Добірка наукової літератури з теми "Glass science and technology"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Glass science and technology".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Glass science and technology"

1

Rüssel, C. "Introduction to Glass Science and Technology." Zeitschrift für Physikalische Chemie 208, Part_1_2 (January 1999): 292–93. http://dx.doi.org/10.1524/zpch.1999.208.part_1_2.292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Weber, M. J. "Science and technology of laser glass." Journal of Non-Crystalline Solids 123, no. 1-3 (August 1990): 208–22. http://dx.doi.org/10.1016/0022-3093(90)90786-l.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

MacCrone, R. K. "Optical properties of glass, vol. 5, glass science and technology." Materials Science and Engineering 68, no. 2 (January 1985): 267–68. http://dx.doi.org/10.1016/0025-5416(85)90415-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Johnson, William L. "Bulk Glass-Forming Metallic Alloys: Science and Technology." MRS Bulletin 24, no. 10 (October 1999): 42–56. http://dx.doi.org/10.1557/s0883769400053252.

Повний текст джерела
Анотація:
The following article is based on the MRS Medal talk presented by William L. Johnson at the 1998 MRS Fall Meeting on December 2, 1998. The MRS Medal is awarded for a specific outstanding recent discovery or advancement that has a major impact on the progress of a materials-related field. Johnson received the honor for his development of bulk metallic glass-forming alloys, the fundamental understanding of the thermodynamics and kinetics that control glass formation and crystallization of glass-forming liquids, and the application of these materials in engineering.The development of bulk glass-forming metallic alloys has led to interesting advances in the science of liquid metals. This article begins with brief remarks about the history and background of the field, then follows with a discussion of multicomponent glass-forming alloys and deep eutectics, the chemical constitution of these new alloys, and how they differ from metallic glasses of a decade ago or earlier. Recent studies of deeply undercooled liquid alloys and the insights made possible by their exceptional stability with respect to crystallization will then be discussed. Advances in this area will be illustrated by several examples. The article then describes some of the physical and specific mechanical properties of bulk metallic glasses (BMGs), and concludes with some interesting potential applications.The first liquid-metal alloy vitrified by cooling from the molten state to the glass transition was Au-Si, as reported by Duwez at Caltech in 1960. Duwez made this discovery as a result of developing rapid quenching techniques for chilling metallic liquids at very high rates of 105–106 K/s.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

KARASU, Bekir, Oğuz BEREKET, Ecenur BİRYAN, and Deniz SANOĞLU. "The Latest Developments in Glass Science and Technology." El-Cezeri Fen ve Mühendislik Dergisi 4, no. 2 (May 31, 2017): 209–33. http://dx.doi.org/10.31202/ecjse.318204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Soga, Naohiro. "Glass Science and Technology for the 21st Century." TRENDS IN THE SCIENCES 5, no. 5 (2000): 82–84. http://dx.doi.org/10.5363/tits.5.5_82.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Soga, Naohiro. "Glass Science and Technology in the New Millennium." TRENDS IN THE SCIENCES 6, no. 3 (2001): 76–78. http://dx.doi.org/10.5363/tits.6.3_76.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gupta, Prabhat K., and Arthur H. Heuer. "A. R. Cooper Symposium on Glass Science and Technology." Journal of the American Ceramic Society 76, no. 5 (May 1993): 1076. http://dx.doi.org/10.1111/j.1151-2916.1993.tb03722.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gupta, Prabhat K., and Arthur H. Heuer. "Alfred R. Cooper's Contributions to Glass Science and Technology." Journal of the American Ceramic Society 76, no. 5 (May 1993): 1077–80. http://dx.doi.org/10.1111/j.1151-2916.1993.tb03723.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Greiner-Wronowa, E. "Glass Decoration Elements – History and Technology." Advanced Materials Research 39-40 (April 2008): 505–10. http://dx.doi.org/10.4028/www.scientific.net/amr.39-40.505.

Повний текст джерела
Анотація:
Glass decoration elements have been known for centuries. Many of them are preserved in a good shape. Actually the glass production development was started from tiny pieces called glass beads. Some of these products belong to very important historical objects which undergoing conservator activity to preserve our cultural heritage. To realize such enterprise very detailed research should be done. This paper is about testing of different glass decoration elements which belong to historical objects, in order to get information about their history and technology production. This research was carried out on small pieces of glass borrowed from historical objects in partnership between AGH - Technical University of Science and Technology and four different conservator groups. Testing made use of non-destructive techniques, like: EDS, FTIR, AFM.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Glass science and technology"

1

McCray, William Patrick. "The culture and technology of glass in Renaissance Venice." Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/290650.

Повний текст джерела
Анотація:
Venetian glass, especially that of the Renaissance, has been admired for centuries due to its quality workmanship and overall visual appeal. In addition, a certain mystique surrounds the glassmakers of Venice and their products. This dissertation research undertakes a comprehensive view of the culture and technology of Renaissance Venetian glass and glassmaking. Particular attention is paid to luxury vessel glass, especially those made of the "colorless" material typically referred to as cristallo. This segment of the industry is seen as the primary locus of substantial technological change. The primary question examined in this work is the nature of this technological change, specifically that observed in the Renaissance Venetian glass industry circa 1450-1550. After providing an appropriate social and economic context, a discussion of Venice's glass industry in the pre-Renaissance is given. Industry and guild trends and conditions which would be influential in later centuries are identified. In addition, the sudden expansion of Venice's glass production in the mid-15th century is described as a self-catalyzed phenomenon in response to prevailing cultural and economic conditions. Demand is identified as a necessary precursor to the production of luxury glass. Building on this concept, activities and behaviors relevant to demand, production, and distribution of Venetian glass are examined in depth. The interaction between the Renaissance consumer and producer is treated along with the position of Venice's glass industry in the overall culture and economy of the city. It is concluded that the technological changes observed in Venice's Renaissance luxury glass industry arose primarily out of perceived consumer demand. Social and economic circumstances particular to Renaissance Italy created an environment in which a technological development such as cristallo glass could take place. The success of the industry in the 15th and 16th centuries can be found in the fruitful interplay between consumers and producers, the manner in which the industry was organized, coupled with the skill of the Venetian glassmakers to make and work new glass compositions into a variety of desired objects.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Aleksandrian, Arsen, and Vinblad Emil Sigrén. "Wearables and the potential of Google Glass." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-177323.

Повний текст джерела
Анотація:
The Mobile Life (TML) is a company with great passion for mobile devices that has set its primary focus on developing tailor-made mobile applications. Some of their bigger clients consist of airlines where TML designs, develops and delivers applications, in which travelers who travel with the airline can use to browse through, reserve and book flights. Wearable Technology is being more and more embraced as the future big addition to the ecosystem of mobile devices and exploring what some of the more prominent wearables have to offer is very much in the interest of aspiring companies like TML. To understand more in-depth what it means to develop applications for devices that might suffer from vast limitations in regards to interaction and feedback, we would first investigate what coming wearables could be recognized as prominent. The wearables that we concluded as suitable to investigate closer were Google Glass, Android Wear and various smartwatches. Out of these, Google Glass was the device chosen to act as our platform when exploring the potential of a wearable. A suitable way of understanding the possibilities and limitations of user interaction for Google Glass was to develop our own flight booking application for Glass. The realization we got was that there are various aspects of Glass that limits the kind of applications that can be made for it. The two primary things are the limits of the hardware and the fact that user interaction has taken a step back. From the graphical directmanipulation interaction that we nowadays are so used to in smartphones, to a simple menu system with limitations to how much the user can interact and how much feedback the program can show the user.
The Mobile Life (TML) är ett företag med stort engagemang inom mobil utveckling med fokus på att leverera skräddarsydda mobila lösningar. Vissa av deras större kunder inkluderar flygbolag som TML designar, utvecklar och levererar applikationer för resenärer att söka boka och köpa flygbiljetter. Wearable Technology blir mer och mer accepterat som nästa stora tillskott till det mobila ekosystemet och däri ligger intresset av att undersöka vad de mest hypade enheterna har att erbjuda för avancerande företag som TML. För att få en bättre insikt i vad det betyder att utveckla applikationer för enheter som markant skiljer sig från mobiltelefoner och surfplattor i avseende av prestanda och möjligheter gällande inmatning och utmatning av information tog vi fram de mest framträdande enheterna. De mest framträdande enheterna visade sig vara Google Glass, Android Wear och diverse smarta klockor. Utifrån dessa valdes Google Glass som vår plattform för att undersöka möjligheterna för wearables. Ett lämpligt sätt att förstå möjligheter och begränsningar inom användarinteraktion för Google Glass var att utveckla vår egen flygboknings applikation för Glass. Insikten vi fick var att det finns olika aspekter av Glass som begränsar den typ av applikation som kan göras för den. De två primära sakerna är begränsningar för hårdvara och det faktum att användarinteraktion har på ett vis tagit ett steg tillbaka. Från den grafiska direktmanipulering interaktion som vi idag är så vana vid i smartphones, till ett enkelt menysystem med begränsningar för hur mycket användaren kan interagera och hur mycket feedback programmet kan visa användaren.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sandgren, Elin. "Leaching of Glass Waste – Structure and Humidity Cell Tests." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-388059.

Повний текст джерела
Анотація:
Glass production has historically occurred at around 50 glassworks in Sweden, in a region known as the Kingdom of Crystals (Glasriket). Today, most of these sites are no longer active and left behind is glass waste of different forms (both as fragments of finished glass as well as unrefined glass melts). Consequently, increased concentrations of different metals, especially arsenic, lead and cadmium, have been found around the sites, both in soil as well as in ground and surface water. Between 2016 and 2019, the Geological Survey of Sweden (SGU) assigned Golder Associates AB (Golder) to evaluate the environmental risks at three different glassworks: Flerohopp, Åryd and Alsterbro. The results, based on humidity cell tests (HCT) conducted on glass samples from each site, showed that glass itself leached to a surprisingly high extent. Based on this, the aim of this master thesis has been to explain trends in glass leaching by a thorough literature review and through the analysis of HCT data of glass samples. Additionally, the speciation of different metals in the leachate was investigated based on geochemical modelling using PHREEQC. Results from the literature review show that one of the possible mechanisms for the leaching of glass in contact with water is ion exchange, which occurs at the surface of the glass, namely between glass components and H+ ions in water. Additionally, the literature also argues that glass with higher silica content form a more resilient structure, in contrast to glass which contains a large amount of modifiers, such as Na and Ca. Researchers speculate that adding such modifiers to the glass mass opens up the structure, making it more vulnerable upon contact with water. Looking at the total concentration of elements from the three glassworks, the results show a variation in silica content in relation to other elements. In line with this hypothesis, the sample from Åryd, which contained a higher proportion of modifiers, showed a high leaching rate of both Na and Si. Furthermore, the result shows that the leaching of Na and As follows the same pattern over the HCT period for all glassworks. This is, to some extent, also the case for Pb although the correlation is not as significant. This could be explained by the result from geochemical modelling, showing that As tends to dissolve into the leachate while Pb is more prone to forming secondary minerals. Hence explaining their differences in leaching behavior. The result from this study showed no clear correlation between Ca and either As or Pb which could potentially be explained by the formation of precipitates. However, another approach to describe the difference in the behavior between Na and Ca is based on the glass structure itself as well as the hypothesis that Na+ participate in ion exchange to a larger extent than Ca2+. Consequently, the leaching of Na+ makes the surface structure more vulnerable, thereby promoting the leaching of other components such as As and Pb.
Produktion av glas har historiskt skett på cirka 50 glasbruk i Sverige i ett område som kallas Glasriket. I dag är produktionen vid majoriteten av dessa glasbruk avvecklad och kvar på platserna finns glasavfall i olika former, både som skärvor av färdigt glas och som ej färdigställd glasmassa. Som en konsekvens av detta har förhöjda halter av olika metaller, särskilt arsenik, bly och kadmium, påträffats i jorden såväl som i grund- och ytvattnet kring glasbruken. Mellan åren 2016 och 2019 gav Sveriges geologiska undersökning (SGU) i uppdrag till Golder Associates AB (Golder) att uträtta huvudstudier och bedömma risker vid tre olika glasbruk, Flerohopp, Åryd och Alsterbro. Resultaten, baserade på fuktkammarförsök på glassavfall, påvisade att glas lakade till en överraskande hög utsträckning. Detta resultat lade grunden till detta examensarbete med frågeställningar i syfte att förklara lakning av glas baserat på en genomgående litteraturstudie samt analys av resultat från fuktkammarförsöken. Vidare har även geokemisk modellering med programmet PHREEQC gjorts för att identifiera olika specifieringar av metaller som kan förväntas påträffas i lakvätskan. Resultat från litteraturstudien visar att en möjlig process som kan förklara lakning av glas vid kontakt med vatten är jonbyte mellan glasets beståndsdelar och H+-jonerna i vattnet. Tidigare studier påvisar att ett högre kiselinnehåll i glaset skapar en mer motståndskraftig struktur än glas som innehåller en förhållandevis hög andel modifierare, såom Na och Ca. Forskare spekularar kring huruvida tillsatsen av modifierare till glasmassan bidrar till att öppna upp glasstrukturen och som en konsekvens av detta göra strukturen mer sårbar. Vid analys av prover tagna vid de tre olika glasbruken påvisade resultaten ett varierat kiselinnehåll i förhållande till övriga ämnen. I linje med denna hypotes påvisade provet från Åryd den högsta andelen modifierare och samtidigt även den högsta lakningen av Na såväl som Si. Vidare påvisar resultatet att lakningen av Na och As följer samma mönster över hela fuktkammarförsöket. Detta kan delvis ses för Pb men korrelationen är inte lika signifikant som för As. En förklaring till detta baseras på resultat från geokemisk modellering, där As tenderar att gå i lösning medan Pb kan förväntas forma sekundära mineral vilket därmed kan antas kontrollera lakningen. Resultatet från denna studie visade ingen korrelation mellan varken Ca och As eller Ca och Pb vilket också skulle kunna förklaras av utfällningar i form av Ca-mineral i lakvätskan. En annan utgångspunkt för att beskriva den skillnad som kan ses mellan Na och Ca baseras på själva glasstrukturen och hur Na+ deltar i jonbyte till en högre grad än vad Ca2+ gör. Som en konsekvens av detta bidrar lakningen av Na+ till att ytan på glaset blir mer sårbar och på så sätt gör att ämnen som As och Pb blir mer lättåtkomliga. Detta resulterar i en större möjlighet för dessa att delta i reaktioner på ytan och därmed laka ut från strukturen.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

De, Cino Thomas James. "A Usability and Learnability Case Study of Glass Flight Deck Interfaces and Pilot Interactions through Scenario-based Training." NSUWorks, 2016. http://nsuworks.nova.edu/gscis_etd/948.

Повний текст джерела
Анотація:
In the aviation industry, digitally produced and presented flight, navigation, and aircraft information is commonly referred to as glass flight decks. Glass flight decks are driven by computer-based subsystems and have long been a part of military and commercial aviation sectors. Over the past 15 years, the General Aviation (GA) sector of the aviation industry has become a recent beneficiary of the rapid advancement of computer-based glass flight deck (GFD) systems. While providing the GA pilot considerable enhancements in the quality of information about the status and operations of the aircraft, training pilots on the use of glass flight decks is often delivered with traditional methods (e.g. textbooks, PowerPoint presentations, user manuals, and limited computer-based training modules). These training methods have been reported as less than desirable in learning to use the glass flight deck interface. Difficulties in achieving a complete understanding of functional and operational characteristics of the GFD systems, acquiring a full understanding of the interrelationships of the varied subsystems, and handling the wealth of flight information provided have been reported. Documented pilot concerns of poor user experience and satisfaction, and problems with the learning the complex and sophisticated interface of the GFD are additional issues with current pilot training approaches. A case study was executed to explore ways to improve training using GFD systems at a Midwestern aviation university. The researcher investigated if variations in instructional systems design and training methods for learning glass flight deck technology would affect the perceptions and attitudes of pilots of the learnability (an attribute of usability) of the glass flight deck interface. Specifically, this study investigated the effectiveness of scenario-based training (SBT) methods to potentially improve pilot knowledge and understanding of a GFD system, and overall pilot user experience and satisfaction. Participants overwhelmingly reported positive learning experiences from scenario-based GFD systems flight training, noting that learning and knowledge construction were improved over other training received in the past. In contrast, participants rated the usability and learnability of the GFD training systems low, reporting various problems with the systems’ interface, and the learnability (first-time use) of the complex GFD system. However, issues with usability of the GFD training systems did not reduce or change participant attitudes towards learning and mastering GFD systems; to the contrary, all participants requested additional coursework opportunities to train on GFD systems with the scenario-based flight training format.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Петров, Дмитро Вікторович. "Технологія оптичних кольорових стекол інфрачервоного діапазону спеціального призначення". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41528.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук (Ph.D) за спеціальністю 05.17.11 – технологія тугоплавких неметалічних матеріалів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2019. Дисертація присвячена створенню оптичних кольорових стекол зі спектральними параметрами – коефіцієнтом пропускання на довжині хвилі 1060 τ(λ₁₀₆₀) >65 %, поглинанням у спектральному діапазоні до 950 нм та технологіям їх отримання. На цей час існуючі стекла лише частково виконують ці умови, або технології їх отримання є нерентабельними для масового виробництва, тому було поставлена задача про створення стекол, які б могли задовольняти ці умови з фактором технологічності у виробництві. Вирішення досягнуто завдяки дослідженням поглинальної дії системи барвників Cr₂O₃-Mn₂O₃ у системі R₂O-PbO-SiO₂ та додатковому нанесенню оптичного покриття. Завдяки дослідженням було встановлено механізми забарвлення з урахуванням впливу домішок-барвників (Fe₂O₃/FeO), а також знайдені оптимальні концентрації барвників у склі. При розробці технології отримання оптичного кольорового скла були дослідженні основні технічні операції та методи контролю якості скла, що дозволяє отримувати дане скло у виробничому масштабі. Розроблені параметри контролю протікання процесів гомогенізації та освітлення розплаву скла з метою підвищення якості продукції. Також були розроблені методики обробки деталей зі скла та нанесення оптичних покриттів. Для автоматизації виробництва даної продукції та зменшення впливу людського фактору було розроблено програмне забезпечення автоматичної системи керування технологічними процесами (АСК ТП).
Dissertation for the Ph.D. degree in specialty 05.17.11 – "Technology of refractory nonmetallic materials". – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2019. The dissertation is devoted to the development of infrared optical glasses with next spectral characteristics, as well as the creation of technologies for their production. The spectral characteristics are transmittance at a wavelength of 1060 nm 1060 τ (λ₁₀₆₀)>65% and absorption in the spectral range up to 950 nm. The solution to this problem was achieved due to the addition of the Cr₂O₃-Mn₂O₃ colorant system to the glass matrix of the R₂O-PbO-SiO₂ system, as well as the additional optical thin-film coatings. For production implementation optical color glass a pot regenerator furnace was used. The ceramic vessel with a volume of 500 liters was chosen. The temperature of the production was 1420 ± 20 °С. To improve the quality of optical glass practical studies were carried out. These studies devote to the modes of batch filling, mixing and temperature parameters. Fundamental researches were conducted on the mode of cooling of colored optical glass. For the first time for such glasses the stage of cooling made by inertia cooling of the furnace construction without gas. Due to introduction of the results and improving of the spectral parameters the volume of quality glass yield has increased. The software was developed to control the technological processes of the furnace in automatic mode.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Петров, Дмитро Вікторович. "Технологія оптичних кольорових стекол інфрачервоного діапазону спеціального призначення". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41488.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук (Ph.D) за спеціальністю 05.17.11 – технологія тугоплавких неметалічних матеріалів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2019. Дисертація присвячена створенню оптичних кольорових стекол зі спектральними параметрами – коефіцієнтом пропускання на довжині хвилі 1060 τ(λ₁₀₆₀) >65 %, поглинанням у спектральному діапазоні до 950 нм та технологіям їх отримання. На цей час існуючі стекла лише частково виконують ці умови, або технології їх отримання є нерентабельними для масового виробництва, тому було поставлена задача про створення стекол, які б могли задовольняти ці умови з фактором технологічності у виробництві. Вирішення досягнуто завдяки дослідженням поглинальної дії системи барвників Cr₂O₃-Mn₂O₃ у системі R₂O-PbO-SiO₂ та додатковому нанесенню оптичного покриття. Завдяки дослідженням було встановлено механізми забарвлення з урахуванням впливу домішок-барвників (Fe₂O₃/FeO), а також знайдені оптимальні концентрації барвників у склі. При розробці технології отримання оптичного кольорового скла були дослідженні основні технічні операції та методи контролю якості скла, що дозволяє отримувати дане скло у виробничому масштабі. Розроблені параметри контролю протікання процесів гомогенізації та освітлення розплаву скла з метою підвищення якості продукції. Також були розроблені методики обробки деталей зі скла та нанесення оптичних покриттів. Для автоматизації виробництва даної продукції та зменшення впливу людського фактору було розроблено програмне забезпечення автоматичної системи керування технологічними процесами (АСК ТП).
Dissertation for the Ph.D. degree in specialty 05.17.11 – "Technology of refractory nonmetallic materials". – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2019. The dissertation is devoted to the development of infrared optical glasses with next spectral characteristics, as well as the creation of technologies for their production. The spectral characteristics are transmittance at a wavelength of 1060 nm 1060 τ (λ₁₀₆₀)>65% and absorption in the spectral range up to 950 nm. The solution to this problem was achieved due to the addition of the Cr₂O₃-Mn₂O₃ colorant system to the glass matrix of the R₂O-PbO-SiO₂ system, as well as the additional optical thin-film coatings. For production implementation optical color glass a pot regenerator furnace was used. The ceramic vessel with a volume of 500 liters was chosen. The temperature of the production was 1420 ± 20 °С. To improve the quality of optical glass practical studies were carried out. These studies devote to the modes of batch filling, mixing and temperature parameters. Fundamental researches were conducted on the mode of cooling of colored optical glass. For the first time for such glasses the stage of cooling made by inertia cooling of the furnace construction without gas. Due to introduction of the results and improving of the spectral parameters the volume of quality glass yield has increased. The software was developed to control the technological processes of the furnace in automatic mode.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ayyagari, Venkata A. "Surface Degradation Behavior of Bulk Metallic Glasses and High Entropy Alloys." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1062863/.

Повний текст джерела
Анотація:
In this study, the surface degradation behavior was studied for typical examples from bulk metallic glasses (BMGs), metallic glass composites (MGCs) and high entropy alloys (HEAs) alloy systems that are of scientific and commercial interest. The corrosion and wear behavior of two Zr-based bulk metallic glasses, Zr41.2Cu12.5Ni10Ti13.8Be22.5 and Zr57Cu15.4Ni12.6Al10Nb5, were evaluated in as-cast and thermally relaxed states. Significant improvement in corrosion rate, wear behavior, and friction coefficient was seen for both the alloys after thermal relaxation. Fully amorphous structure was retained with thermal relaxation below the glass transition temperature. This improvement in surface properties was explained by annihilation of free volume, the atomic scale defects in amorphous metals resulting from kinetic freezing. Recently developed MGCs, with in situ crystalline ductile phase, demonstrate a combination of mechanical properties and fracture behavior unseen in known structural metals. The composites showed higher wear rates but lower coefficient of friction compared to monolithic amorphous glasses. No tribolayer formation was seen for the composites in sharp contrast to that of the monolithic metallic glasses. Corrosion was evaluated by open circuit potential (OCP) analysis and potentiodynamic polarization. Site-specific corrosion behavior was studied by scanning vibration electrode technique (SVET) to identify formation of galvanic couples. Scanning kelvin probe microscope was used to map elecropositivity difference between the phases and linked to wear/corrosion behavior. Phases with higher elecropositivity were more susceptible to surface degradation. Wear and corrosion synergy in marine environment was evaluated for two high entropy alloys (HEAs), CoCrFeMnNi and Al0.1CoCrFeNi. Between the two alloys, Al0.1CoCrFeNi showed better wear resistance compared to CoCrFeMnNi in dry and marine conditions due to quicker passivation, a higher magnitude of polarization resistance and significantly larger pitting resistance.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Simon, Mark Alexander. "Second Phase Filamentation and Bulk Conduction in Amorphous Thin Films." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1302207950.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bellini, Federico. "Il sistema Trauma Tracker - individuazione e analisi di parametri vitali acquisiti da monitor multiparametrico." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/11898/.

Повний текст джерела
Анотація:
Lo scopo della presente tesi è lo studio e la progettazione di un sistema Hands-Free applicato in ambito Healthcare, volto ad aiutare il personale sanitario nello svolgimento delle mansioni lavorative. Il progetto, denominato Trauma Tracker, ha avuto origine grazie alla collaborazione con medici ed infermieri dell'ospedale Maurizio Bufalini di Cesena. In particolare, il sistema in prodotto si prende carico della compilazione del report finale contenente tutte le operazioni svolte sui pazienti nell'ambito del Pronto Soccorso, riducendo così notevolmente le possibilità di errori dovuti a fattori umani. Durante le fasi di sviluppo e progettazione sono state aggiunte ulteriori funzionalità al sistema, fino a farlo diventare vero e proprio oggetto incantato, in grado di esibire proprietà finora inimmaginabili in questo campo di applicazione. Trauma Tracker, almeno in queste prime fasi, non si propone come uno strumento immediatamente utilizzabile sul campo e pronto ad affiancare i medici, poiché necessiterebbe subito di qualità come robustezza ed affidabilità a livelli estremamente elevati. Per questo motivo il progetto è stato trattato come un "Proof of Concept", ossia un prototipo che ha lo scopo di dimostrare la fattibilità di tale sistema nella realtà, e di verificarne l'utilità una volta applicato in uno scenario concreto. L'argomento trattato ha quindi una grande importanza, poiché getta le basi di una tecnologia che un giorno potrà aiutare medici ed infermieri a svolgere al meglio l'impegnativo compito di salvare vite. In questa tesi, è stato approfondito in particolare il sottosistema utilizzato per il riconoscimento dei parametri vitali dal monitor multi-parametrico posto nei diversi reparti ospedalieri. Esso ha richiesto lunghe fasi di implementazione e collaudo per ottenere dei risultati soddisfacenti, che alla fine sono stati raggiunti.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tolstaya, A. S. "Google glass." Thesis, Sumy State University, 2015. http://essuir.sumdu.edu.ua/handle/123456789/40504.

Повний текст джерела
Анотація:
Modern technologies are developing so fast that it is impossible to follow them all. Google Glass is something new in the technology – something, that can change our life in the nearest future. It‘s a child of Google Inc.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Glass science and technology"

1

H, Beall G., ed. Glass-ceramic technology. Hoboken, New Jersey: Wiley-The American Ceramic Society, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Indo-US Workshop on Current Trends in the Science and Technology of Glass (1988 Bangalore, India). Current trends in the science and technology of glass. Edited by Jain H. Singapore: World Scientific Pub. Co., 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

European Society of Glass Science and Technology. Conference. Fundamentals of glass science and technology 1993: Proceedings of the Second Conference of the European Society of Glass Science and Technology, Venice, Italy, 21-24 June 1993. Murano, Venice, Italy: Stazione sperimentale del vetro, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lim, Jenni. All about glass. Vernon Hills, IL: ETA/Cuisenaire, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Barton, James. Le verre, science et technologie. Les Ulis: EDP sciences, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fluoride glass optical fibers. Glasgow: Blackie, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

European Society of Glass Science and Technology. Conference. Fundamentals of the glass manufacturing process: Proceedings of the First Conference of the European Society of Glass Science and Technology : Sheffield, England, 9-12 September 1991. Sheffield, England: Society of Glass Technology, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Henderson, Linda Dalrymple. Duchamp in context: Science and technology in the Large glass and related works. Princeton, N.J: Princeton University Press, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Henderson, Linda Dalrymple. Duchamp in context: Science and technology in the Large glass and related works. Princeton, N.J: Princeton University Press, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

International Conference on Ceramic Processing Science (7th 2000 Inuyama-shi, Japan). Ceramic processing science VI: Proceedings of the 7th International Conference on Ceramic Processing Science, May 15-18, 2000, in Inuyama City, Japan. Westerville, Ohio: American Ceramic Society, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Glass science and technology"

1

Khazanov, V. E., Yu I. Kolesov, and N. N. Trofimov. "Glass fibres." In Fibre Science and Technology, 15–230. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0565-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hourston, D. J. "Glass Transition." In Polymer Science and Technology Series, 109–12. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9231-4_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zu, Qun, Mette Solvang, and Hong Li. "Commercial Glass Fibers." In Fiberglass Science and Technology, 1–87. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72200-5_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nunzi Conti, Gualtiero, S. Soria, Simone Berneschi, M. Brenci, F. Cosi, S. Pelli, C. Armellini, et al. "Glass Microspherical Lasers." In Advances in Science and Technology, 46–55. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908158-12-5.46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Neuville, Daniel R., T. Charpentier, J. C. Du, Y. Z. Yue, Wilfried Blanc, Maria R. Cicconi, Matthieu Lancry, and M. Ren. "Structure Characterizations and Molecular Dynamics Simulations of Melt, Glass, and Glass Fibers." In Fiberglass Science and Technology, 89–216. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72200-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Thomason, James L. "Sizing Chemistry of Glass Fibers." In Fiberglass Science and Technology, 259–321. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72200-5_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rüssel, Christian. "Glass Ceramics: Silica- and Alumina-Based." In Ceramics Science and Technology, 375–406. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527631926.ch9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rüssel, Christian. "Glass Ceramics: Silica- and Alumina-Based." In Ceramics Science and Technology, 375–406. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527631940.ch9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Karger-Kocsis, József. "Glass mat reinforced thermoplastic polypropylene." In Polymer Science and Technology Series, 284–90. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4421-6_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Reitz, G. M., Oscar R. K. Montedo, Orestes Estevam Alarcon, Dachamir Hotza, and A. P. Novaes de Oliveira. "Roll Pressed LZSA Glass-Ceramics." In Advances in Science and Technology, 442–46. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-01-x.442.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Glass science and technology"

1

Gordon, Gaile G. "Automated glass-fragmentation analysis." In Electronic Imaging: Science & Technology, edited by A. Ravishankar Rao and Ning Chang. SPIE, 1996. http://dx.doi.org/10.1117/12.232245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bayya, Shyam S., Joshua A. Wojcik, Jasbinder S. Sanghera, and Ishwar D. Aggarwal. "VIS-IR transmitting BGG glass and glass-ceramics." In International Symposium on Optical Science and Technology, edited by Alexander J. Marker III and Eugene G. Arthurs. SPIE, 2000. http://dx.doi.org/10.1117/12.405282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jain, H., A. R. Cooper, K. J. Rao, and D. Chakravorty. "CURRENT TRENDS IN THE SCIENCE AND TECHNOLOGY OF GLASS." In Indo–US Workshop. WORLD SCIENTIFIC, 1989. http://dx.doi.org/10.1142/9789814541213.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kley, Ernst-Bernhard, Hans-Joerg Fuchs, and Arnd Kilian. "Fabrication of glass lenses by melting technology." In International Symposium on Optical Science and Technology, edited by Ernst-Bernhard Kley and Hans Peter Herzig. SPIE, 2001. http://dx.doi.org/10.1117/12.448027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hermanns, Christoph. "Laser cutting of glass." In International Symposium on Optical Science and Technology, edited by Alexander J. Marker III and Eugene G. Arthurs. SPIE, 2000. http://dx.doi.org/10.1117/12.405287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Duignan, Jason P., Lesley L. Taylor, and Gary Cook. "Developing photorefractive glass composites." In International Symposium on Optical Science and Technology, edited by Christopher M. Lawson and Klaus Meerholz. SPIE, 2002. http://dx.doi.org/10.1117/12.452722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Thorsness, C. B., Tayyab I. Suratwala, Rusty A. Steele, Jack H. Campbell, Joseph S. Hayden, S. A. Pucilowski, and Koji Suzuki. "Dehydroxylation of phosphate laser glass." In International Symposium on Optical Science and Technology, edited by Alexander J. Marker III and Eugene G. Arthurs. SPIE, 2000. http://dx.doi.org/10.1117/12.405283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tesar, John C. "Mozart, dice, and glass selection." In International Symposium on Optical Science and Technology, edited by Jose M. Sasian. SPIE, 2000. http://dx.doi.org/10.1117/12.402410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Itoh, Kazuyoshi, Wataru Watanabe, Kazuhiro Yamada, Ken-ichi Hayashi, and Junji Nishii. "Photofabrication for microphotonics in glass." In International Symposium on Optical Science and Technology, edited by Shizhuo Yin, Francis T. S. Yu, and Hans J. Coufal. SPIE, 2002. http://dx.doi.org/10.1117/12.454044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bless, Stephen J., and N. S. Brar. "Impact induced fracture of glass bars." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46348.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Glass science and technology"

1

Kruger, A. A. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford. Office of Scientific and Technical Information (OSTI), July 1995. http://dx.doi.org/10.2172/97048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jamison, Keith, Jack Eisenhauer, and Julie Rash. Glass Industry Technology Roadmap. Office of Scientific and Technical Information (OSTI), April 2002. http://dx.doi.org/10.2172/1218642.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Smith, B. F., N. Sauer, R. M. Chamberlin, S. Gottesfeld, B. R. Mattes, D. Q. Li, and B. Swanson. Separation science and technology. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/307877.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

ENGLER, O., J. BINGERT, and ET AL. TEXTURE SCIENCE AND TECHNOLOGY. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/787262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jones, Anita, and Larry Lynn. Defense Science and Technology. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada403874.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

M. ABRAMS, R. BAKER, and ET AL. CATALYSIS SCIENCE AND TECHNOLOGY. Office of Scientific and Technical Information (OSTI), August 2000. http://dx.doi.org/10.2172/768735.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

DEPARTMENT OF THE ARMY WASHINGTON DC. Army Science and Technology. Fort Belvoir, VA: Defense Technical Information Center, April 1998. http://dx.doi.org/10.21236/ada353425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rosenthal, Robert. Computer science and technology :. Gaithersburg, MD: National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.ir.87-3516.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Smart, J. ,. LLNL. Science and Technology Review. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/16733.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hixenbaugh, G. W., and G. W. Hixenbaugh. Science, technology and competitiveness. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.sp.837.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії