Nanoscale 9, no. 27 (2017): 9520–28. http://dx.doi.org/10.1039/c7nr02502e.
Повний текст джерелаYoder, J. W., E. Littell, and B. T. Williams. "Probability Graphics Support for Medical Reasoning." Methods of Information in Medicine 32, no. 03 (1993): 229–32. http://dx.doi.org/10.1055/s-0038-1634928.
Повний текст джерелаVANTAGGI, BARBARA. "CONDITIONAL INDEPENDENCE STRUCTURES AND GRAPHICAL MODELS." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11, no. 05 (October 2003): 545–71. http://dx.doi.org/10.1142/s0218488503002326.
Повний текст джерелаRaturi, Ashish, and Sudhanshu Choudhary. "Simulation Study on Understanding the Spin Transport in MgO Adsorbed Graphene Based Magnetic Tunnel Junction." SPIN 06, no. 03 (September 2016): 1650011. http://dx.doi.org/10.1142/s2010324716500119.
Повний текст джерелаДисертації з теми "Graphons de probabilités"
Weibel, Julien. "Graphons de probabilités, limites de graphes pondérés aléatoires et chaînes de Markov branchantes cachées." Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1031.
Повний текст джерелаGraphs are mathematical objects used to model all kinds of networks, such as electrical networks, communication networks, and social networks. Formally, a graph consists of a set of vertices and a set of edges connecting pairs of vertices. The vertices represent, for example, individuals, while the edges represent the interactions between these individuals. In the case of a weighted graph, each edge has a weight or a decoration that can model a distance, an interaction intensity, or a resistance. Modeling real-world networks often involves large graphs with a large number of vertices and edges.The first part of this thesis is dedicated to introducing and studying the properties of the limit objects of large weighted graphs : probability-graphons. These objects are a generalization of graphons introduced and studied by Lovász and his co-authors in the case of unweighted graphs. Starting from a distance that induces the weak topology on measures, we define a cut distance on probability-graphons. We exhibit a tightness criterion for probability-graphons related to relative compactness in the cut distance. Finally, we prove that this topology coincides with the topology induced by the convergence in distribution of the sampled subgraphs. In the second part of this thesis, we focus on hidden Markov models indexed by trees. We show the strong consistency and asymptotic normality of the maximum likelihood estimator for these models under standard assumptions. We prove an ergodic theorem for branching Markov chains indexed by trees with general shapes. Finally, we show that for a stationary and reversible chain, the line graph is the tree shape that induces the minimal variance for the empirical mean estimator among trees with a given number of vertices
Selig, Thomas. "Convergence de cartes et tas de sable." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0286/document.
Повний текст джерелаThis Thesis studies various problems located at the boundary between Combinatorics and Probability Theory. It is formed of two independent parts. In the first part, we study the asymptotic properties of some families of \maps" (from a non traditional viewpoint). In thesecond part, we introduce and study a natural stochastic extension of the so-called Sandpile Model, which is a dynamic process on a graph. While these parts are independent, they exploit the same thrust, which is the many interactions between Combinatorics and Discrete Probability, with these two areas being of mutual benefit to each other. Chapter 1 is a general introduction to such interactions, and states the main results of this Thesis. Chapter 2 is an introduction to the convergence of random maps. The main contributions of this Thesis can be found in Chapters 3, 4 (for the convergence of maps) and 5 (for the Stochastic Sandpile model)
Budzinski, Thomas. "Cartes aléatoires hyperboliques." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS426/document.
Повний текст джерелаThis thesis falls into the theory of random planar maps, which has been active in the last fifteen years, and more precisely into the study of hyperbolic models.We are first interested in a model of dynamical random triangulations based on edge-flips, where we prove a lower bound on the mixing time.In the rest of this thesis, the main objects that we study are the random hyperbolic triangulations called PSHT. These are hyperbolic variants of the Uniform Infinite Planar Triangulation (UIPT), and were introduced by Nicolas Curien in 2014. We first establish a near-critical scaling limit result: if we let the hyperbolicity parameter go to its critical value at the same time as the distances are renormalized, the PSHT converge to a random metric space that we call the hyperbolic Brownian plane. We also study precise metric properties of the PSHT and of the hyperbolic Brownian plane, such as the structure of their infinite geodesics. We obtain as well new properties of the Poisson boundary of the PSHT.Finally, we are interested in another natural model of hyperbolic random maps: supercritical causal maps, which are obtained from supercritical Galton--Watson trees by adding edges between vertices at the same height. We establish metric hyperbolicity results about these maps, as well as properties of the simple random walk (including a positive speed result). Some of the properties we obtain are robust, and may be generalized to any planar map containing a supercritical Galton--Watson tree
Ravelomanana, Vlady. "Graphes multicycliques étiquetés : aspects combinatoires et probabilistes." Amiens, 2000. http://www.theses.fr/2000AMIE0122.
Повний текст джерелаBroutin, Nicolas. "Random trees, graphs and recursive partitions." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00842019.
Повний текст джерелаArbres aléatoires uniformes. Il s'agit ici de mieux comprendre un objet limite essentiel, l'arbre continu brownien (CRT). Je présente quelques résultats de convergence pour des modèles combinatoires ''non-branchants'' tels que des arbres sujets aux symétries et les arbres à distribution de degrés fixée. Je décris enfin une nouvelle décomposition du CRT basée sur une destruction partielle.
Graphes aléatoires. J'y décris la construction algorithmique de la limite d'échel-le des graphes aléatoires du modèle d'Erdös--Rényi dans la zone critique, et je fais le lien avec le CRT et donne des constructions de l'espace métrique limite. Arbres couvrant minimaux. J'y montre qu'une connection avec les graphes aléatoires permet de quantifier les distances dans un arbre convrant aléatoire. On obtient non seulement l'ordre de grandeur de l'espérance du diamètre, mais aussi la limite d'échelle en tant qu'espace métrique mesuré. Partitions récursives. Sur deux exemples, les arbres cadrant et les laminations du disque, je montre que des idées basées sur des théorèmes de point fixe conduisent à des convergences de processus, où les limites sont inhabituelles, et caractérisées par des décompositions récursives.
El, Maftouhi Abdelhakim. "Méthodes probabilistes en combinatoire et théorie des graphes." Paris 11, 1994. http://www.theses.fr/1994PA112408.
Повний текст джерелаMurat, Cécile. "Les problèmes d'optimisation combinatoire probabilistes dans les graphes." Paris 9, 1997. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1997PA090054.
Повний текст джерелаPanafieu, Elie de. "Combinatoire analytique des graphes, hypergraphes et graphes inhomogènes." Paris 7, 2014. http://www.theses.fr/2014PA077167.
Повний текст джерелаWe investigate two graph-like models: the non-uniform hypergraphs and the inhomogeneous graphs. They are close to the models defined by Darling and Norris (2004) and Sôderberg (2002). We enumerate them and derive structure information before and near the birth of the giant component. The inhomogeneous graph model proves to be a convenient framework for the modeling of several tractable constraint satisfaction problems (CSP), such as the 2-colorability problem, the satisfiability of 2-Xor formulas and of quantified 2-Xor formulas. We link the probability of satisfiability of those problems to the enumeration of inhomogeneous graphs. As an application, proofs of old and new phase transition results are derived in a unified framework. Finally, we derive a new simple proof for the asymptotic number of connected multigraphs with a number of edges proportional to the number of vertices. This result was first derived for simple graphs by Bender, Canfield and McKay (1990). The main tool of this thesis is analytic combinatorics, as defined by Flajolet and Sedgewick in their book (2009)
Hutchcroft, Thomas. "Discrete probability and the geometry of graphs." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62595.
Повний текст джерелаScience, Faculty of
Mathematics, Department of
Graduate
Mercier, Lucas. "Grands graphes et grands arbres aléatoires : analyse du comportement asymptotique." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0028/document.
Повний текст джерелаThis thesis is dedicated to the study of the asymptotic behavior of some large random graphs and trees. First is studied a random graph model introduced by Bo Söderberg in 2002. One chapter of this manuscript is devoted to the study of the asymptotic behavior of the size of the connected components near the critical window, linking it to the lengths of excursion of a Brownian motion with parabolic drift. The next chapter talks about a random graph process suggested by Itai Benjamini, defined as follows: edges are independently added at a fixe rate. Whenever a vertex reaches degree k, all adjacent edges are removed. This process is non-increasing, preventing the use of some commonly used methods. By using local limits, in the spirit of the PWIT, we were able to prove the presence (resp. absence) of a giant component at some stages of the process when k>=5 (resp. k<=3). In the case k=4, these results allows to link the presence (resp. absence) of a giant component to the supercriticality (resp. criticality or subcriticality) of an associated branching process. In the last chapter, the height of random Lyndon tree is studied, and is proven to be approximately c ln n, in which c=5.092... the solution of an optimization problem. To obtain this result, we couple the Lyndon tree with a Yule tree, then studied with the help of branching walks and large deviations
Книги з теми "Graphons de probabilités"
Grimmett, Geoffrey. Probability on graphs: Random processes on graphs and lattices. Cambridge: Cambridge University Press, 2010.
Знайти повний текст джерелаWingard-Nelson, Rebecca. Graphing and probability word problems: No problem! Berkeley Heights, NJ: Enslow Publishers, 2011.
Знайти повний текст джерелаWingard-Nelson, Rebecca. Graphing and probability word problems: No problem! Berkeley Heights, NJ: Enslow Publishers, 2011.
Знайти повний текст джерелаInternational Seminar on Random Graphs and Probabilistic Methods in Combinatorics. (2nd 1985 Uniwersytet im. Adama Mickiewicza w Poznaniu. Instytut Matematyki). Random graphs '85. New York: North-Holland, 1987.
Знайти повний текст джерелаYates, Daniel S. The practice of statistics: TI-83 graphing calculator enhanced. New York: W.H. Freeman, 1999.
Знайти повний текст джерела1947-, Weisberg Sanford, ed. Applied regression including computing and graphics. New York: Wiley, 1999.
Знайти повний текст джерелаPalka, Zbigniew. Asymptotic properties of random graphs. Warszawa: Państwowe Wydawn. Nauk., 1988.
Знайти повний текст джерелаRossman, Allan J. Workshop statistics: Discovery with data and the graphing calculator. 2nd ed. Emeryville, CA: Key College Pub., 2001.
Знайти повний текст джерелаL, Chance Beth, and Von Oehsen J. Barr, eds. Workshop statistics: Discovery with data and the graphing calculator. 3rd ed. Emeryville, CA: Key College Pub., 2008.
Знайти повний текст джерелаBarr, Von Oehsen J., ed. Workshop statistics: Discovery with data and the graphing calculator. New York: Springer, 1997.
Знайти повний текст джерелаЧастини книг з теми "Graphons de probabilités"
Bonato, Anthony. "Graphs and probability." In Graduate Studies in Mathematics, 1–17. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/gsm/089/01.
Повний текст джерелаGodehardt, Erhard. "Probability Models of Classification." In Graphs as Structural Models, 97–114. Wiesbaden: Vieweg+Teubner Verlag, 1988. http://dx.doi.org/10.1007/978-3-322-96310-9_5.
Повний текст джерелаBrémaud, Pierre. "Random Graphs." In Discrete Probability Models and Methods, 255–86. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43476-6_10.
Повний текст джерелаDembo, Amir, Eyal Lubetzky, and Yumeng Zhang. "Empirical Spectral Distributions of Sparse Random Graphs." In Progress in Probability, 319–45. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60754-8_15.
Повний текст джерелаBrémaud, Pierre. "Random Walks on Graphs." In Discrete Probability Models and Methods, 185–214. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43476-6_8.
Повний текст джерелаBrémaud, Pierre. "Markov Fields on Graphs." In Discrete Probability Models and Methods, 215–53. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43476-6_9.
Повний текст джерелаdu Toit, S. H. C., A. G. W. Steyn, and R. H. Stumpf. "Graphics for Selecting a Probability Model." In Springer Texts in Statistics, 36–53. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-4950-4_3.
Повний текст джерелаStankiewicz, Olgierd, Krzysztof Wegner, and Marek Domanski. "Depth Estimation Based on Maximization of a Posteriori Probability." In Computer Vision and Graphics, 253–65. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46418-3_23.
Повний текст джерелаGodehardt, Erhard. "Probability Theory of Completely Labelled Random Multigraphs." In Graphs as Structural Models, 115–56. Wiesbaden: Vieweg+Teubner Verlag, 1988. http://dx.doi.org/10.1007/978-3-322-96310-9_6.
Повний текст джерелаBoutillier, Cédric, and Béatrice de Tilière. "Statistical Mechanics on Isoradial Graphs." In Probability in Complex Physical Systems, 491–512. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23811-6_20.
Повний текст джерелаТези доповідей конференцій з теми "Graphons de probabilités"
Igarashi, Daisuke, and Nobuaki Obata. "Asymptotic spectral analysis of growing graphs: odd graphs and spidernets." In Quantum Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc73-0-18.
Повний текст джерелаSalcedo, Audy, Jesús González, Amalio Sarco LIra, and Johnnalid González. "Statistical Literacy of Citizens: The Interpretation of Statistical Graphs." In Bridging the Gap: Empowering and Educating Today’s Learners in Statistics. International Association for Statistical Education, 2022. http://dx.doi.org/10.52041/iase.icots11.t7a1.
Повний текст джерелаLiang, Song, Nobuaki Obata, and Shuji Takahashi. "Asymptotic spectral analysis of generalized Erdős–Rényi random graphs." In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-16.
Повний текст джерелаPerju, Veaceslav, and Dorian Saranciuc. "Evaluation of the Multi-Algorithms Targets Recognition Systems." In 12th International Conference on Electronics, Communications and Computing. Technical University of Moldova, 2022. http://dx.doi.org/10.52326/ic-ecco.2022/cs.05.
Повний текст джерелаSingh, Dhruv, Jayathi Y. Murthy, and Timothy S. Fisher. "Spectral Detail of Phonon Conduction and Scattering in Graphene." In ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/ipack2011-52243.
Повний текст джерелаSarmin, Nor Haniza, Mustafa Anis El-sanfaz, and Sanaa Mohamed Saleh Omer. "Groups and graphs in probability theory." In ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS: Proceedings of 23rd Malaysian National Symposium of Mathematical Sciences (SKSM23). Author(s), 2016. http://dx.doi.org/10.1063/1.4954600.
Повний текст джерелаLiu, Ruiyi, Xiaohu Wu, and Zheng Cui. "Photon Tunneling via Coupling Graphene Plasmons With Phonon Polaritons of Hexagonal Boron Nitride in Reststrahlen Bands." In ASME 2021 Heat Transfer Summer Conference collocated with the ASME 2021 15th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/ht2021-62180.
Повний текст джерелаNolau, Izabel, and Gustavo Ferreira. "An alternative class of models to position social network groups in latent spaces." In Congresso Brasileiro de Inteligência Computacional. SBIC, 2023. http://dx.doi.org/10.21528/cbic2023-036.
Повний текст джерелаPalmieri, Francesco, Krishna Pattipati, Giovanni Di Gennaro, Amedeo Buonanno, and Martina Merola. "Multiple Agents Interacting via Probability Flows on Factor Graphs." In 14th International Conference on Applied Human Factors and Ergonomics (AHFE 2023). AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1003761.
Повний текст джерелаAvrachenkov, Konstantin, and Alexandra Borodina. "On the Escape Probability Estimation in Large Graphs." In 2019 24th Conference of Open Innovations Association (FRUCT). IEEE, 2019. http://dx.doi.org/10.23919/fruct.2019.8711919.
Повний текст джерелаЗвіти організацій з теми "Graphons de probabilités"
Alameda, Joseph. Probability recurrences on simple graphs in a forest building process. Ames (Iowa): Iowa State University, January 2019. http://dx.doi.org/10.31274/cc-20240624-1155.
Повний текст джерелаKriegel, Francesco. Learning description logic axioms from discrete probability distributions over description graphs (Extended Version). Technische Universität Dresden, 2018. http://dx.doi.org/10.25368/2022.247.
Повний текст джерела