Добірка наукової літератури з теми "GRAPHIDE OXIDE"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "GRAPHIDE OXIDE".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "GRAPHIDE OXIDE"

1

Liu, Hong Bo, Wu Ying Zhang, Feng Lin, and Hong Da Cao. "Comparison and Characterization of Two Preparation Methods of Graphene Oxide." Advanced Materials Research 989-994 (July 2014): 125–29. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.125.

Повний текст джерела
Анотація:
The graphene oxides were prepared form graphite by thermal expansion and ultrasonic dispersion. The structure of graphene oxides was characterized by Fourier transform infrared spectrometer (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD) and Raman spectra. The difference of structure of graphene oxides by two preparation methods was compared. The measurement of FTIR and XRD showed the graphite was completely oxidized. The graphene oxide prepared by thermal expansion would lose large number of active functional groups, such as hydroxyl, carboxyl group, et al. However, the graphene oxide prepared by ultrasonic dispersion can retain these active functional groups. These active functional groups will be benefit to chemically modify the graphene oxides and prepare the polymer/graphene nanocomposites.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yıldız, Kübra, and Muhammet Uzun. "Obtaining of Reduced Graphene Oxide from Graphite by using Hummer’s and Chemical Reduction Method." Academic Perspective Procedia 2, no. 3 (November 22, 2019): 601–5. http://dx.doi.org/10.33793/acperpro.02.03.59.

Повний текст джерела
Анотація:
In this study, graphene oxide (GO) was synthesized from graphite using modified Hummers method. According to other methods known in the literature, modified Hummers method; it is simpler and less costly in terms of process steps. In addition, it is safer and environmentally friendly than the Hummers method. Reduced Graphene Oxide (RGO) was obtained by reduction of graphene oxides (GO) synthesized by modified Hummers method. It is understood from the obtained results that GO is synthesized successfully from graphite powder by modified Hummers method and RGO is obtained successfully by reduction of graphene oxides (GO).
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Muzyka, Roksana, Sabina Drewniak, Tadeusz Pustelny, Marcin Sajdak, and Łukasz Drewniak. "Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy Statistical Analysis." Materials 14, no. 4 (February 6, 2021): 769. http://dx.doi.org/10.3390/ma14040769.

Повний текст джерела
Анотація:
In this paper, various graphite oxide (GO) and reduced graphene oxide (rGO) preparation methods are analyzed. The obtained materials differed in their properties, including (among others) their oxygen contents. The chemical and structural properties of graphite, graphite oxides, and reduced graphene oxides were previously investigated using Raman spectroscopy (RS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). In this paper, hierarchical clustering analysis (HCA) and analysis of variance (ANOVA) were used to trace the directions of changes of the selected parameters relative to a preparation method of such oxides. We showed that the oxidation methods affected the physicochemical properties of the final products. The aim of the research was the statistical analysis of the selected properties in order to use this information to design graphene oxide materials with properties relevant for specific applications (i.e., in gas sensors).
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yao, Yu Qin, Yin Jie Cen, Richard D. Sisson, and Jian Yu Liang. "A Synthesize Protocol for Graphene Nanosheets." Materials Science Forum 880 (November 2016): 3–6. http://dx.doi.org/10.4028/www.scientific.net/msf.880.3.

Повний текст джерела
Анотація:
Chemical synthesis is cheap and easy to be tailored. Reduction of graphite oxide to form graphene nanosheets is a necessary step that determines yield, quality, chemical and surface properties of graphene nanosheets. In this report, the reduction of graphite oxides by chemical and thermal methods has been employed to convert graphite oxide synthesized by the same wet chemical method using KMnO4 and H2O2. The characterization results from the two reduction methods indicate that a combination of wet oxidation of graphite and thermal reduction method is an efficient and environmental friendly way to produce graphene.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Strankowski, Michał, Damian Włodarczyk, Łukasz Piszczyk, and Justyna Strankowska. "Polyurethane Nanocomposites Containing Reduced Graphene Oxide, FTIR, Raman, and XRD Studies." Journal of Spectroscopy 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/7520741.

Повний текст джерела
Анотація:
Recently, graphene and other graphene-based materials have become an essential part of composite science and technology. Their unique properties are not only restricted to graphene but also shared with derivative compounds like graphene oxide, reduced graphene oxide, functionalized graphene, and so forth. One of the most structurally important materials, graphene oxide (GO), is prepared by the oxidation of graphite. Though removal of the oxide groups can create vacancies and structural defects, reduced graphene oxide (rGO) is used in composites as effective filler similar to GO. Authors developed a new polyurethane nanocomposite using a derivative of grapheme, thermally reduced graphene oxide (rGO), to modify the matrix of polyurethane elastomers, by rGO.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Drewniak, Sabina Elżbieta, and Łukasz Drewniak. "The influence of the type of graphite on the size of reduced graphene oxide." Photonics Letters of Poland 14, no. 2 (July 1, 2022): 34. http://dx.doi.org/10.4302/plp.v14i2.1153.

Повний текст джерела
Анотація:
Reduced graphene oxide is a very attractive material for sensor applications. It exhibits high conductivity at room temperature and high specific surface area. Since it can be produced in many ways, its properties can be influenced by the fabrication method. In this paper, we investigated the influence of graphite precursors (flake, scalar and synthetic) on the size of reduced graphene oxide. We have shown that the size of the precursor determines the size of the obtained rGO. We have noted that the larger graphite size, the larger rGO size. Full Text: PDF ReferencesR. Peng, Y. Li, T. Liu et al., "Reduced graphene oxide/SnO2@Au heterostructure for enhanced ammonia gas sensing", Chem. Phys. Lett., 737, 136829 (2019). CrossRef S. Pei and H. M. Cheng, "The reduction of graphene oxide", Carbon N. Y., 50, 9 (2012). CrossRef N. Sharma, V. Sharma, R. Vyas et al., "A new sustainable green protocol for production of reduced graphene oxide and its gas sensing properties", J. Sci. Adv. Mater. Devices, 4, 3 (2019) CrossRef R. Tarcan, O. Todor-Boer, I. Petrovai, C. Leordean, S. Astilean, I. Botiz, "Reduced graphene oxide today", J. Mater. Chem. C, 8, 4 (2020). CrossRef X. Jiao, Y. Qiu, L. Zhang, and X. Zhang, "Comparison of the characteristic properties of reduced graphene oxides synthesized from natural graphites with different graphitization degrees", RSC Adv., 7, 82 (2017). CrossRef J.A. Quezada-Renteria, C.O. Ania, L.F. Chazaro-Ruiz, J.R. Rangel-Mendez, "Influence of protons on reduction degree and defect formation in electrochemically reduced graphene oxide", Carbon N. Y., 149 (2019). CrossRef H. Gao, Y. Ma, P. Song, J. Leng, Q. Wang, "Characterization and cytocompatibility of 3D porous biomimetic scaffold derived from rabbit nucleus pulposus tissue in vitro", J. Mater. Sci. Mater. Electron., 32, 8 (2021). CrossRef A.T. Lawal, "Graphene-based nano composites and their applications. A review", Biosens. Bioelectron., 141, 111384, (2019). CrossRef E. Aliyev, V. Filiz, M.M. Khan, Y.J. Lee, C. Abetz, V. Abetz, "Structural Characterization of Graphene Oxide: Surface Functional Groups and Fractionated Oxidative Debris", Nanomaterials, 9, 8 (2019). CrossRef S. Sali, H.R. Mackey, A.A. Abdala, "Effect of Graphene Oxide Synthesis Method on Properties and Performance of Polysulfone-Graphene Oxide Mixed Matrix Membranes", Nanomaterials, 9, 5 (2019). CrossRef G. Lu, L.E. Ocola, J. Chen, "Reduced graphene oxide for room-temperature gas sensors", Nanotechnology, 20, 44 (2009). CrossRef C. Botas, P. Alvarez, C. Blanco et al., "Critical temperatures in the synthesis of graphene-like materials by thermal exfoliation–reduction of graphite oxide", Carbon N. Y., 52, 2013. CrossRef
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Said, Muhammad, Maria Ulfa, Addy Rachmat, Desnelli, and Poedji Loekitowati Hariani. "Synthesis of Reduced Graphene Oxide from Cellulose and its Applications for Methylene Blue Adsorption." Solid State Phenomena 345 (July 28, 2023): 153–70. http://dx.doi.org/10.4028/p-n4sufo.

Повний текст джерела
Анотація:
This paper reports the synthesis and its application to the adsorption of methylene blue dye using graphene-oxide (GO) and reduced graphene-oxide (RGO). Among carbon-based nanomaterials, graphene and its derivatives have received remarkable attention due to their unique thermal, mechanical, and electronic properties and two-dimensional structure. The GO was synthesized by the modified Hummers method (chemical exfoliation) of graphite flake. This reaction produced graphite oxide (GrO) as an intermediate material. The synthesized materials, namely graphite, graphene oxide, and reduced graphene oxide, were characterized by XRD, FTIR, and Raman spectroscopy. These materials were tested to evaluate their adsorption capacity, concentration, contact time, and adsorbent weight on methylene blue, which was analyzed using a UV-vis spectrophotometer. The XRD pattern showed the formation of 2θ peaks at 24° to 26o for graphite, graphene oxide, and reduced graphene oxide, respectively. Furthermore, characterization by FTIR showed the appearance of O-H groups with peaks of 3358 cm-1 and 3342 cm-1 for graphene and reduced graphene oxides. Raman characterization indicated that reduced graphene oxide has a wavelength at the D-band peak of about 1375 cm-1 and the G-band peak reaching 1597 cm-1 with an ID/IG intensity ratio of 0.8. The adsorption test of methylene blue showed that reduced graphene oxide had the best adsorption capacity with an adsorbent, concentration, optimum time, and highest adsorption capacity value of 25 mg, 30 ppm, 45 minutes, and 15.642 mg/g. The adsorption process followed the Langmuir isotherm rule, as evidenced by the R2 value of 0.9881.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Liu, Hong Bo, Wu Ying Zhang, and Feng Lin. "Synthesis and Property of Polyurethane Acrylates Modified Graphene Oxide." Key Engineering Materials 703 (August 2016): 273–77. http://dx.doi.org/10.4028/www.scientific.net/kem.703.273.

Повний текст джерела
Анотація:
The graphene oxides were synthesized form graphite by ultrasonic dispersion in water, N-methylpyrrolidone (NMP), N,N-dimethyl-formamide (DMF), acetone and dimethylbenzene, and the polyurethane acrylates containing the reactive NCO (PACN) were prepared. Then the polyurethane acrylates modified graphene oxide synthesized by ultrasonic dispersion in N-methylpyrrolidone (NMP), N,N-dimethyl-formamide (DMF), acetone were prepared by NCO of PACN reacting with the hydroxyl groups of the graphene oxides. The polyurethane acrylates modified graphene oxide was characterized by Fourier transform infrared spectrometer (FTIR), scanning electron microscope (SEM) and Raman spectra. The FTIR spectra showed that the NCO of PACN reacted with the hydroxyl groups of graphene oxide synthesized by ultrasonic dispersion. The measurement of SEM and Raman spectra showed that the polyurethane acrylates modification didn't change the structure and surface morphology of graphene oxide.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Corso, Marla, Ana Carolina de Dias Albuquerque, Lídia Pereira Amaro, Lilian Keylla Berto, Silvia Luciana Favaro, Hugo Eiji Imai, Adriano Pereira Cardoso, Natália Ueda Yamaguchi, and Luciana Cristina Soto Herek Rezende. "Graphene oxide synthesis for composite material preparation." Revista Ibero-Americana de Ciências Ambientais 10, no. 1 (June 20, 2019): 157–66. http://dx.doi.org/10.6008/cbpc2179-6858.2019.001.0013.

Повний текст джерела
Анотація:
Graphene, a material formed by carbon atoms with sp2 hybridization in a hexagonal arrangement, has differentiated characteristics in comparison to commercial materials such as high flexibility, high electrical and thermal conductivity, and strong resistance due to the organized structure of the material and can be applied in several branches of research. The best-known method for the production of graphene is the exfoliation of graphite using the methodology proposed by Hummers, in which the commercial graphite is oxidized obtaining as final product the graphene oxide that can be converted into graphene. In this study, the Hummers methodology was used in the oxidation of synthetic graphite and graphene nanoplates of 5 μm and 15 μm. The obtained materials were characterized by FTIR, RAMAN and XRD, allowing to observe the best synthesis to be used in the production of graphene oxide. Then, composites were prepared using the graphene oxides obtained as filler. In order to obtain them, different mass quantities of graphene oxides (1%, 3% and 5% in relation to the polypropylene polymer matrix) were used, demonstrating by the strain tensile stress tests that the composite materials have results more satisfactory than pure polypropylene.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Li, Jinghao, Qiangu Yan, Xuefeng Zhang, Jilei Zhang, and Zhiyong Cai. "Efficient Conversion of Lignin Waste to High Value Bio-Graphene Oxide Nanomaterials." Polymers 11, no. 4 (April 4, 2019): 623. http://dx.doi.org/10.3390/polym11040623.

Повний текст джерела
Анотація:
Lignin graphene oxide was oxidized after Kraft lignin was graphitized by thermal catalytic conversion. The reduced lignin graphene oxide was derived from lignin graphene oxide through thermal reduction treatment. These Kraft lignin, lignin graphite, lignin graphene oxide, and reduced lignin graphene oxide were characterized by scanning electron microscopy, raman microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, atomic force microscopy and thermogravimetric analysis. The results showed lignin graphite converted from Kraft lignin had fewer layers with smaller lateral size than natural graphite. Moreover, lignin graphene oxide was successfully produced from lignin graphite by an oxidation reaction with an hour-long reaction time, which has remarkably shorter reaction time than that of graphene oxide made from natural graphite. Meanwhile, this lignin-derived graphene oxide had the same XRD, FTIR and Raman peaks as graphene oxide oxidized from natural graphite. The SEM, TEM, and AFM images showed that this lignin graphene oxide with 1–3 average layers has a smaller lateral size than that of graphene oxide made from natural graphite. Moreover, the lignin graphene oxide can be reduced to reduced lignin graphene oxide to fabricate graphene-based aerogel, wire, and film for some potential applications.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "GRAPHIDE OXIDE"

1

Avril, Florian. "Contribution à l'élaboration d'un supercondensateur à basse de graphène." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS034/document.

Повний текст джерела
Анотація:
L'utilisation de l'énergie des micro-sources de production d'électricité est un concept prometteur qui consiste à récolter des sources d'énergie faible et diffuse présent dans notre environnement pour l’alimentation de systèmes autonomes. Le nombre en croissance de nouveaux appareils miniaturisés et communicants dans les domaines civils et militaires devrait accentuer le phénomène de dépendance énergétique et ouvre de nouveaux marché.Parmi les éventuelles sources d’énergies renouvelables, l’énergie solaire est la source la plus prometteuse car elle est potentiellement la plus puissante et la mieux répartie. Le développement de ces systèmes de récupération des micro-sources d’énergie passe par de faibles coûts avec substrat souple (papier,polymère) et des matériaux facilement exploitables. Après la récupération de l’énergie, il est nécessaire pour les systèmes autonomes de stocker l'électricité.Dans cet objectif, les supercondensateurs sont les candidats idéaux. En effet, Le principal avantage des supercondensateurs par rapport aux batteries est leur haute densité de puissance (la collecte rapide de l’énergie) ainsi qu'une longue durée de vie. La thèse concerne donc la fabrication d’un supercondensateur et in fine le couplage avec une cellule solaire. Les travaux concernent spécifiquement l’étude de l'oxyde de graphène (GO) synthétisé par la méthode Hummers et Marcano, de sa réduction en oxyde de graphène réduit (RGO) par les voies chimique et électrochimique et de réalisation du supercondensateur. Dans ce projet, les propriétés de l'oxyde de graphène réduit (RGO) seront optimisées lors de l'étape de réduction et le matériau sera mis en forme dans une structure sandwich (RGO/ électrolyte /RGO) ou interdigité Mots clés: Graphène,supercondensateur, oxyde de graphène, micro-source d'énergie
The use of micro-power generation energy is a promising concept that consists in harvesting low and diffuse energy sources present in our environment for the supply of autonomous systems. The growing number of new miniaturized and communicating devices in civil and military fields should accentuate the phenomenon of energy dependence and open up new markets.Among possible sources of renewable energy, solar energy is the most promising source because it is potentially the most powerful and best distributed. The development of these micro-energy recovery systems involves low costs with flexible substrate (paper, polymer) and easily exploitable materials. After energy recovery, it is necessary for the autonomous systems to store electricity.For this purpose, supercapacitors are ideal candidates. Indeed, the main advantage of supercapacitors over batteries is their high power density (fast energy collection) as well as a long cycle life. The thesis concerns the manufacture of a supercapacitor and ultimately coupling with a solar cell. The work specifically concerns the study of graphene oxide (GO) synthesized by the Hummers and Marcano methods, its reduction in reduced graphene oxide (RGO) by chemical and electrochemical routes and the realization of supercapacitor. In this project, the properties of reduced graphene oxide (RGO) will be optimized during the reduction step and the material will be shaped into a sandwich structure (RGO / electrolyte / RGO) or interdigitated.Keywords: Graphene,supercapacitor, graphene oxide,energy micro-source
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nyangiwe, Nangamso Nathaniel. "Graphene based nano-coatings: synthesis and physical-chemical investigations." Thesis, UWC, 2012. http://hdl.handle.net/11394/3237.

Повний текст джерела
Анотація:
Magister Scientiae - MSc
It is well known that a lead pencil is made of graphite, a naturally form of carbon, this is important but not very exciting. The exciting part is that graphite contains stacked layers of graphene and each and every layer is one atom thick. Scientists believed that these graphene layers could not be isolated from graphite because they were thought to be thermodynamically unstable on their own and taking them out from the parent graphite crystal will lead them to collapse and not forming a layer. The question arose, how thin one could make graphite. Two scientists from University of Manchester answered this question by peeling layers from a graphite crystal by using sticky tape and then rubbing them onto a silicon dioxide surface. They managed to isolate just one atom thick layer from graphite for the first time using a method called micromechanical cleavage or scotch tape. In this thesis chemical method also known as Hummers method has been used to fabricate graphene oxide (GO) and reduced graphene oxide. GO was synthesized through the oxidation of graphite to graphene oxide in the presence of concentrated sulphuric acid, hydrochloric acid and potassium permanganate. A strong reducing agent known as hydrazine hydrate has also been used to reduce GO to rGO by removing oxygen functional groups, but unfortunately not all oxygen functional groups have been removed, that is why the final product is named rGO. GO and rGO solutions were then deposited on silicon substrates separately. Several characterization techniques in this work have been used to investigate the optical properties, the morphology, crystallography and vibrational properties of GO and rGO.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Arbuzov, A. A., V. E. Muradyan, and B. P. Tarasov. "Synthesis of Few-layer Graphene Sheets via Chemical and Thermal Reduction of Graphite Oxide." Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35063.

Повний текст джерела
Анотація:
Few-layer graphene sheets were produced from graphite oxide (GO) chemical and thermal reduction. For the chemical reduction of GO as reducing agents were used hydrazine hydrate, hydroxylammonium chloride, sodium borohydride and sodium sulfite. The reduced material was characterized by elemental analysis, thermo-gravimetric analysis, scanning electron microscopy, X-ray diffraction, Fourier transform infrared and Raman spectroscopy. A comparison of the deoxygenation efficiency of graphene oxide suspension by different method or reductants has been made, revealing that the highest degree of reduction was achieved by thermal reduction and using hydrazine hydrate and hydroxylammonium chloride as a reducing agents. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35063
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sokolov, Denis A. "Investigation of Graphene Formation from Graphite Oxide and Silicon Carbide." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/53642.

Повний текст джерела
Анотація:
Graphene is a novel two dimensional material that is revolutionizing many areas of science and it is no surprise that a significant amount of effort is dedicated to its investigation. One of the major areas of graphene research is the development of procedures for large scale production. Among many recently developed methodologies, graphene oxide reduction stands out as a straightforward and scalable procedure for producing final material with properties similar to those of graphene. Laser reduction of graphite oxide is one of the novel approaches for producing multilayer graphene, and this work describes a viable approach in detail. It is determined that a material which is comprised of a combination of laser reduced graphite oxide-coupled to an unreduced graphite oxide layers beneath it, produces a broadband photosensitive material. The efficiency of light conversion into electrical current is greatly dependent upon the oxygen content of the underlying graphite oxide. Developing novel ways for reducing graphite oxide is an ongoing effort. This work also presents a new method for achieving complete reduction of graphite oxide for producing predominantly sp2 hybridized material. This approach is based on the irradiation of graphite oxide with a high flux 3 keV Ar ion beam in vacuum. It is determined that the angle of irradiation greatly influences the final surface morphology of reduced graphite oxide. Also, multilayer epitaxial graphene growth on silicon carbide in ultra-high vacuum was investigated with quadrupole mass spectrometry (QMS). Subliming molecular and atomic species were monitored as a function of temperature and heating time. The grown films were characterized with X-ray photoelectron spectroscopy coupled with Ar ion depth profiling.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pakulski, Dawid. "Graphene based materials and their potential applications." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAF060.

Повний текст джерела
Анотація:
Cette thèse de doctorat a pour objectif scientifique la synthèse de matériaux bidimensionnels fonctionnalisés (graphène et oxyde de graphène) et leur caractérisation physicochimique complète, avec un accent particulier apporté sur les propriétés d'adsorption et de stockage d'énergie. Nous avons démontré que la modification covalente de l'oxyde de graphène (GO) avec un polymère organique (BPEI) affecte très favorablement l'efficacité du processus d'adsorption. Les valeurs de la capacité maximale d'adsorption (qmax) des ions de métaux lourds favorisent de manière significative ce matériau par rapport à la majorité des adsorbants connus à base de carbone. En outre la fonctionnalisation de GO avec l'aminosilicate mésoporeuse (SiO2NH2) conduit à l'obtention d'un adsorbant efficace et rapide des colorants organiques cationiques (MB, RhB, MV). En plus nous avons prouvé que la fonctionnalisation du graphène (EEG), en utilisant les sous-unités de surfactant POM, a montré que ce type de matériau hybride organique-inorganique est très stable et présente des propriétés électriques intéressantes pouvant être utilisées dans la production de supercondensateurs
Scientific purpose of this doctoral dissertation is synthesis of functionalized two-dimensional materials (graphene and graphene oxide) and their comprehensive physicochemical characterization, with particular emphasis on adsorption and energy storage properties. We could demonstrate that covalent modification of graphene oxide (GO) with an organic polymer (BPEI) very favorably affects the efficiency of the adsorption process. The maximum adsorption capacity (qmax) values for heavy metal ions significantly favour this material in comparison to the majority of known carbon adsorbents. Moreover, functionalization of GO with mesoporous aminosilica (SiO2NH2) leads to obtaining an efficient and rapid adsorbent of organic cationic dyes (MB, RhB, MV). ln addition we proved that the functionalization of graphene (EEG) using the POM-surfactant su bu nits proved that this type of organic-inorganic hybrids material is very stable and have interesting electrical properties with potential application in the production of supercapacitors
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Alami, Omar. "Oxyde de graphène fonctionnalisés par des dendrons et dendrimères pour des applications en oncologie." Thesis, Toulouse 3, 2022. http://www.theses.fr/2022TOU30086.

Повний текст джерела
Анотація:
Le graphène, une monocouche d'atomes de carbone densément tassée dans un réseau en nid d'abeille, a été isolé pour la première fois en 2004. Ces dernières années, la recherche sur le graphène et ses dérivés a suscité un intérêt considérable dans un large éventail d'activités de recherche grâce à ses propriétés intéressantes. La voie la plus facile et polyvalente pour obtenir des nanocomposites à base de graphène consiste à oxyder le graphite naturel pour obtenir l’oxyde de graphène (GO), un matériau ayant une surface riche en fonctions chimiques modifiables. Des nanocomposites à base d’oxyde de graphène ont été synthétisés pour des applications potentielles dans l'électronique, le stockage d'énergie, la catalyse et la sorption, le stockage, la séparation et la détection de gaz ainsi que dans le domaine biomédical. Les dendrimères sont des macromolécules particulièrement intéressantes pour un très grand nombre d'applications dans des domaines extrêmement variés. Cet intérêt réside essentiellement dans leurs propriétés de coopérativité et de multivalence, ainsi que dans leur très haute capacité d'encapsulation ou de fixation de petites molécules, et ceci dans un volume de taille nanométrique. Cette caractéristique structurale est la conséquence de leur architecture unique ramifiée contenant un cœur central et possédant de nombreuses fonctions périphériques. Les dendrimères sont donc des outils très intéressants pour la délivrance de médicaments et d'acides nucléiques. Dans ce travail nous allons développer des approches simples pour décorer la surface de l’oxyde de graphène avec des dendrons et dendrimères phosphorés pour des applications en oncologie. Dans un premier temps on va effectuer la synthèse des dendrimères phosphorés classiques, et des dendrons AB5, ensuite le greffage des différents monomères sur leur surface. En parallèle la préparation de l’oxyde de graphène (GO) ainsi que la modification de la surface de GO par différentes méthodes a été effectué, et finalement le greffage des différents dendrons sur la plateforme de l’oxyde de graphène a permis d'obtenir de nouveaux matériaux hybrides qui seront testés biologiquement
Graphene, a monolayer of carbon atoms densely packed in a honeycomb lattice, was first isolated in 2004. In recent years, research on graphene and its derivatives has generated considerable interest in a wide range of research activities thanks to its interesting properties. The easiest and most versatile way to obtain graphene-based nanocomposites is to oxidize natural graphite to obtain graphene oxide (GO), a material with a surface rich in modifiable chemical functions. Graphene oxide nanocomposites have been synthesized for potential applications in electronics, energy storage, catalysis and sorption, gas storage, separation and detection as well as in the biomedical field. Dendrimers are particularly advantageous macromolecules for a very large number of applications in extremely varied fields. This interest resides essentially in their properties of cooperativity and multivalence, as well as in their very high capacity for encapsulation or fixing of small molecules, and this in a volume of nanometric size. This structural characteristic is the consequence of their unique branched architecture containing a central core and having many peripheral functions. Dendrimers are very interesting tools for the delivery of drugs and nucleic acids. In this work we will develop simple approaches to decorate the surface of graphene oxide with phosphorus dondron and dendrimers in order to create new hybrid materials with new properties. First, the synthesis of classical phosphorus dendrimers and of AB5 dendrons will be carried out, followed by the grafting of the different monomers on their surface. In parallel the preparation of graphene oxide (GO) as well as the modification of the GO surface with different methods will be carried out, and finally the grafting of the different dendrons on the platform of graphene oxide will afford new hybrid materials that will be biologically tested
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Leve, Zandile Dennis. "Determination of paracetamol at the electrochemically reduced graphene oxide-metal nanocomposite modified pencil graphite (ERGO-MC-PGE) electrode using adsorptive stripping differential pulse voltammetry." University of Western Cape, 2020. http://hdl.handle.net/11394/7350.

Повний текст джерела
Анотація:
>Magister Scientiae - MSc
This project focuses on the development of simple, highly sensitive, accurate, and low cost electrochemical sensors based on the modification of pencil graphite electrodes by the electrochemical reduction of graphene oxide-metal salts as nanocomposites (ERGO-MC-PGE; MC = Sb or Au nanocomposite). The electrochemical sensors ERGO-Sb-PGE and ERGO-Au-PGE were used in the determination of paracetamol (PC) in pharmaceutical formulations using adsorptive stripping differential pulse voltammetry. The GO was prepared from graphite via a modified Hummers’ method and characterized by FTIR and Raman spectroscopy to confirm the presence of oxygen functional groups in the conjugated carbon-based structure whilst, changes in crystalline structure was observed after XRD analysis of graphite and GO.
2023-10-07
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nasr, Maryline. "Elaboration of oxides membranes by electrospinning for photocatalytic applications." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT210/document.

Повний текст джерела
Анотація:
De nos jours, les produits chimiques toxiques industriels ne sont pas toujours traités proprement, et leurs contaminants peuvent directement affecter la sécurité de l'eau potable. La photocatalyse, «une technologie verte» est une approche efficace et économique qui joue un rôle important dans la conversion de l'énergie solaire et la dégradation des polluants organiques. Ce manuscrit de thèse rapporte sur le développement des matériaux avancés (basés sur TiO2 et ZnO) susceptibles d'exploiter l'énergie solaire renouvelable pour résoudre les problèmes de pollution environnementale. Une partie de ce travail a été consacrée pour l’amélioration de l’activité photocatalytique du TiO2 sous lumière UV et visible. Par conséquent, les nanofibres composites de rGO/TiO2, BN/TiO2 et BN-Ag/TiO2 ont été élaborées en utilisant la technique d'électrofilage (electrospinning). La deuxième partie porte sur le ZnO, ainsi que les nanotubes multi co-centriques de ZnO/ZnAl2O4 et les nanotubes de ZnO dopés Al2O3 qui ont été synthétisés en combinant les deux techniques : dépôt de couche atomique (ALD) et electrospinning. Les propriétés morphologiques, structurelles et optiques de toutes les nanostructures synthétisées ont été étudiées par différentes techniques de caractérisations. Les résultats ont montré que les propriétés chimiques et physiques ont un effet très important sur les propriétés photocatalytiques des matériaux synthétisés. En outre, il a été constaté que l'effet de dopage conduit à une séparation de charge efficace dans le photocatalyseur, ce qui rend l’activité photocatalytique plus efficace. De plus, le méthyle orange et le bleu de méthylène ont été utilisés comme modèle de référence. Une amélioration significative et une stabilité à long terme de l’activité photocatalytique ont été observées avec les matériaux dopés comparés aux matériaux non-dopés sous lumière UV et visible. Des tests antibactériens contre Escherichia coli ont été également effectués; les résultats indiquent que BN-Ag/TiO2 présente à la fois des propriétés photocatalytiques intéressantes pour la dégradation des composés organiques et pour l'élimination des bactéries
Nowadays, industrial toxic chemicals are still not properly treated and these contaminants may directly impact the safety of drinking water. Photocatalysis “a green technology” is an effective and economical approach and plays an important role in solar energy conversion and degradation of organic pollutants. This thesis manuscript reports on developing advanced materials (based on TiO2 and ZnO) being capable of exploiting renewable solar energy for solving the environmental pollution problems. A part of this work was dedicated to improve the UV and visible light TiO2 photoresponse. Therefore, rGO/TiO2, BN/TiO2 and BN-Ag/TiO2 composties nanofibers were successfully elaborated using the electrospinning technique. The second part focused on ZnO. Novel structures of ZnO/ZnAl2O4 multi co-centric nanotubes and Al2O3 doped ZnO nanotubes were designed by combining the two techniques of atomic layer deposition (ALD) and electrospinning. The morphological, structural and optical properties of all synthesized nanostructures were investigated by several characterization techniques. The results show that the chemical and physical properties have a high impact on the photocatalytic properties of the synthesized materials. Moreover, it was found that the doping effect lead to a more efficient charge separation in the photocatalyst, which is an advantage for photocatalytic activities. In addition, methyl orange and methylene blue were used as model reference. A significant enhancement and a long-term stability in the photocatalytic activity were observed with the doped materials compared to the non-doped ones under both UV and visible light. Antibacterial tests against Escherichia coli have also been performed; the results indicate that BN-Ag/TiO2 present interesting photocatalytic properties for both organic compound degradation and bacterial removal
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dahlberg, Tobias. "The first order Raman spectrum of isotope labelled nitrogen-doped reduced graphene oxide." Thesis, Umeå universitet, Institutionen för fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-116699.

Повний текст джерела
Анотація:
The topic of this thesis is the study of nitrogen functionalities in nitrogen-doped reduced graphene oxide using Raman spectroscopy. Specifically, the project set out to investigate if the Raman active nitrogen-related vibrational modes of graphene can be identified via isotope labelling. Previous studies have used Raman spectroscopy to characterise nitrogen doped graphene, but none has employed the method of isotope labelling to do so. The study was conducted by producing undoped, nitrogen-doped and nitrogen-15-doped reduced graphene oxide and comparing the differences in the first-order Raman spectrum of the samples. Results of this study are inconclusive. However, some indications linking the I band to nitrogen functionalities are found. Also, a hypothetical Raman band denoted I* possibly related to \spt{3} hybridised carbon is introduced in the same spectral area as I. This indication of a separation of the I band into two bands, each dependent on one of these factors could bring clarity to this poorly understood spectral area. As the results of this study are highly speculative, further research is needed to confirm them and the work presented here serves as a preliminary investigation.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Arbuzov, A. A., V. E. Muradyan, B. P. Tarasov, and E. A. Sokolov. "Preparation of Amino-Functionalized Graphene Sheets and their Conductive Properties." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35639.

Повний текст джерела
Анотація:
Amino-functionalized graphene sheets were prepared through chemical reduction by hydrazine hy-drate, amination or amidation of graphite oxide. For amination of graphite oxide were used polyamine such as ethylenediamine, diethylenetriamine and triethylenetetramine. Addition of amine groups to graphene is identified by Fourier transform infrared spectroscopy, Raman spectroscopy, elemental analysis and ther-mogravimetry. Scanning electron microscopy data indicate that the organic amine is not only as nitrogen sources to obtain the nitrogen-doped graphene but also as an important modification to control the assem-bly of graphene sheets in the 3D structures. The electrical conductivity of the materials obtained by amina-tion and amidation of graphene is much smaller than that of reduced graphite oxide. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35639
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "GRAPHIDE OXIDE"

1

Dimiev, Ayrat M., and Siegfried Eigler, eds. Graphene Oxide. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gao, Wei, ed. Graphene Oxide. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15500-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhao, Jijun, Lizhao Liu, and Fen Li. Graphene Oxide: Physics and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44829-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pendolino, Flavio, and Nerina Armata. Graphene Oxide in Environmental Remediation Process. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60429-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gao, Zhenghan. Phase Diagrams of Water Confined by Graphene and Graphene Oxide. [New York, N.Y.?]: [publisher not identified], 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ezema, Fabian Ifeanyichukwu, Tingkai Zhao, and Ishaq Ahmad. Graphene Oxide in Enhancing Energy Storage Devices. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003215196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jean, Corbin, and United States. National Aeronautics and Space Administration., eds. Synthesis and thermal stability of graphite oxide-like materials. [Washington, D.C: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Graphene nanoelectronics: From materials to circuits. New York: Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fusaro, Robert L. Sputtered cadmium oxide as a surface pretreatment for graphite solid lubricant films. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

United States. National Aeronautics and Space Administration., ed. Ferric chloride graphite intercalation compounds prepared from graphite fluoride. [Washington, DC]: National Aeronautics and Space Administration, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "GRAPHIDE OXIDE"

1

Lerf, Anton. "Graphite Oxide Story - From the Beginning Till the Graphene Hype." In Graphene Oxide, 1–35. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sugimoto, Wataru. "Graphene (or Reduced Graphite Oxide Nanosheets)." In Encyclopedia of Applied Electrochemistry, 954–63. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_507.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gao, Wei. "Graphite Oxide." In Springer Handbook of Nanomaterials, 571–604. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20595-8_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Oliva González, Cesar Máximo, Oxana V. Kharissova, Cynthia Estephanya Ibarra Torres, Boris I. Kharisov, and Lucy T. Gonzalez. "Chapter 1. Hybrids of Graphite, Graphene and Graphene Oxide." In All-carbon Composites and Hybrids, 1–30. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839162718-00001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gudarzi, Mohsen Moazzami, Seyed Hamed Aboutalebi, and Farhad Sharif. "Graphene Oxide-Based Composite Materials." In Graphene Oxide, 314–63. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kovbasyuk, Larisa, and Andriy Mokhir. "Toxicity Studies and Biomedical Applications of Graphene Oxide." In Graphene Oxide, 364–81. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pavlidis, Ioannis V. "Catalysis." In Graphene Oxide, 382–409. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lowe, Sean E., and Yu Lin Zhong. "Challenges of Industrial-Scale Graphene Oxide Production." In Graphene Oxide, 410–31. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dimiev, Ayrat M. "Mechanism of Formation and Chemical Structure of Graphene Oxide." In Graphene Oxide, 36–84. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Eigler, Siegfried, and Ayrat M. Dimiev. "Characterization Techniques." In Graphene Oxide, 85–120. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "GRAPHIDE OXIDE"

1

Hidayah, N. M. S., Wei-Wen Liu, Chin-Wei Lai, N. Z. Noriman, Cheng-Seong Khe, U. Hashim, and H. Cheun Lee. "Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF GLOBAL NETWORK FOR INNOVATIVE TECHNOLOGY AND AWAM INTERNATIONAL CONFERENCE IN CIVIL ENGINEERING (IGNITE-AICCE’17): Sustainable Technology And Practice For Infrastructure and Community Resilience. Author(s), 2017. http://dx.doi.org/10.1063/1.5005764.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rohini, Puliyasseri, and Dillibabu Sastikumar. "Synthesis and characterization of Graphite Oxide from Graphite using Nano second pulsed laser ablation in liquid." In Advanced Solid State Lasers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/assl.2022.jtu6b.17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chen, Zhen, Wanyoung Jang, Wenzhong Bao, Chun Ning Lau, and Chris Dames. "Heat Transfer in Encased Graphene." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88370.

Повний текст джерела
Анотація:
Experimentally understanding the heat transfer in graphene (sheets of graphite a few atoms thick) is important for fundamental physics as well as device applications. In particular, measurements of the heat flow through graphene encased by oxide layers are essential for future graphene-based nanoelectronics, interconnects, and thermal management structures. Here we use a “heat spreader method” to study the heat dissipation performance of encased graphene. Measurements show enhanced heat spreading by a graphene layer as compared to control samples without graphene. At room temperature, the in-plane thermal conductivity of encased graphene sheets of thickness 2 nm and 5 nm is measured to be ∼150 W/m-K, more than one order of magnitude smaller than a published report for a freely-suspended graphene sheet [A. A. Balandin et al., Nano Lett. 8, 902], as well as bulk graphite. We also used a differential 3ω method to measure the thermal contact resistance between graphene and SiO2, finding a value around 10−8 m2-K/W at room temperature. Possible reasons for the unexpectedly low thermal conductivity are also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jankovský, Ondřej, David Sedmidubský, Michal Lojka, and Zdeněk Sofer. "Thermal properties of graphite oxide, thermally reduced graphene and chemically reduced graphene." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4994480.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kanbur, Kürşat, Işıl Birlik, Fatih Sargin, Funda Ak Azem, and Ahmet Türk. "Optimization of Oxidation Time During Graphene Oxide Production." In 7th International Students Science Congress. Izmir International guest Students Association, 2023. http://dx.doi.org/10.52460/issc.2023.045.

Повний текст джерела
Анотація:
Graphene oxide (GO) consists of one or several stacked graphene structures equipped with various functional groups. It has applications in many areas such as biomaterials, energy storage. sensors and photocatalytic degradation thanks to its high surface area, adjustable band gap and dispersibility in various solvents. Although there are various production techniques for GO synthesis, Improved Hummer’s Method stands out with its high efficiency and controllable production parameters. In this method, graphite is oxidized after intercalation with various acids and GO is obtained by exfoliation in the next stages. The effects of production parameters such as oxidation time, oxidant type, oxidant amount, drying processes are generally investigated in Hummer's method. In this study, the effect of oxidation time on GO structure was investigated. In this context, GO was synthesized with various oxidation times by using Modified Hummer's Method. Then, the structural and optical properties of GO were investigated by X-Ray diffraction (XRD), Fourier-Transform infrared spectroscopy (FTIR) and UV-Visible Light spectrophotometer (UV-Vis). The results showed that there is an optimum oxidation time for the oxidation degree of GO structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kanbur, Kürşat, Işıl Birlik, Fatih Sargin, Funda Ak Azem, and Ahmet Türk. "Optimization of Oxidation Time During Graphene Oxide Production." In 7th International Students Science Congress. Izmir International guest Students Association, 2023. http://dx.doi.org/10.52460/issc.2023.045.

Повний текст джерела
Анотація:
Graphene oxide (GO) consists of one or several stacked graphene structures equipped with various functional groups. It has applications in many areas such as biomaterials, energy storage. sensors and photocatalytic degradation thanks to its high surface area, adjustable band gap and dispersibility in various solvents. Although there are various production techniques for GO synthesis, Improved Hummer’s Method stands out with its high efficiency and controllable production parameters. In this method, graphite is oxidized after intercalation with various acids and GO is obtained by exfoliation in the next stages. The effects of production parameters such as oxidation time, oxidant type, oxidant amount, drying processes are generally investigated in Hummer's method. In this study, the effect of oxidation time on GO structure was investigated. In this context, GO was synthesized with various oxidation times by using Modified Hummer's Method. Then, the structural and optical properties of GO were investigated by X-Ray diffraction (XRD), Fourier-Transform infrared spectroscopy (FTIR) and UV-Visible Light spectrophotometer (UV-Vis). The results showed that there is an optimum oxidation time for the oxidation degree of GO structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rafitasari, Yeti, Haris Suhendar, Nurul Imani, Fitri Luciana, Hesti Radean, and Iman Santoso. "SINTESIS GRAPHENE OXIDE DAN REDUCED GRAPHENE OXIDE." In SEMINAR NASIONAL FISIKA 2016 UNJ. Pendidikan Fisika dan Fisika FMIPA UNJ, 2016. http://dx.doi.org/10.21009/0305020218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

"Graphite Nanoplatelets and Graphene Oxide Influence on C-S-H Formation." In "SP-329: Superplasticizers and Other Chemical Admixtures in Concrete Proceedings Twelfth International Conference, Beijing, China". American Concrete Institute, 2018. http://dx.doi.org/10.14359/51711218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Yan, Yingying Wang, Yunfei Chen, and Yujuan Wang. "The Friction Forces Between Si Tip and Multilayer Graphene." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87131.

Повний текст джерела
Анотація:
Mechanical peeling method is used to prepare multilayer graphene on silicon wafer with natural oxide, and the layer number of graphene is determined through atomic force microsopy (AFM) topography image and optical image. The friction force between Silicon tip and multilayer graphene and SiO2/Si substrates is measured with AFM. It is found that the friction force is reduced with the increase of the graphene layer number and approaches the value between the Si tip and graphite. Through comparing the tip sliding on graphene with different layers, the deformation of graphene is believed to be the main reason causing the decrease of the friction force with the layer number. When the normal load is much larger than the adhesion force, friction force increases with normal load linearly. However, while normal load closes to the adhesion force, friction force is independent of the normal load.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Illera, Danny, Chatura Wickramaratne, Diego Guillen, Chand Jotshi, Humberto Gomez, and D. Yogi Goswami. "Stabilization of Graphene Dispersions by Cellulose Nanocrystals Colloids." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87830.

Повний текст джерела
Анотація:
The outstanding properties of single-layer graphene sheets for energy storage are hindered as agglomeration or restacking leads to the formation of graphite. The implications of the aforementioned arise on the difficulties associated with the aqueous processing of graphene sheets: from large-scale production to its utilization in solvent-assisted techniques like spin coating or layer-by-layer deposition. To overcome this, aqueous dispersions of graphene were stabilized by cellulose nanocrystals colloids. Aqueous cellulose nanocrystals dispersion highlights as a low-cost and environmentally friendly stabilizer towards graphene large-scale processing. Colloids of cellulose nanocrystals are formed by electrostatic repulsion of fibrils due to de-protonated carboxyl or sulfate half-ester functional groups. Graphene dispersions are obtained by hydrothermal reduction of electrochemically exfoliated graphene oxide in the presence of cellulose nanocrystals. This approach allows the preservation of the intrinsic properties of the nano-sheets by promoting non-covalent interactions between cellulose and graphene. The dispersions could be cast to form free-standing flexible conducting films or freeze-dried to form foams and aerogels for capacitive energy storage.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "GRAPHIDE OXIDE"

1

Blanchard, Jeremy, David C. Gerlach, Randall D. Scheele, Mark L. Stewart, Bruce D. Reid, Phillip A. Gauglitz, Larry M. Bagaasen, et al. Uranium Oxide Aerosol Transport in Porous Graphite. Office of Scientific and Technical Information (OSTI), January 2012. http://dx.doi.org/10.2172/1051989.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sevigny, Gary J., Radha K. Motkuri, David W. Gotthold, Leonard S. Fifield, Anthony P. Frost, and Wesley Bratton. Separation of tritiated water using graphene oxide membrane. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1222908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mattei-Sosa, Jose, Victor Medina, Chris Griggs, and Veera Gude. Crosslinking graphene oxide and chitosan to form scalable water treatment membranes. Engineer Research and Development Center (U.S.), July 2019. http://dx.doi.org/10.21079/11681/33263.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mannion, J. M., R. M. Achey, J. H. Hewitt, C. R. Shick, Jr., and M. J. Siegfried. Reduced graphene oxide as a filament material for thermal ionization mass spectrometry. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Attias, Andre-Jean, Kwang-Sup Lee, and Alex K. Jen. Coupling Graphene Sheets with Iron Oxide Nanoparticles for Energy Storage and Microelectronics. Fort Belvoir, VA: Defense Technical Information Center, August 2015. http://dx.doi.org/10.21236/ada636883.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kichukova, Diana, Daniela Kovacheva, Anna Staneva та Ivanka Spassova. Аntimicrobial Impact of Nanocomposites of Reduced Graphene Oxide with Silver and Copper. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, лютий 2021. http://dx.doi.org/10.7546/crabs.2021.02.04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Brossia. L52119 Comparative Consumption Rates of Impressed Current Cathodic Protection Anodes. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2004. http://dx.doi.org/10.55274/r0010953.

Повний текст джерела
Анотація:
There is a variety of impressed current anode materials available for onshore applications, including High Silicon Cast Iron (HSCI), Mixed Metal Oxides (MMO), graphite, platinum (or platinum coated titanium), and conductive polymers. Many end users simply select the anode material that they have experience with. What is lacking is a clear, direct comparison of relative anode consumption rates conducted under identical conditions. The present study examined the behavior of the various anode types under different current loads and soil conditions in an effort to establish baseline consumption rates under controlled conditions. Variables that were examined included soil resistivity, the presence of coke backfill, current load, and soil type (sand or 50/50 clay/sand mix). The consumption rates of the anodes evaluated decreased in the order of: AnodeFlex, HSCI, Graphite, Pt, and MMO. A survey of field experiences yielded a slightly different order in terms of anode life with Graphite and HSCI lasting the longest. However, given the wide range of anode sizes used in the various field sites, it is difficult to directly link the field results to the consumption rates measured in the laboratory. Soil composition and resistivity were not observed to have a significant influence on anode consumption rates. The presence of coke, however, led to a decrease in consumption for all anodes in some cases by as much as a factor of nearly 70. Utilizing anode cost estimates and neglecting installation costs, the life-cycle material costs for MMO and Pt anodes are much lower than the other anode materials. Furthermore, AnodeFlex was noted to be the highest cost system from a materials perspective. This may be slightly misleading since installation and replacement costs are not factored in. Given that the installation of AnodeFlex is often much easier and less expensive than the other anode types, this may prove to be a viable financial decision when the other factors are considered. ����������� The primary implications of the present study are: Despite higher material costs, MMO and Pt anodes may offer significant long-term cost savings as compared to other anode types for many applications Use of coke backfill is critical to ensure lower anode consumption rates for AnodeFlex, Graphite, and to a lesser extent HSCI; coke does not appear necessary for MMO or Pt Soil composition (sand vs. clay/sand mix) and resistivity do not appear to significantly influence anode consumption rates, thus consideration of the soil environment (except groundwater chemistry) is not needed in selection of an appropriate anode Because the influence of groundwater chemistry (as part of the soil environment) was not examined, the effects of sulfate, chloride, and pH will need to be evaluated in detail to better aid in anode material selection Field use survey responses showed a wide range in observed anode lifespan, with graphite and HSCI experiencing the longest life and cable anodes the shortest The field survey also revealed that a significant cause of anode failures was connector and cable problems
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Medina, Victor, Chandler Noel, and Jose Mattei-Sosa. Conceptual development and testing of a chitosan/graphene oxide (CSGO) “bandage” to isolate and remove chemical contamination from surfaces. Engineer Research and Development Center (U.S.), July 2019. http://dx.doi.org/10.21079/11681/33403.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Vidal, Judith. Graphene Oxide Fuel Cell Materials Development and Testing: Cooperative Research and Development Final Report, CRADA Number: CRD-16-648. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1659914.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії