Добірка наукової літератури з теми "Golgi Apparatu"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Golgi Apparatu".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Golgi Apparatu"

1

Diao, Aipo, Dinah Rahman, Darryl J. C. Pappin, John Lucocq, and Martin Lowe. "The coiled-coil membrane protein golgin-84 is a novel rab effector required for Golgi ribbon formation." Journal of Cell Biology 160, no. 2 (January 20, 2003): 201–12. http://dx.doi.org/10.1083/jcb.200207045.

Повний текст джерела
Анотація:
Fragmentation of the mammalian Golgi apparatus during mitosis requires the phosphorylation of a specific subset of Golgi-associated proteins. We have used a biochemical approach to characterize these proteins and report here the identification of golgin-84 as a novel mitotic target. Using cryoelectron microscopy we could localize golgin-84 to the cis-Golgi network and found that it is enriched on tubules emanating from the lateral edges of, and often connecting, Golgi stacks. Golgin-84 binds to active rab1 but not cis-Golgi matrix proteins. Overexpression or depletion of golgin-84 results in fragmentation of the Golgi ribbon. Strikingly, the Golgi ribbon is converted into mini-stacks constituting only ∼25% of the volume of a normal Golgi apparatus upon golgin-84 depletion. These mini-stacks are able to carry out protein transport, though with reduced efficiency compared with a normal Golgi apparatus. Our results suggest that golgin-84 plays a key role in the assembly and maintenance of the Golgi ribbon in mammalian cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Short, Benjamin, Christian Preisinger, Roman Körner, Robert Kopajtich, Olwyn Byron, and Francis A. Barr. "A GRASP55-rab2 effector complex linking Golgi structure to membrane traffic." Journal of Cell Biology 155, no. 6 (December 10, 2001): 877–84. http://dx.doi.org/10.1083/jcb.200108079.

Повний текст джерела
Анотація:
Membrane traffic between the endoplasmic reticulum (ER) and Golgi apparatus and through the Golgi apparatus is a highly regulated process controlled by members of the rab GTPase family. The GTP form of rab1 regulates ER to Golgi transport by interaction with the vesicle tethering factor p115 and the cis-Golgi matrix protein GM130, also part of a complex with GRASP65 important for the organization of cis-Golgi cisternae. Here, we find that a novel coiled-coil protein golgin-45 interacts with the medial-Golgi matrix protein GRASP55 and the GTP form of rab2 but not other Golgi rab proteins. Depletion of golgin-45 disrupts the Golgi apparatus and causes a block in secretory protein transport. These results demonstrate that GRASP55 and golgin-45 form a rab2 effector complex on medial-Golgi essential for normal protein transport and Golgi structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Añel, Alberto Marcelo Diaz, та Vivek Malhotra. "Correction: PKCη is required for β1γ2/β3γ2- and PKD-mediated transport to the cell surface and the organization of the Golgi apparatu". Journal of Cell Biology 169, № 3 (9 травня 2005): 539–40. http://dx.doi.org/10.1083/jcb.200412089042805c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jiang, Shu, Sung W. Rhee, Paul A. Gleeson, and Brian Storrie. "Capacity of the Golgi Apparatus for Cargo Transport Prior to Complete Assembly." Molecular Biology of the Cell 17, no. 9 (September 2006): 4105–17. http://dx.doi.org/10.1091/mbc.e05-12-1112.

Повний текст джерела
Анотація:
In yeast, particular emphasis has been given to endoplasmic reticulum (ER)-derived, cisternal maturation models of Golgi assembly while in mammalian cells more emphasis has been given to golgins as a potentially stable assembly framework. In the case of de novo Golgi formation from the ER after brefeldin A/H89 washout in HeLa cells, we found that scattered, golgin-enriched, structures formed early and contained golgins including giantin, ranging across the entire cis to trans spectrum of the Golgi apparatus. These structures were incompetent in VSV-G cargo transport. Second, we compared Golgi competence in cargo transport to the kinetics of addition of various glycosyltransferases and glycosidases into nascent, golgin-enriched structures after drug washout. Enzyme accumulation was sequential with trans and then medial glycosyltransferases/glycosidases found in the scattered, nascent Golgi. Involvement in cargo transport preceded full accumulation of enzymes or GPP130 into nascent Golgi. Third, during mitosis, we found that the formation of a golgin-positive acceptor compartment in early telophase preceded the accumulation of a Golgi glycosyltransferase in nascent Golgi structures. We conclude that during mammalian Golgi assembly components fit into a dynamic, first-formed, multigolgin-enriched framework that is initially cargo transport incompetent. Resumption of cargo transport precedes full Golgi assembly.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yadav, Smita, Sapna Puri, and Adam D. Linstedt. "A Primary Role for Golgi Positioning in Directed Secretion, Cell Polarity, and Wound Healing." Molecular Biology of the Cell 20, no. 6 (March 15, 2009): 1728–36. http://dx.doi.org/10.1091/mbc.e08-10-1077.

Повний текст джерела
Анотація:
Peri-centrosomal positioning of the mammalian Golgi apparatus is known to involve microtubule-based motility, but its importance for cellular physiology is a major unanswered question. Here, we identify golgin-160 and GMAP210 as proteins required for centripetal motility of Golgi membranes. In the absence of either golgin, peri-centrosomal positioning of the Golgi apparatus was disrupted while the cytoskeleton remained intact. Although secretion persisted with normal kinetics, it was evenly distributed in response to wounding rather than directed to the wound edge. Strikingly, these cells also completely failed to polarize. Further, directionally persistent cell migration was inhibited such that wound closure was impaired. These findings not only reveal novel roles for golgin-160 and GMAP210 in conferring membrane motility but also indicate that Golgi positioning has an active role in directed secretion, cell polarity, and wound healing.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sato, Keisuke, Peristera Roboti, Alexander A. Mironov, and Martin Lowe. "Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210." Molecular Biology of the Cell 26, no. 3 (February 2015): 537–53. http://dx.doi.org/10.1091/mbc.e14-10-1450.

Повний текст джерела
Анотація:
Golgins are extended coiled-coil proteins believed to participate in membrane-tethering events at the Golgi apparatus. However, the importance of golgin-mediated tethering remains poorly defined, and alternative functions for golgins have been proposed. Moreover, although golgins bind to Rab GTPases, the functional significance of Rab binding has yet to be determined. In this study, we show that depletion of the golgin GMAP-210 causes a loss of Golgi cisternae and accumulation of numerous vesicles. GMAP-210 function in vivo is dependent upon its ability to tether membranes, which is mediated exclusively by the amino-terminal ALPS motif. Binding to Rab2 is also important for GMAP-210 function, although it is dispensable for tethering per se. GMAP-210 length is also functionally important in vivo. Together our results indicate a key role for GMAP-210–mediated membrane tethering in maintaining Golgi structure and support a role for Rab2 binding in linking tethering with downstream docking and fusion events at the Golgi apparatus.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Munro, S. "The Golgin Coiled-Coil Proteins of the Golgi Apparatus." Cold Spring Harbor Perspectives in Biology 3, no. 6 (March 23, 2011): a005256. http://dx.doi.org/10.1101/cshperspect.a005256.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lu, Lei, Guihua Tai, and Wanjin Hong. "Autoantigen Golgin-97, an Effector of Arl1 GTPase, Participates in Traffic from the Endosome to the Trans-Golgi Network." Molecular Biology of the Cell 15, no. 10 (October 2004): 4426–43. http://dx.doi.org/10.1091/mbc.e03-12-0872.

Повний текст джерела
Анотація:
The precise cellular function of Arl1 and its effectors, the GRIP domain Golgins, is not resolved, despite our recent understanding that Arl1 regulates the membrane recruitment of these Golgins. In this report, we describe our functional study of Golgin-97. Using a Shiga toxin B fragment (STxB)-based in vitro transport assay, we demonstrated that Golgin-97 plays a role in transport from the endosome to the trans-Golgi network (TGN). The recombinant GRIP domain of Golgin-97 as well as antibodies against Golgin-97 inhibited the transport of STxB in vitro. Membrane-associated Golgin-97, but not its cytosolic pool, was required in the in vitro transport assay. The kinetic characterization of inhibition by anti-Golgin-97 antibody in comparison with anti-Syntaxin 16 antibody established that Golgin-97 acts before Syntaxin 16 in endosome-to-TGN transport. Knock down of Golgin-97 or Arl1 by their respective small interference RNAs (siRNAs) also significantly inhibited the transport of STxB to the Golgi in vivo. In siRNA-treated cells with reduced levels of Arl1, internalized STxB was instead distributed peripherally. Microinjection of Golgin-97 antibody led to the fragmentation of Golgi apparatus and the arrested transport to the Golgi of internalized Cholera toxin B fragment. We suggest that Golgin-97 may function as a tethering molecule in endosome-to-TGN retrograde traffic.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Chunyi, Mei Mei, Qiuling Li, Peristera Roboti, Qianqian Pang, Zhengzhou Ying, Fei Gao, Martin Lowe, and Shilai Bao. "Loss of the golgin GM130 causes Golgi disruption, Purkinje neuron loss, and ataxia in mice." Proceedings of the National Academy of Sciences 114, no. 2 (December 27, 2016): 346–51. http://dx.doi.org/10.1073/pnas.1608576114.

Повний текст джерела
Анотація:
The Golgi apparatus lies at the heart of the secretory pathway where it is required for secretory trafficking and cargo modification. Disruption of Golgi architecture and function has been widely observed in neurodegenerative disease, but whether Golgi dysfunction is causal with regard to the neurodegenerative process, or is simply a manifestation of neuronal death, remains unclear. Here we report that targeted loss of the golgin GM130 leads to a profound neurological phenotype in mice. Global KO of mouse GM130 results in developmental delay, severe ataxia, and postnatal death. We further show that selective deletion of GM130 in neurons causes fragmentation and defective positioning of the Golgi apparatus, impaired secretory trafficking, and dendritic atrophy in Purkinje cells. These cellular defects manifest as reduced cerebellar size and Purkinje cell number, leading to ataxia. Purkinje cell loss and ataxia first appear during postnatal development but progressively worsen with age. Our data therefore indicate that targeted disruption of the mammalian Golgi apparatus and secretory traffic results in neuronal degeneration in vivo, supporting the view that Golgi dysfunction can play a causative role in neurodegeneration.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dröscher, A. "From the ”apparato reticolare interno" to ”the Golgi": 100 years of Golgi apparatus research." Virchows Archiv 434, no. 2 (February 5, 1999): 103–7. http://dx.doi.org/10.1007/s004280050312.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Golgi Apparatu"

1

D, Nolfi. "Studio morfologico e funzionale dell’apparato di Golgi in relazione ad una struttura LTL-positiva nelle cellule di carcinoma prostatico DU145." Doctoral thesis, Università di Siena, 2020. http://hdl.handle.net/11365/1095701.

Повний текст джерела
Анотація:
The Golgi apparatus is a complex structure present in all eukaryotic cells. This organelle, which was first observed in 1989, still represents a fascinating enigma for much of its structural and functional peculiarity. Generally, the Golgi apparatus is known as the heart of the secretory pathway and glycosylation, which is one of the major post-traductional modifications. Most of the reactions of the glycosylation pathway occur in the Golgi apparatus, where glycosyltransferases and glycosidases modify glucidic chains by adding or removing monosaccharides. All the steps follow a precise sequential order from the cis-Golgi to the trans-Golgi network, depending on the exclusive presence of peculiar enzymes in each Golgi compartment. The sequential order of all these reactions is guaranteed by the morphological stability of the Golgi apparatus, which appears as many staked cisternae fused together forming a unique ribbon structure in vertebrates’ cells. The integrity of the Golgi ribbon is the result of a perfect harmonization between Golgi matrix proteins and the cytoskeleton. Defect in glycosylation has been observed in many pathologies, such as in neurodegenerative disease and malignant transformation of cancer cells. Particularly, the Golgi apparatus of cancer cells loses its typical ribbon shape and splits in smaller vesicles scattered in the cytosol. This thesis focuses on the defects of glycosylation in cancer cells, with a particular regard to fucosylation, since we observed a novel Golgi-derived α 1,2 fucosylated tubular structure exclusive of high proliferative cells. This structure, which was highlighted thanks to the α 1,2 fucose binding Lotus tetragonolobus lectin (LTL), seems to be responsible for a peculiar uptake system that lets many molecules, including LTL itself, enter the cell. To better understand 1) the relation between the morphological scattering of the cisternae and the functionality of the Golgi apparatus and 2) the link between the Golgi disarrangement and the origin of the LTL-positive tubular system, we analysed cells from the human prostatic tumor cell line DU145 by confocal microscopy using the lectins LTL and AAA (Aleuria aurantia Agglutinin), both specific for fucose, and different antibodies able to mark the organelle. Microscopic observations were parallelly performed with SDS-PAGE on DU145 extracts to analyze the localization of the Golgi proteins and glycans in the nuclear, cytoplasmic, membrane, and cytoskeleton fractions obtained using the Qproteome Cell Compartment Kit. Furthermore, in order to evaluate the relationship between the Golgi apparatus/tubular system and the actin cytoskeleton, DU145 were left to grow in presence of Cytochalasin D, a fungal toxin capable to depolymerize the microfilaments. Finally, we performed an uptake experiment to test the functionality of the tubular system, both in the presence and absence of cytochalasin.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wong, Mei Wai Mie. "Functions of the golgin coiled-coil proteins of the Golgi apparatus." Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Au, Catherine. "Organellar proteomics of the Golgi apparatus and Golgi derived COPI vesicles." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=18742.

Повний текст джерела
Анотація:
Studying an organelle with traditional biochemistry, histology, or microscopy techniques allows the determination of the presence of up to three proteins simultaneously. Mass spectrometry based proteomics has changed the study of organelles; for the first time it is possible to investigate the whole protein complement of a subcellular compartment. In this work I demonstrate our ability to use redundant peptide counting as a quantitative technique to compare the relative abundance of different proteins in a complex sample, specifically, enriched organellar preparations. I present the pipeline that we use to isolate, characterize, and prepare samples for mass spectrometric analysis, followed by the automatic mass spectrometric data acquisition and data processing that result in the output of a list of protein identifications. A highly involved and time consuming manual annotation effort is applied to this preliminary list in order to generate a final set of tables where standardized functional categories and assigned names are applied to every protein identified in order facilitate the application of redundant peptide counting. The organelles of the early secretory pathway are processed by the pipeline, and after rigorous manual verification of the data, the proteomes of the rough microsomes, smooth microsomes, Golgi apparatus, and Golgi derived COPI GTP and COPI GTP?S vesicles are determined. The focus of this thesis is on the proteomes of the Golgi and Golgi derived vesicles. The characteristics and most abundant proteins of the proteomes of the Golgi apparatus, COPI GTP, and COPI GTP?S vesicles are described in detail. The hypothesis of cisternal maturation, a theory describing secretory cargo progress through the Golgi apparatus, is tested and eventually supported by our proteomics data. Finally, outlines of the abundant proteins of unknown function of the Golgi, COPI GTP and COPI GTP?S vesicles are presented.
Les techniques traditionnelles utilisées en biochimie, en histologie ainsi qu'en microscopie permettent la détermination d'un maximum de trois protéines à la fois dans l'étude d'une organelle. La mise en œuvre de la spectrométrie de masse en protéomique a complètement changé le panorama d'investigation des organelles. Pour la première fois, il est possible d'étudier le panel entier de protéines présent dans un compartiment sub-cellulaire. Dans cette étude, je démontre dans un premier temps que l'utilisation du dénombrement de peptides redondants permet la quantification des protéines et donc la capacité de comparer l'abondance relative de différentes protéines dans un échantillon complexe tel qu'une préparation d'organelle. Je présenterai par la suite le pipeline que nous utilisons pour isoler, caractériser et préparer les échantillons avant leur analyse par acquisition automatique par spectrométrie de masse laquelle est suivie par le traitement des données dont le résultat consiste à l'identification d'une liste de protéines. Un effort manuel important d'annotation est appliqué à cette liste préliminaire afin de générer un tableau final où sont assignées à la fois la fonction dans laquelle chaque protéine identifiée est impliquée, ainsi que l'attribution de la nomenclature la plus appropriée. Ce travail laborieux facilite par conséquent le dénombrement et l'attribution des peptides redondants aux protéines. Les organelles de la voie précoce de sécrétion sont analysées par le pipeline et après une vérification manuelle rigoureuse des données, les protéomes des microsomes rugueux, des microsomes lisses, de l'appareil de Golgi, et des vésicules dérivées du Golgi COPI GTP et COPI GTP?S sont déterminés. L'objectif de cette étude porte sur les protéomes du Golgi et des vésicules dérivées du Golgi dont les protéines les plus abondantes ainsi que leurs caractéristiques sont décrites en détail. L'hypoth
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dworkin, Joel. "Cell-free reconstitution of the Golgi apparatus." Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59884.

Повний текст джерела
Анотація:
The Golgi apparatus is organized into a characteristic differentiated stack in all eukaryotic cells. During mitosis, the Golgi apparatus disassembles into smaller clustered vesicles lacking recognizable cisternae whereupon they recombine to form typical stacks in each of the daughter cells (Lucocq et al., 1987). Paiment et al. (1989) have demonstrated that dispersed (unstacked) Golgi fragments will reconstitute into a functional stacked Golgi apparatus when microinjected into Xenopus laevis oocytes. Disrupted hepatic Golgi fractions (Gi) were isolated on discontinuous sucrose gradients and incubated at 37$ sp circ$C in the presence or absence of calf brain cytosol, ATP, and GTP$ gamma$S with or without pretreatment by N-ethylmaleimide. The reconstitution of saccule stacking was assayed using transmission electron microscopy on pelleted and filtered fractions. The role of cytosolically exposed Golgi membrane proteins in maintaining saccule was also addressed using controlled protease digests.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hui, Hu. "Targeting and retention in the Golgi apparatus." Thesis, University College London (University of London), 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263648.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Radau, Boris. "Die Regulation der Vesikelbildung am trans-Golgi-Netzwerk durch Proteinkinase C." [S.l.] : [s.n.], 2001. http://www.diss.fu-berlin.de/2001/89/index.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Li, Xue-Yi. "Characterization of a novel GPI-anchored protein, a component of sphingomyelin enriched microdomains at the Golgi complex." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=967973775.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rivinoja, A. (Antti). "Golgi pH and glycosylation." Doctoral thesis, University of Oulu, 2009. http://urn.fi/urn:isbn:9789514292699.

Повний текст джерела
Анотація:
Abstract Glycans, as a part of glycoproteins, glycolipids and other glycoconjugates, are involved in many vital intra- and inter-cellular tasks, such as protein folding and sorting, protein quality control, vesicular trafficking, cell signalling, immunological defence, cell motility and adhesion. Therefore, their correct construction is crucial for the normal functioning of eukaryotic cells and organisms they form. Most cellular glycans are constructed in the Golgi, and abnormalities in their structure may derive, for instance, from alkalinization of the Golgi lumen. In this work we show that Golgi pH is generally higher and more variable in abnormally glycosylating, i.e. strongly T-antigen (Gal-β1,3-GalNAc-ser/thr) expressing cancer cells, than in non-T-antigen expressing cells. We also confirmed that the Golgi pH alterations detected in cancer cells have the potential to induce glycosylation changes. A mere 0.2 pH unit increase in Golgi pH is able to induce T-antigen expression and inhibit terminal N-glycosylation in normally glycosylating cells. The mechanism of inhibition involves mislocalization of the corresponding glycosyltransferases. We also studied potential factors that can promote Golgi pH misregulation in health and disease, and found that cultured cancer cells, despite variation and elevation in Golgi pH, are fully capable of acidifying the Golgi lumen under the normal Golgi pH. Moreover, we introduce a Golgi localized Cl-/HCO3- exchanger, AE2a, that participates in Golgi pH regulation by altering luminal bicarbonate concentration and thus also buffering capacity. Participation of AE2a in Golgi pH regulation is especially intriguing, because it also provides a novel mechanism for expelling protons from the Golgi lumen.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gilchrist, Annalyn. "Proteomics analysis of the endoplasmic reticulum and Golgi apparatus." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=18715.

Повний текст джерела
Анотація:
Isolated rough and smooth microsomes of the endoplasmic reticulum and isolated Golgi apparatus from rat liver were analyzed by proteomics using mass spectrometry, identifying 1064 proteins among the three fractions. An additional 598 proteins were identified by biochemically subfractionating the rough and smooth microsomes by treatment with a high salt wash and the detergent Triton-X 114. Proteins were quantified by redundant peptide counts which enabled an assessment of the extent of cross-contamination between the endoplasmic reticulum and Golgi fractions and other organellar contamination. Results of this analysis revealed that the Golgi fraction was contaminated up to 30% by proteins of the endoplasmic reticulum and that the mitochondria constitute the largest source of organellar contamination for all three fractions. Hierarchical clustering of the distribution profiles of proteins among the three fractions assigned proteins to either the rough and/or smooth endoplasmic reticulum or the Golgi apparatus. In doing so, the protein disulphide isomerase, ERp44, was localized to the Golgi. This result was verified by immunolocalization with an ERp44 antibody. Furthermore, hierarchical clustering assigned a location for 176 previously uncharacterized proteins in the endoplasmic reticulum providing a subcellular context to their putative functions predicted by bioinformatics. Additionally, the biochemical subfractionation of the rough and smooth microsomes assigned proteins to the cytosolic, membrane or luminal subcompartments of the endoplasmic reticulum. These results guided the selection of uncharacterized membrane proteins for further characterization leading to the identification of 7 proteins upregulated by ER stress, which included 4 new molecular chaperones. Finally, a comparison of this work with previous proteomics analyses of these organelles showed that the proteomes of the endoplasmic reticulum and Golgi apparatus presented here may be the mo
L'analyse par protéomique des microsomes du Réticulum Endoplasmique rugueux, des microsomes du Réticulum Endoplasmique lisse et de l'appareil de Golgi a permis l'identification de 1064 protéines par spectrométrie de masse. Par ailleurs, le fractionnement biochimique des microsomes lisses et rugueux par lavage avec une solution saline concentrée suivi d'un traitement au détergent Triton X-114 a permis l'identification de 598 nouvelles protéines. Les protéines furent quantifiées en fonction du nombre de peptides identifiés par spectrométrie de masse. La quantification des protéines a permis d'évaluer le degré de contamination croisée présent dans les fractions du Réticulum Endoplasmique, de l'appareil de Golgi et celui provenant des autres organelles. Les résultats de cette analyse ont révélé que la fraction de Golgi était contaminée jusqu'à un maximum de 20% par les protéines provenant du Réticulum Endoplasmique et que les mitochondries constituaient la source essentielle de contamination dans ces trois fractions. La clustérisation hiérarchique des protéines quantifiées a permis de dresser le profile de distribution des différentes protéines et ainsi de les assigner au sein des différents compartiments, à savoir aux microsomes du Réticulum Endoplasmique rugueux et/ou lisses, ou alors à l'appareil de Golgi. De ce fait, la protéine disulphide isomerase, ERp44, a été localisée dans l'appareil de Golgi. Ce résultat a été confirmé par immunolocalisation avec l'anticorps ERp44. Par ailleurs, cette même clustérisation hiérarchique a permis de localiser pour la première fois 176 protéines dans le Réticulum Endoplasmique correspondant ainsi à leur fonction putative prédite par bioinformatique. De plus, le fractionnement biochimique des microsomes lisses et rugueux a permis d'assigner les protéines dans les compartiments subcellulaires du Réticulum Endoplasmique : cytosol, membrane ou lumière. Ces résultats ont é
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rocchetti, Alessandra. "Interactions between the plant Golgi apparatus and the cytoskeleton." Thesis, Oxford Brookes University, 2016. https://radar.brookes.ac.uk/radar/items/e035b419-1acc-4031-aadd-2cfc1f9ed3c8/1/.

Повний текст джерела
Анотація:
In animal cells, the relationship between the Golgi apparatus and cytoskeleton has been well characterised but not much is known in plants. The functions of the Golgi apparatus are conserved amongst eukaryotes. It is one of the main stations in the secretory pathway and is involved in protein processing and sorting to different destinations. In plants, it is also involved in trafficking and positioning of cell wall components. In tobacco epidermal cells, fluorescent labelling with Golgi marker proteins has shown that the Golgi apparatus is made of hundreds of individual units scattered in the cortical cytoplasm and moving on the actin cytoskeleton. The contribution of actin filaments to Golgi body motility in plant has been extensively described, but this actin-centric view has recently been challenged. Emerging evidence suggests that microtubules may contribute to short distance movement and 'fine tuning' of Golgi body displacement. Moreover, proteomic studies linking the actin- cytoskeleton to microtubules have demonstrated that these two components of the cytoskeleton are closely related and a role of the microtubules in Golgi movement cannot be excluded. In this thesis, automated tracking of Golgi bodies was used to understand and quantify the contribution of actin filaments and microtubules to the organelle dynamics. The tracking technique is also used to assess how the labelling of the cytoskeleton, with a novel fluorescent nanoprobe, affects the dynamics and stability of the actin filaments and the movement of Golgi bodies; FRAP analysis (fluorescent recovery after photo-bleaching) was also used to investigate the binding properties of the fluorescent nanoprobe to the actin filaments. The nanoprobe was compared with another cytoskeletal marker, Lifeact-GFP, to evaluate their suitability for studying the organelle's motility in relation to the actin-cytoskeleton. Micromanipulation of Golgi bodies with optical tweezers was used to test if there are physical links between the organelles and the cytoskeleton. The widely accepted model is that organelles move on actin filaments and movement is powered by myosins. The hypothesis that actin filaments slide one of top of the other, and drag the organelles along, was tested using the FRAP technique. Kinesin-13a is the only microtubule motor protein localized on Golgi bodies by immunochemical studies. Its localization was investigated in vivo to evaluate if it is involved in linking Golgi bodies to microtubules.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Golgi Apparatu"

1

Mironov, Alexander A., and Margit Pavelka, eds. The Golgi Apparatus. Vienna: Springer Vienna, 2008. http://dx.doi.org/10.1007/978-3-211-76310-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Berger, E. G., and J. Roth, eds. The Golgi Apparatus. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8876-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Morré, D. James, and Hilton H. Mollenhauer, eds. The Golgi Apparatus. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-74347-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

G, Berger Eric, and Roth, J. (Jürgen), Prof. Dr. Dr., eds. The Golgi apparatus. Basel: Birkhäuser Verlag, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

The Golgi. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Functional morphology of the Golgi apparatus. Berlin: Springer-Verlag, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kloc, Malgorzata, ed. The Golgi Apparatus and Centriole. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23173-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

A, Mironov A., and Pavelka Margit 1945-, eds. The Golgi apparatus: State of the art 110 years after Camillo Golgi's discovery. Wien: Springer, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

G, Robinson David, ed. The Golgi apparatus and the plant secretory pathway. Sheffield: Sheffield Academic Press, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

H, Mollenhauer Hilton, ed. The Golgi apparatus: The first 100 years. New York: Springer, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Golgi Apparatu"

1

Sato, Keisuke, and Martin Lowe. "Golgi Apparatus." In Molecular Life Sciences, 1–28. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-6436-5_189-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gooch, Jan W. "Golgi Apparatus." In Encyclopedic Dictionary of Polymers, 896. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_13851.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sato, Keisuke, and Martin Lowe. "Golgi Apparatus." In Molecular Life Sciences, 464–89. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-1531-2_189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Berkaloff, André, Jacques Bourguet, Pierre Favard, Nina Favard, and Jean-Claude Lacroix. "Golgi-Apparat." In Die Zelle, 209–40. Wiesbaden: Vieweg+Teubner Verlag, 1990. http://dx.doi.org/10.1007/978-3-663-06822-8_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bährle-Rapp, Marina. "Golgi-Apparat." In Springer Lexikon Kosmetik und Körperpflege, 233. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_4463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Berger, E. G. "The Golgi apparatus: From discovery to contemporary studies." In The Golgi Apparatus, 1–35. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8876-9_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Driouich, A., and L. A. Staehelin. "The plant Golgi apparatus: Structural organization and functional properties." In The Golgi Apparatus, 275–301. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8876-9_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rambourg, A., and Y. Clermont. "Three-dimensional structure of the Golgi apparatus in mammalian cells." In The Golgi Apparatus, 37–61. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8876-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Farquhar, M. G., and H. P. Hauri. "Protein sorting and vesicular traffic in the Golgi apparatus." In The Golgi Apparatus, 63–129. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8876-9_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Roth, J. "Topology of glycosylation in the Golgi apparatus." In The Golgi Apparatus, 131–61. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8876-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Golgi Apparatu"

1

Bones, Eva, and Matija Marolt. "Automatic Segmentation of the Golgi Apparatus in Volumetric Data with Approximate Labels." In 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS). IEEE, 2021. http://dx.doi.org/10.1109/telsiks52058.2021.9606279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Urbanowicz, Breeanna R., Catherine Rayon, Marco A. Tine, Marcos S. Buckeridge, and Nicholas C. Carpita. "CHARACTERIZATION OF THE (1-->3),(1-->4)BETA-D-GLUCAN SYNTHASE AT THE GOLGI APPARATUS OF MAIZE." In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sinha, S., and D. D. Wagner. "INTACT MICROTUBULES ARE NECESSARY FOR COMPLETE PROCESSING, STORAGE AND REGULATED SECRETION OF VON WILLEBRAND FACTOR BY ENDOTHELIAL CELLS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642914.

Повний текст джерела
Анотація:
The importance of intact microtubules in the processing, storage and regulated secretion of von Willebrand factor (vWf) from Weibel-Palade bodies in endothelial cells was investigated. Human umbilical vein endothelial cells treated for one hour with colchicine (10-6M) or nocodozole (10-6M) lost their organized microtubular network. Stimulation of these cells with secretagogues (A23187, thrombin) produced only 30% release of vWf in comparison to control cells containing intact microtubules. The nocodazole treatment was reversible. One hour incubation in the absence of the drug was sufficient for microtubules to reform and to restore the full capacity of the cells to release vWf.Long-term incubation (24 hours) of endothelial cells with microtubule destabilizing agents had a profound effect on vWf distribution. In control cells vWf was localized to organelles in the perinuclear region (i.e. endoplasmic reticulum and Golgi apparatus) and to Weibel-Palade bodies. In drug-treated cells vWf staining was dispersed throughout the cytoplasm and Weibel-Palade bodies were absent. The vWf synthesized in the absence of microtubules contained significantly less large multimers than that produced by control cells. This was not due to possible side effects of the drugs on the cells because the presence of lumicolchicine, an inactive analogue of colchicine, had no effect on vWf processing. Since Weibel-Palade bodies specifically contain the large multimers (Sporn et al, Cell 46:185-190, 1986), we hypothesize that the structural defect in vWf secreted by cells in the absence of microtubules is due to the lack of Weibel-Palade bodies in these cultures.In summary, the intact microtubular cytoskeleton in the endothelial cells in culture, appeared to be crucial for normal release of Weibel-Palade bodies after stimulation with secretagogues, for reformation of new Weibel-Palade bodies and for the efficient intracellular multimerization of vWf dimeric molecules.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Golgi Apparatu"

1

Nelson, Nathan, and Randy Schekman. Functional Biogenesis of V-ATPase in the Vacuolar System of Plants and Fungi. United States Department of Agriculture, September 1996. http://dx.doi.org/10.32747/1996.7574342.bard.

Повний текст джерела
Анотація:
The vacuolar H+-ATPase (V-ATPase) is one of the most fundamental enzymes in nature. It pumps protons into the vacuolar system of eukaryotic cells and provides the energy for numerous transport systems. Through our BARD grant we discovered a novel family of membrane chaperones that modulate the amount of membrane proteins. We also elucidated the mechanism by which assembly factors guide the membrane sector of V-ATPase from the endoplasmic reticulum to the Golgi apparatus. The major goal of the research was to understand the mechanism of action and biogenesis of V-ATPase in higher plants and fungi. The fundamental question of the extent of acidification in organelles of the vacuolar system was addressed by studying the V-ATPase of lemon fruit, constructing lemon cDNAs libraries and study their expression in mutant yeast cells. The biogenesis of the enzyme and its function in the Golgi apparatus was studied in yeast utilizing a gallery of secretory mutants available in our laboratories. One of the goals of this project is to determine biochemically and genetically how V-ATPase is assembled into the different membranes of a wide variety of organelles and what is the mechanism of its action.The results of this project advanced out knowledge along these lines.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії