Добірка наукової літератури з теми "Glacier mass balance estimation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Glacier mass balance estimation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Glacier mass balance estimation"

1

Braithwaite, R. J., and S. C. B. Raper. "Estimating equilibrium-line altitude (ELA) from glacier inventory data." Annals of Glaciology 50, no. 53 (2009): 127–32. http://dx.doi.org/10.3189/172756410790595930.

Повний текст джерела
Анотація:
AbstractA glacier’s most fundamental altitude is the equilibrium-line altitude (ELA) because it divides the glacier into ablation and accumulation areas. The best parameterization of the ELA for glacier inventory is the balanced-budget ELA. We discuss direct estimation of balanced-budget ELA from mass-balance data for individual glaciers, and indirect estimation of balanced-budget ELA from simple topographic parameters available from the World Glacier Inventory (WGI), i.e. the area-median and maximum and minimum altitudes. Mass balance and ELA for individual glaciers are usually strongly correlated and we calculate balanced-budget ELA from the regression equation linking the two. We then compare balanced-budget ELA with area-median and mid-range altitudes for the 94 glaciers for which we have all the necessary data. The different ELA estimates agree well enough (±82 to ±125 m) to describe geographical variations in ELA and for application of glacier–climate models to glacier inventory data. Mid-range and area-median altitudes are already available for tens of thousands of glaciers in the current WGI and should be evaluated in future inventories.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zemp, M., E. Thibert, M. Huss, D. Stumm, C. Rolstad Denby, C. Nuth, S. U. Nussbaumer, et al. "Reanalysing glacier mass balance measurement series." Cryosphere 7, no. 4 (August 6, 2013): 1227–45. http://dx.doi.org/10.5194/tc-7-1227-2013.

Повний текст джерела
Анотація:
Abstract. Glacier-wide mass balance has been measured for more than sixty years and is widely used as an indicator of climate change and to assess the glacier contribution to runoff and sea level rise. Until recently, comprehensive uncertainty assessments have rarely been carried out and mass balance data have often been applied using rough error estimation or without consideration of errors. In this study, we propose a framework for reanalysing glacier mass balance series that includes conceptual and statistical toolsets for assessment of random and systematic errors, as well as for validation and calibration (if necessary) of the glaciological with the geodetic balance results. We demonstrate the usefulness and limitations of the proposed scheme, drawing on an analysis that comprises over 50 recording periods for a dozen glaciers, and we make recommendations to investigators and users of glacier mass balance data. Reanalysing glacier mass balance series needs to become a standard procedure for every monitoring programme to improve data quality, including reliable uncertainty estimates.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chernov, R. A., A. V. Kudikov, T. V. Vshivtseva, and N. I. Osokin. "Estimation of the surface ablation and mass balance of Eustre Grønfjordbreen (Spitsbergen)." Ice and Snow 59, no. 1 (March 20, 2019): 59–66. http://dx.doi.org/10.15356/2076-6734-2019-1-59-66.

Повний текст джерела
Анотація:
Due to climatic changes in Spitsbergen the glaciation of the Nordenskjold Land (West Spitsbergen) has significantly degraded over the past 100 years. Changes in glaciers are undoubtedly associated with intensive melting caused by a rise of summer air temperatures. Based on the results of field measurements of ablation on the East Grenford glacier, data on the ice reduction were obtained since 2004. Analysis of the results showed that magnitude of the surface ablation is in a good agreement with the values calculated by the Krenke–Hodakov formula, in which the argument is the average summer air temperature. The parabolic dependence of the Krenke-Hodakov formula with the exponent of 3.25 presented the best approximation to the field measurements for all high-altitude zones of the glacier with a correlation coefficient of 0.96. The calculated values of ablation of ice and snow were used to estimate the mass balance of the East Grenford glacier since 2004. The calculations were based on the following: measured values of jump in temperature at the boundary of the glacier, averaged values of the air temperature gradient, and averaged data on snow storage on the glacier. Data on the mass balance of the glacier is indicative of its shortening during the last decade, despite the interannual variations. In 2016, the glacier mass balance reached the lowest value equal to −1990 mm, the calculated value was equal to −1960 mm. Analysis of the data demonstrated that the average summer air temperature is the major factor affecting the glacier mass balance. These results may be useful for estimating melting and mass balance of a number of mountain glaciers of the Nordenskjold Land.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schöner, Wolfgang, and Reinhard Böhm. "A statistical mass-balance model for reconstruction of LIA ice mass for glaciers in the European Alps." Annals of Glaciology 46 (2007): 161–69. http://dx.doi.org/10.3189/172756407782871639.

Повний текст джерела
Анотація:
AbstractStepwise linear regression models were calibrated against the measured mass balance of glaciers in the Austrian Alps for the prediction of specific annual net balance and summer balance from climatological and topographical input data. For estimation of winter mass balance, a simple ratio between the amount of winter precipitation and the measured winter balance was used. A ratio with a mean value of 2.0 and a standard deviation of 0.44 was derived from the sample of measured winter balances. Climate input data were taken from the HISTALP database which offers a homogenized data source that is outstanding in terms of its spatial and temporal coverage. Data from the Austrian glacier inventory were used as topographical input data. From the group of possible predictors summer air temperature, winter precipitation, summer snow precipitation and continentality (as defined from seasonal temperature variation) were selected as climatological driving forces in addition to lowest glacier elevation and area-weighted mean glacier elevation as topographical driving forces. Summer temperature explains 60% of the variance of summer mass balance and 39% of the variance of annual mass balance. Additional factors increase the explained variance by 22% for summer and 31% for annual net balance. The calibrated mass-balance model was used to reconstruct the mass balance of Hintereisferner and Vernagtferner back to 1800. Whereas the model performs well for Hintereisferner, it fails for some sub-periods for Vernagtferner due to the complicated flow dynamics of the glacier.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zemp, M., E. Thibert, M. Huss, D. Stumm, C. Rolstad Denby, C. Nuth, S. U. Nussbaumer, et al. "Uncertainties and re-analysis of glacier mass balance measurements." Cryosphere Discussions 7, no. 2 (March 4, 2013): 789–839. http://dx.doi.org/10.5194/tcd-7-789-2013.

Повний текст джерела
Анотація:
Abstract. Glacier-wide mass balance has been measured for more than sixty years and is widely used as an indicator of climate change and to assess the glacier contribution to runoff and sea level rise. Until present, comprehensive uncertainty assessments have rarely been carried out and mass balance data have often been applied using rough error estimation or without error considerations. In this study, we propose a framework for re-analyzing glacier mass balance series including conceptual and statistical toolsets for assessment of random and systematic errors as well as for validation and calibration (if necessary) of the glaciological with the geodetic balance results. We demonstrate the usefulness and limitations of the proposed scheme drawing on an analysis that comprises over 50 recording periods for a dozen glaciers and we make recommendations to investigators and users of glacier mass balance data. Reanalysis of glacier mass balance series needs to become a standard procedure for every monitoring programme to improve data quality and provide thorough uncertainty estimates.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kuhn, Michael, Jakob Abermann, Michael Bacher, and Marc Olefs. "The transfer of mass-balance profiles to unmeasured glaciers." Annals of Glaciology 50, no. 50 (2009): 185–90. http://dx.doi.org/10.3189/172756409787769618.

Повний текст джерела
Анотація:
AbstractFor estimation of the mass balance of an unmeasured glacier, its area distribution with altitude, s (h), generally is the only available quantitative information. The appropriate specific balance profile, b (h), needs to be transferred from a measured glacier, where transfer means modification and adaptation to the topographic and climatic situation of the unmeasured glacier, such as altitude, exposure to sun and wind, or temperature. This study proposes the area median elevation, M, as a parameter of prime importance for the transfer. Using as an example ten Alpine glaciers, the similarity of M and equilibrium-line altitude is quantified and the effect of aspect and surrounding topography is qualitatively suggested. The transfer of b (h) between well-measured glaciers yielded differences in the mean specific balance of 150 mm in the mean of a 10 year period, which corresponds to a change in median altitude by 30 m. Transfer of b (h) with a shift according to median glacier elevation to a basin with 27 glaciers and 23 km2 ice cover agreed to within 10% with elevation changes converted from digital elevation models of 1969 and 1997.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Carturan, Luca, Federico Cazorzi, and Giancarlo Dalla Fontana. "Enhanced estimation of glacier mass balance in unsampled areas by means of topographic data." Annals of Glaciology 50, no. 50 (2009): 37–46. http://dx.doi.org/10.3189/172756409787769519.

Повний текст джерела
Анотація:
AbstractA new method was developed to estimate the mass balance in unsampled areas from existing datasets. Three years of mass-balance data from two glaciers in the central Italian Alps were used to develop and test a multiple-regression method based exclusively on a 10m resolution digital terrain model. The introduction of a relative elevation attribute, which expresses the degree of wind exposure of the gridcells, notably increased the amount of explainable variance in winter balance with respect to altitude itself. The summer balance is highly correlated with elevation, but, in order to obtain reliable extrapolations, the clear-sky shortwave radiation and the diurnal cloud-cover cycle had to be taken into account. The net annual mass balance on a glacier system comprising the two monitored glaciers was calculated by applying both a single regression of winter and summer balance with altitude and the new regression method. The consistency of results was assessed against measured net balances and snow-cover maps drawn in the ablation season. The results of the new method were in close agreement with observations and proved to be less sensitive to the spatial representation of the sampled areas.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Greene, Arthur M. "A time constant for hemispheric glacier mass balance." Journal of Glaciology 51, no. 174 (2005): 353–62. http://dx.doi.org/10.3189/172756505781829278.

Повний текст джерела
Анотація:
AbstractThe notion is developed of a mass-balance time constant applicable to the Northern Hemispheric glacier inventory taken as a whole. Ice dynamics are incorporated only implicitly in its estimation, which follows directly from a consideration of observed mass-balance and hemispheric temperature time series. While such a parameter must certainly be related to the rate at which glacier hypsometry adjusts to variations in climate, as are time constants derived via dynamic considerations, the parameter discussed herein differs with respect to its statistical character. For an ensemble of Northern Hemisphere glaciers a time-constant value on the order of a century is estimated. It is shown that such a value is consistent with the hemispheric near-equilibration of glaciers that prevailed around 1970. A ‘reference climate’ is defined, such that the mass balance in a given year is a function only of the difference between that year’s climate and the reference. This difference was small during the hemispheric near-equilibrium that prevailed around 1970, implying that the glacier wastage of the late 20th century is essentially a response to post-1970 warming. It is shown that precipitation fluctuations play a compensating role in the hemispheric net mass budget, in that they are strongly anticorrelated with fluctuations in temperature-induced melting. However, the contribution of precipitation does not override that of temperature, which remains the dominant influence on hemisphere-wide glacier fluctuations.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhu, Jingying, Chunqiao Song, Linghong Ke, Kai Liu, and Tan Chen. "Remote Sensing Investigation of the Offset Effect between Reservoir Impoundment and Glacier Meltwater Supply in Tibetan Highland Catchment." Water 13, no. 9 (May 7, 2021): 1307. http://dx.doi.org/10.3390/w13091307.

Повний текст джерела
Анотація:
This article presents multi-source remote sensing measurements to quantify the water impoundment and regulation of the Zhikong Reservoir (ZKR) and Pangduo Reservoir (PDR), together with the estimation of the glacier mass balance to explore whether the increased glacier meltwater supply can buffer the influences of the reservoir impoundment to some degree in the Tibetan highland catchment. The ZKR and PDR are two reservoirs constructed on the upper Lhasa River that originate from the Nyainqentanglha glaciers in the remote headwater in the Tibetan Plateau (TP) and lacks historical in situ hydrological observations in the long term. Therefore, the Joint Research Center (JRC) Global Surface Water dataset (GSW), and the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data were used for estimating the total amount of water storage of the two reservoirs, and the SRTM and TanDEM-X DEMs were used for estimating the glacier mass balance. The result shows that the total amount of water impounded by reservoirs is 0.76 Gt, roughly 54% of their design capacities. The mass balance of the glaciers is estimated by comparing the elevation changes between the SRTM and TanDEM-X DEMs. The glaciers in this region melt at an average rate of 0.09 ± 0.02 Gt·year−1 from 2000 to circa 2013, and the impounded water of these reservoirs is comparable to the amount of glacier-fed meltwater in eight years.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Machguth, Horst, Frank Paul, Martin Hoelzle, and Wilfried Haeberli. "Distributed glacier mass-balance modelling as an important component of modern multi-level glacier monitoring." Annals of Glaciology 43 (2006): 335–43. http://dx.doi.org/10.3189/172756406781812285.

Повний текст джерела
Анотація:
AbstractModern concepts of worldwide glacier monitoring include numerical models for (1) interconnecting the different levels of observations (local mass balance, representative length change, glacier inventories for global coverage) and (2) extrapolations in space (coupling with climate models) and time (backward and forward). In this context, one important new tool is distributed mass-balance modelling in complex mountain topography. This approach builds on simplified energy-balance models and can be applied for investigating the spatio-temporal representativity of the few mass-balance measurements, for estimating balance values at the tongue of unmeasured glaciers in order to derive long-term average balance values from a great number of glaciers with known length change, and for assessing special effects such as the influence of Sahara dust falls on the albedo and mass balance or autocorrelation effects due to surface darkening of glaciers with strongly negative balances. Experience from first model runs in the Swiss Alps and from applications to the extreme conditions in summer 2003 provides evidence about the usefulness of this approach for glacier monitoring and analysis of glacier changes in high-mountain regions. The main difficulties concern the spatial variability of the input parameters (e.g. precipitation, snow cover and surface albedo) and the uncertainties in the parameterizations of the components of the energy balance. Field measurements remain essential to tie the models to real ground conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Glacier mass balance estimation"

1

Podsiadło, Iwona Katarzyna. "Methods for the analysis of time series of multispectral remote sensing images and application to climate change variable estimations." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/322351.

Повний текст джерела
Анотація:
In the last decades, the increasing number of new generation satellite images characterized by a better spectral, spatial and temporal resolution with respect to the past has provided unprecedented source of information for monitoring climate changes.To exploit this wealth of data, powerful and automatic methods to analyze remote sensing images need to be implemented. Accordingly, the objective of this thesis is to develop advanced methods for the analysis of multitemporal multispectral remote sensing images to support climate change applications. The thesis is divided into two main parts and provides four novel contributions to the state-of-the-art. In the first part of the thesis, we exploit multitemporal and multispectral remote sensing data for accurately monitoring two essential climate variables. The first contribution presents a method to improve the estimation of the glacier mass balance provided by physically-based models. Unlike most of the literature approaches, this method integrates together physically-based models, remote sensing data and in-situ measurements to achieve an accurate and comprehensive glacier mass balance estimation. The second contribution addresses the land cover mapping for monitoring climate change at high spatial resolution. Within this work, we developed two processing chains: one for the production of a recent (2019) static high resolution (10 m) land cover map at subcontinental scale, and the other for the production of a long-term record of regional high resolution (30 m) land cover maps. The second part of this thesis addresses the common challenges faced while performing the analysis of multitemporal multispectral remote sensing data. In this context, the third contribution deals with the multispectral images cloud occlusions problem. Differently from the literature, instead of performing computationally expensive cloud restoration techniques, we study the robustness of deep learning architectures such as Long Short Term Memory classifier to cloud cover. Finally, we address the problem of the large scale training set definition for multispectral data classification. To this aim, we propose an approach that leverages on available low resolution land cover maps and domain adaptation techniques to provide representative training sets at large scale. The proposed methods have been tested on Sentinel-2 and Landsat 5, 7, 8 multispectral images. Qualitative and quantitative experimental results confirm the effectiveness of the methods proposed in this thesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Huss, Matthias. "Past and future changes in glacier mass balance /." Zürich : ETH, 2009. http://opac.nebis.ch/cgi-bin/showAbstract.pl?sys=000256345.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wiklund, Sara. "Long-term glacier mass balance of Nordenskiöldbreen, Svalbard." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-295789.

Повний текст джерела
Анотація:
The global warming that’s taking place have an impact over the Earth and the glaciers on Svalbard are undergoing rapid changes as a result. The annual air temperature has been rising on Svalbard since the early 1900’s and in a climate projection expected temperatures continue to rise. The glacial mass balance is important for monitoring glacier response to climate change.    In this study the mass balance of Nordenskiöldbreen from 1957 to 2016 is modelled with a temperature-index model. The meteorological data used in the model, precipitation and air temperature, has been measured at a weather station located in Longyearbyen since 1957. The long simulation run makes trends in mass balance, precipitation and air temperature apparent. The mass balance can also be correlated to the temperature and precipitation, which provide important information on how these affect the behavior of glaciers. The results obtained can be used to predict how glaciers change in the future with climate change. In the simulation Nordenskiöldbreen’s mass balance has a negative trend, precipitation doesn’t have any trend and air temperature has a positive trend. The long-term mass balance is controlled by air temperature and the short-term interannual mass balance is caused by precipitation fluctuations.
Den globala uppvärmningen som sker just nu har en påverkan över hela jorden och glaciärer på Svalbard genomgår snabba förändringar som följd. På Svalbard har den årliga medeltemperaturen stigit sedan början av 1900-talet och i en klimatprojicering förväntas temperaturen att fortsätta stiga. Den glaciala massbalansen är viktig för att övervaka glaciärers respons till klimatförändringar.    I detta arbete modelleras Nordenskiöldbreens massbalans från 1957 till 2016 med hjälp av en temperaturindex modell. Den meteorologiska data som används i modellen, nederbörd och temperatur, har mätts vid en väderstation i Longyearbyen sedan 1957. Med den långa tidsperioden i modellen blir långsiktiga trender i massbalans, nederbörd och temperatur tydliga. Massbalansen kan även korreleras mot temperatur och nederbörd, vilket ger viktig information om hur dessa påverkar glaciärers beteenden. De resultat som framkommer kan användas för att förutspå hur glaciärer förändras i framtiden med en klimatändring. I simuleringen har Nordenskiöldbreens massbalans en negativ trend, nederbörd har ingen trend och temperatur har en positiv trend. Det är temperatur som styr den långsiktiga massbalansen och den kortsiktiga mellanårs-massbalansen styrs av nederbörds fluktuationer.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Huss, Matthias Boes Robert. "Past and future changes in glacier mass balance /." Zürich : Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, 2009. http://opac.nebis.ch/cgi-bin/showAbstract.pl?sys=000263371.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fujita, Koji, and 耕史 藤田. "Effect of precipitation seasonality on climatic sensitivity of glacier mass balance." Elsevier, 2008. http://hdl.handle.net/2237/11360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rye, Cameron James. "Spatially distributed modelling of regional glacier mass balance : a Svalbard case study." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609569.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Herdes, Emilie. "Evolution of Seasonal Variations in Motion of the Kaskawulsh Glacier, Yukon Territory." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31835.

Повний текст джерела
Анотація:
Differential GPS data from 2007-2014 are used to assess horizontal and vertical velocity variations of the Kaskawulsh Glacier at interannual and intra-annual timescales. These indicate that an upglacier propagating high velocity event occurs every spring at the onset of melt, and that a downglacier propagating high velocity event occurs every fall or winter after melt has finished. These events suggest that the subglacial drainage system alternates between a distributed system in the winter and channelized system in the summer and fall. In addition, there is a strong negative correlation between summer melt and velocity the following fall and winter, with strong melt years resulting in low velocities. For each additional metre of summer melt, an 8.6% average decrease in velocity is observed on the glacier the following fall-winter. These results suggest that changes in the subglacial drainage system limit the sensitivity of glacier motion to increased meltwater inputs. Glacier motion will likely show a net decrease under a warming climate due to the negative correlation between surface melt rates and ice motion and a decrease in driving stresses as a result of reduced ice thicknesses. In addition, future fall-winter velocity patterns could be accurately predicted from only a month or two of summer melt data, with May-June melt providing the best indication of fall-winter motion. This study also suggests that the common assumption that glaciers are ‘stable’ in the late fall and winter is incorrect.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kilic, Lise. "Estimation des paramètres de surface des océans et de la banquise à partir d’observations micro-ondes basses fréquences." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS167.

Повний текст джерела
Анотація:
Les océans et la banquise jouent un rôle important dans le système climatique et météorologique. Une future mission satellite en micro-ondes passives basses fréquences, conçue pour observer les régions polaires est actuellement à l’étude à l’Agence Spatiale Européenne pour l’expansion du programme Copernicus. Les observations satellites en micro-ondes passives permettent une observation de la surface de la Terre par tous temps, aussi bien de jour que de nuit. Dans cette thèse, nous nous intéressons à l’estimation des paramètres de surface de l’océan et de la banquise à partir des observations satellites micro-ondes passives basses fréquences. L’objectif est de développer de nouvelles méthodes d’estimation de ces paramètres qui soient plus efficaces et adaptées à la future mission satellite micro-onde passive CIMR (Copernicus Imaging Microwave Radiometer). La première partie de la thèse traite de l’estimation des paramètres océaniques tels que la température de la surface de la mer, la salinité et la vitesse du vent océanique. La deuxième partie traite de l’estimation des paramètres de la banquise tels que la concentration en glace, l’épaisseur de neige et la température d’interface neige-glace. Enfin, avec les méthodes développées dans cette thèse les performances de la mission CIMR sont évaluées et comparées à celles des missions actuelles
The oceans and sea ice play an important role in the climate and weather system. A future low-frequency passive microwave satellite mission designed to observe the polar regions is currently under study at the European Space Agency for the expansion of the Copernicus programme. Passive microwave satellite observations provide all-weather observation of the Earth surface, both day and night. In this thesis, we are interested in estimating ocean and ice surface parameters from low-frequency passive microwave satellite observations. The objective is to develop new methods for estimating these parameters that are more efficient and adapted to the future passive microwave satellite mission CIMR (Copernicus Imaging Microwave Radiometer). The first part of the thesis deals with the estimation of ocean parameters such as sea surface temperature, salinity and ocean wind speed. The second part deals with the estimation of sea ice parameters such as sea ice concentration, snow depth and snow-ice interface temperature. Finally, with the methods developed in this thesis, the performances of the CIMR mission are evaluated and compared with the current missions
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bergman, Ottar. "A Regional Analysis of Changing Climate Conditions and Glacier Mass Balance in Svalbard." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-383930.

Повний текст джерела
Анотація:
The Arctic archipelago of Svalbard has experienced among the greatest increases in temperature on Earth in the last few decades. The changing climatic conditions have a large impact on the glacier mass balance. This study makes use of a highresolution model dataset with data on climatic and glacier conditions on Svalbard from 1957 to 2018. The model dataset is used to analyse the spatiotemporal variability in glacier mass balance across Svalbard and linking those changes to long-term trends in meteorological conditions. The study is focused on the spatial gradients in trends between two regions in Svalbard, the coldest part of the archipelago, Nordaustlandet and the milder southern part of the main island Spitsbergen. The north eastern (NE) region is found to have a greater increase in annual air temperature over the simulation period with 5.5 °C compared to 3.5 °C for the south western (SW) region. The increase in annual summer temperatures is much smaller with a total increase of 1 °C for the NW and 1.5 °C for the SW. Both regions show a small, but significant, increase of precipitation. Relative humidity and cloud cover in the NE are increasing slightly over the time period, probably due to retreating sea ice cover. Glacier melt and runoff are increasing in both regions, which is contributing to significant negative trends in the mass balance. The increase in melt and run off is stronger in the SW than in the NE. There’s a strong correlation between summer air temperature and glacier mass balance, melt and runoff. Refreezing in the NE is decreasing much faster than in the SW. Refreezing is strongly correlated with annual air temperatures in the NE and not in the SW, probably due to lower temperatures in the NE region.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gustavsson, Maja. "Mass Balance of the High-Arctic Glacier Nordenskiöldbreen, Svalbard, in a Changing Climate." Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-388495.

Повний текст джерела
Анотація:
Melting glaciers are the major contributor to sea level rise. Glaciers are sensitive indicators of climate change and current experience strong developments in a rapidly warming Arctic environment. Time-series of the mass balance of the glacier Nordenskiöldbreen are constructed by using height observations from the stake measurements on the glacier. The connection between the glacier mass balance and monthly averaged weather parameters observed at nearby meteorological stations will be analyzed. The total net balance on glacier Nordenskiöldbreen is found to be negative (-0.09 m w.e. per year) between 2005 and 2017. The mass balance during the summer season correlates strongest with maximum air temperature, while the winter balance is found to be mostly influenced by cloud cover and temperature, rather than precipitation. The results show that precipitation observed at nearby weather stations are not representative for precipitation amounts observed on the glacier.
Glaciärer som smälter är en av de största bidragen till den förhöjda havsnivån. Det är därför viktigt att studera Svalbards glaciärer för att kunna svara på hur den arktiska uppvärmningen påverkar issystemen. En tidsserie över massbalansen för glaciären Nordenskiöldbreen skapades genom höjdobservationer från stavmätningar befintliga på glaciären. I nästa steg analyserades kopplingen mellan glaciärmassbalansen och väderparametrarna som observerats vid närliggande meteorologiska stationer. Den totala netbalansen på glaciären Nordenskiöldbreen visade sig vara negativ (-0.09 m w.e. per år) mellan år 2005 och 2017. Massbalansen under sommarsäsongen korrelerade starkast med maximal lufttemperatur medan vinterbalansen var mest påverkad av molntäcke och temperatur, snarare än nederbörd. Resultaten visar att nederbörd observerad vid närliggande väderstationer inte är representativ för nederbördsmängder observerade på glaciären.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Glacier mass balance estimation"

1

Dyurgerov, Mark. Glacier mass balance and regime: Data of measurements and analysis. Edited by Meier Mark, Armstrong Richard L. 1941-, and University of Colorado, Boulder. Institute of Arctic and Alpine Research. Boulder, Colo: Institute of Arctic and Alpine Research, University of Colorado, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Geological Survey (U.S.), ed. Mass balance, meteorological, and runoff measurements at South Cascade Glacier, Washington, 1992 balance year. Tacoma, Wash: U.S. Dept. of the Interior, U.S. Geological Survey, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

M, Krimmel Robert. Mass balance, meteorological, and runoff measurements at South Cascade Glacier, Washington, 1992 balance year. Tacoma, Wash: U.S. Dept. of the Interior, U.S. Geological Survey, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

M, Krimmel Robert. Mass balance, meteorological, and runoff measurements at South Cascade Glacier, Washington, 1992 balance year. Tacoma, Wash: U.S. Dept. of the Interior, U.S. Geological Survey, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

M, Brugman, Canada. Department of the Environment., Norwegian Water Resources and Energy Administration., and National Hydrological Research Institute (Canada), eds. Glacier mass-balance measurements: A manual for field and office work. Ottawa: Ministry of Supply and Services Canada, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Geological Survey (U.S.), ed. Runoff, precipitation, mass balance, and ice velocity measurements at South Cascade Glacier, Washington, 1993 balance year. Tacoma, Wash: U.S. Geological Survey, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

March, Rod. Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1992 balance year. Fairbanks, Alaska: Dept. of Interior, U.S. Geological Survey, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

March, Rod. Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1992 balance year. Fairbanks, Alaska: U.S. Geological Survey, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

March, Rod. Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1992 balance year. Fairbanks, Alaska: U.S. Geological Survey, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

March, Rod. Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1992 balance year. Fairbanks, Alaska: U.S. Dept. of the Interior, Geological Survey, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Glacier mass balance estimation"

1

Geetha Priya, M., Ishmohan Bahuguna, D. Krishnaveni, and Suresh Devaraj. "Estimation of Geodetic Mass Balance for Bada Shigri Glacier and Samudra Tapu Glacier in Chandra Basin, India." In Water, Cryosphere, and Climate Change in the Himalayas, 101–13. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67932-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Haeberli, Wilfried. "Glacier Mass Balance." In Encyclopedia of Earth Sciences Series, 399–408. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2642-2_341.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pelto, Mauri. "Glacier Mass Balance." In Climate Driven Retreat of Mount Baker Glaciers and Changing Water Resources, 25–47. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22605-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hewitt, Kenneth. "Glacier Mass Balance Regimes." In Advances in Asian Human-Environmental Research, 143–62. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6311-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Oerlemans, J. "Modelling of Glacier Mass Balance." In Ice in the Climate System, 101–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-85016-5_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hewitt, Kenneth. "Glacier Mass Balance I: Snowfall and Glacier Nourishment." In Advances in Asian Human-Environmental Research, 87–116. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6311-1_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hewitt, Kenneth. "Glacier Mass Balance II: Ablation Losses." In Advances in Asian Human-Environmental Research, 117–41. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6311-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Armstrong, Richard L. "Mass Balance History of Blue Glacier, Washington, USA." In Glaciology and Quaternary Geology, 183–92. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-015-7823-3_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kaser, Georg. "Glacier Mass Balance and Climate in the South American Andes." In Series of the Centro de Estudios Científicos, 89–99. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0645-4_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Krimmel, Robert M. "Mass Balance and Volume of South Cascade Glacier, Washington 1958–1985." In Glaciology and Quaternary Geology, 193–206. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-015-7823-3_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Glacier mass balance estimation"

1

Podsiadlo, Iwona, Claudia Paris, Francesca Bovolo, Mattia Callegari, Ludovica De Gregorio, Daniel Günther, Carlo Marin, et al. "Integration of hydro-climatological model and remote sensing for glacier mass balance estimation." In Image and Signal Processing for Remote Sensing XXV, edited by Lorenzo Bruzzone, Francesca Bovolo, and Jon Atli Benediktsson. SPIE, 2019. http://dx.doi.org/10.1117/12.2533232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nela, Bala Raju, Gulab Singh, Debmita Bandyopadhyay, Akshay Patil, Shradha Mohanty, Mohamed Musthafa, and Girjesh Dasondhi. "Estimating Dynamic Parameters of Bara Shigri Glacier and Derivation of Mass Balance from Velocity." In IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2020. http://dx.doi.org/10.1109/igarss39084.2020.9323152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mullen, Ryan, Ray Kenny, and Scott White. "ESTIMATION OF SOUTH CASCADE GLACIER SUMMER MASS BALANCE DERIVED FROM HIGH-RESOLUTION SATELLITE IMAGERY IN 2004 AND 2008, WASHINGTON." In 68th Annual Rocky Mountain GSA Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016rm-275912.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Johnson, Erling, Dana Floricioiu, Ellen Schwalbe, Robert Koschitzki, Hans-Gerd Maas, Carlos Cardenas, and Gino Cassasa. "Calving Dynamics Derived From Satellite Sar Data in Support of Mass Balance Estimations in Lange Glacier, Antarctica." In 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS). IEEE, 2020. http://dx.doi.org/10.1109/lagirs48042.2020.9165619.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Poddar, Joyeeta, and Arvind Chandra Pandey. "Estimating the impact of changes in mass balance on variations in glacier area and snout fluctuations in Western Himalayas, J&K, India." In IGARSS 2014 - 2014 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2014. http://dx.doi.org/10.1109/igarss.2014.6947371.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Patel, Vatsal Dharmeshkumar, and Rishikesh Bharti. "Mass Balance Assessment of Zemu Glacier: An ELA-AAR Based Approach." In IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2022. http://dx.doi.org/10.1109/igarss46834.2022.9884503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Moore, Peter, Leah Nelson, and Theresa Dits. "SUPRAGLACIAL DEBRIS EXTENT AND MASS-BALANCE IMPACTS ON EMMONS GLACIER, MOUNT RAINIER." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-305604.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hyangsun Han and Hoonyol Lee. "Mass balance of Campbell Glacier, East Antarctica, derived from COSMO-SkyMed interferometric SAR images." In IGARSS 2014 - 2014 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2014. http://dx.doi.org/10.1109/igarss.2014.6947582.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Whorton, Erin, David Shean, Shad O'Neel, Daniel Fagre, Christopher McNeil, Adam Clark, Louis Sass, et al. "ASSESSING MASS BALANCE CHANGE AT SOUTH CASCADE GLACIER: IS IT REPRESENTATIVE OF REGIONAL GLACIERS?" In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-307714.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Buana, Lalu Aliyya Tirang ga Aji, Doni Prakasa Eka Putra, and Esti Handini. "Groundwater Recharge Estimation Using Chloride Mass Balance (CMB)." In International Conference on Sustainable Environment, Agriculture and Tourism (ICOSEAT 2022). Paris, France: Atlantis Press, 2022. http://dx.doi.org/10.2991/978-94-6463-086-2_90.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Glacier mass balance estimation"

1

Ednie, M., and M. N. Demuth. Mass balance results from the Cordillera Glacier-Climate Observing Network, British Columbia, Northwest Territories, and Alberta, for 2015 and 2016 balance years. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2019. http://dx.doi.org/10.4095/314926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cooper, Clay A., Ronald L. Hershey, John M. Healey, and Brad F. Lyles. Estimation of Groundwater Recharge at Pahute Mesa using the Chloride Mass-Balance Method. Office of Scientific and Technical Information (OSTI), July 2013. http://dx.doi.org/10.2172/1113247.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lacerda Silva, P., G. R. Chalmers, A. M. M. Bustin, and R. M. Bustin. Gas geochemistry and the origins of H2S in the Montney Formation. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329794.

Повний текст джерела
Анотація:
The geology of the Montney Formation and the geochemistry of its produced fluids, including nonhydrocarbon gases such as hydrogen sulfide were investigated for both Alberta and BC play areas. Key parameters for understanding a complex petroleum system like the Montney play include changes in thickness, depth of burial, mass balance calculations, timing and magnitudes of paleotemperature exposure, as well as kerogen concentration and types to determine the distribution of hydrocarbon composition, H2S concentrations and CO2 concentrations. Results show that there is first-, second- and third- order variations in the maturation patterns that impact the hydrocarbon composition. Isomer ratio calculations for butane and propane, in combination with excess methane estimation from produced fluids, are powerful tools to highlight effects of migration in the hydrocarbon distribution. The present-day distribution of hydrocarbons is a result of fluid mixing between hydrocarbons generated in-situ with shorter-chained hydrocarbons (i.e., methane) migrated from deeper, more mature areas proximal to the deformation front, along structural elements like the Fort St. John Graben, as well as through areas of lithology with higher permeability. The BC Montney play appears to have hydrocarbon composition that reflects a larger contribution from in-situ generation, while the Montney play in Alberta has a higher proportion of its hydrocarbon volumes from migrated hydrocarbons. Hydrogen sulphide is observed to be laterally discontinuous and found in discrete zones or pockets. The locations of higher concentrations of hydrogen sulphide do not align with the sulphate-rich facies of the Charlie Lake Formation but can be seen to underlie areas of higher sulphate ion concentrations in the formation water. There is some alignment between CO2 and H2S, particularly south of Dawson Creek; however, the cross-plot of CO2 and H2S illustrates some deviation away from any correlation and there must be other processes at play (i.e., decomposition of kerogen or carbonate dissolution). The sources of sulphur in the produced H2S were investigated through isotopic analyses coupled with scanning electron microscopy, energy dispersive spectroscopy, and mineralogy by X-ray diffraction. The Montney Formation in BC can contain small discrete amounts of sulphur in the form of anhydrite as shown by XRD and SEM-EDX results. Sulphur isotopic analyses indicate that the most likely source of sulphur is from Triassic rocks, in particular, the Charlie Lake Formation, due to its close proximity, its high concentration of anhydrite (18-42%), and the evidence that dissolved sulphate ions migrated within the groundwater in fractures and transported anhydrite into the Halfway Formation and into the Montney Formation. The isotopic signature shows the sulphur isotopic ratio of the anhydrite in the Montney Formation is in the same range as the sulphur within the H2S gas and is a lighter ratio than what is found in Devonian anhydrite and H2S gas. This integrated study contributes to a better understanding of the hydrocarbon system for enhancing the efficiency of and optimizing the planning of drilling and production operations. Operators in BC should include mapping of the Charlie Lake evaporites and structural elements, three-dimensional seismic and sulphate ion concentrations in the connate water, when planning wells, in order to reduce the risk of encountering unexpected souring.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mass balance, meteorology, area altitude distribution, glacier-surface altitude, ice motion, terminus position, and runoff at Gulkana Glacier, Alaska, 1996 balance year. US Geological Survey, 2003. http://dx.doi.org/10.3133/wri034095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Runoff, precipitation, mass balance, and ice velocity measurements at South Cascade Glacier, Washington, 1993 balance year. US Geological Survey, 1994. http://dx.doi.org/10.3133/wri944139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1993 balance year. US Geological Survey, 1997. http://dx.doi.org/10.3133/wri964299.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1994 balance year. US Geological Survey, 1998. http://dx.doi.org/10.3133/wri974251.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1992 balance year. US Geological Survey, 1996. http://dx.doi.org/10.3133/wri954277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mass balance, meteorological, ice motion, surface altitude, runoff, and ice thickness data at Gulkana Glacier, Alaska, 1995 balance year. US Geological Survey, 2000. http://dx.doi.org/10.3133/wri004074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Training report on field-based glacier monitoring: Mass balance measurement and hydrometeorologicaI station set-up. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 2019. http://dx.doi.org/10.53055/icimod.924.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії