Добірка наукової літератури з теми "Geometry"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Geometry".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Geometry"
Yasbiati, Yasbiati, and Titi Nurhayati. "PENINGKATAN KEMAMPUAN MENGENAL BENTUK GEOMTETRI MELALUI MEDIA COLOUR GEOMETRY BOOK (Penelitian Tindakan Kelas pada Kelompok A TK Al-Abror Kecamatan Mangkubumi Kota Tasikmalaya Tahun 2016/2017)." JURNAL PAUD AGAPEDIA 2, no. 1 (May 2, 2020): 23–35. http://dx.doi.org/10.17509/jpa.v2i1.24385.
Повний текст джерелаPuspananda, Dian Ratna, Anis Umi Khoirutunnisa’, M. Zainudin, Anita Dewi Utami, and Nur Rohman. "GEOMETRY TOWER ADVENTURE PADA ANAK USIA DINI DI DESA SUKOREJO KECAMATAN BOJONEGORO." J-ABDIPAMAS : Jurnal Pengabdian Kepada Masyarakat 1, no. 1 (October 20, 2017): 56. http://dx.doi.org/10.30734/j-abdipamas.v1i1.81.
Повний текст джерелаClements, Douglas C., and Michael Battista. "Geometry and Geometric Measurement." Arithmetic Teacher 33, no. 6 (February 1986): 29–32. http://dx.doi.org/10.5951/at.33.6.0029.
Повний текст джерелаRylov, Yuri A. "Geometry without topology as a new conception of geometry." International Journal of Mathematics and Mathematical Sciences 30, no. 12 (2002): 733–60. http://dx.doi.org/10.1155/s0161171202012243.
Повний текст джерелаNingrum, Mallevi Agustin, and Lailatul Asmaul Chusna. "INOVASI DAKON GEOMETRI DALAM MENSTIMULASI KEMAMPUAN MENGENAL BENTUK GEOMETRI ANAK USIA DINI." Kwangsan: Jurnal Teknologi Pendidikan 8, no. 1 (August 5, 2020): 18. http://dx.doi.org/10.31800/jtp.kw.v8n1.p18--32.
Повний текст джерелаMisni, Misni, and Ferry Ferdianto. "Analisis Kesalahan dalam Menyelesaikan Soal Geometri Siswa Kelas XI SMK Bina Warga Lemahabang." Jurnal Fourier 8, no. 2 (October 31, 2019): 73–78. http://dx.doi.org/10.14421/fourier.2019.82.73-78.
Повний текст джерелаKaldor, S., and P. K. Venuvinod. "Macro-level Optimization of Cutting Tool Geometry." Journal of Manufacturing Science and Engineering 119, no. 1 (February 1, 1997): 1–9. http://dx.doi.org/10.1115/1.2836551.
Повний текст джерелаMoretti, Méricles Thadeu, and Adalberto Cans. "Releitura das Apreensões em Geometria e a Ideia de Expansão Figural a Partir dos Estudos de Raymond Duval." Jornal Internacional de Estudos em Educação Matemática 16, no. 3 (February 26, 2024): 303–10. http://dx.doi.org/10.17921/2176-5634.2023v16n3p303-310.
Повний текст джерелаJesus, Josenilton Santos de, and Elias Santiago de Assis. "Aprendizagem de Geometria Esférica Por Meio do Geogebra." Jornal Internacional de Estudos em Educação Matemática 16, no. 3 (February 26, 2024): 353–62. http://dx.doi.org/10.17921/2176-5634.2023v16n3p353-362.
Повний текст джерелаLarke, Patricia J. "Geometric Extravaganza: Spicing Up Geometry." Arithmetic Teacher 36, no. 1 (September 1988): 12–16. http://dx.doi.org/10.5951/at.36.1.0012.
Повний текст джерелаДисертації з теми "Geometry"
Jadhav, Rajesh. "Geometric Routing Without Geometry." Kent State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=kent1178080572.
Повний текст джерелаFléchelles, Balthazar. "Geometric finiteness in convex projective geometry." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM029.
Повний текст джерелаThis thesis is devoted to the study of geometrically finite convex projective orbifolds, following work of Ballas, Cooper, Crampon, Leitner, Long, Marquis and Tillmann. A convex projective orbifold is the quotient of a bounded, convex and open subset of an affine chart of real projective space (called a properly convex domain) by a discrete group of projective transformations that preserve it. We say that a convex projective orbifold is strictly convex if there are no non-trivial segments in the boundary of the convex subset, and round if in addition there is a unique supporting hyperplane at each boundary point. Following work of Cooper-Long-Tillmann and Crampon-Marquis, we say that a strictly convex orbifold is geometrically finite if its convex core decomposes as the union of a compact subset and of finitely many ends, called cusps, all of whose points have an injectivity radius smaller than a constant depending only on the dimension. Understanding what types of cusps may occur is crucial for the study of geometrically finite orbifolds. In the strictly convex case, the only known restriction on cusp holonomies, imposed by a generalization of the celebrated Margulis lemma proven by Cooper-Long-Tillmann and Crampon-Marquis, is that the holonomy of a cusp has to be virtually nilpotent. We give a complete characterization of the holonomies of cusps of strictly convex orbifolds and of those of round orbifolds. By generalizing a method of Cooper, which gave the only previously known example of a cusp of a strictly convex manifold with non virtually abelian holonomy, we build examples of cusps of strictly convex manifolds and round manifolds whose holonomy can be any finitely generated torsion-free nilpotent group. In joint work with M. Islam and F. Zhu, we also prove that for torsion-free relatively hyperbolic groups, relative P1-Anosov representations (in the sense of Kapovich-Leeb, Zhu and Zhu-Zimmer) that preserve a properly convex domain are exactly the holonomies of geometrically finite round manifolds.In the general case of non strictly convex projective orbifolds, no satisfactory definition of geometric finiteness is known at the moment. However, Cooper-Long-Tillmann, followed by Ballas-Cooper-Leitner, introduced a notion of generalized cusps in this context. Although they only require that the holonomy be virtually nilpotent, all previously known examples had virtually abelian holonomy. We build examples of generalized cusps whose holonomy can be any finitely generated torsion-free nilpotent group. We also allow ourselves to weaken Cooper-Long-Tillmann’s original definition by assuming only that the holonomy be virtually solvable, and this enables us to construct new examples whose holonomy is not virtually nilpotent.When a geometrically finite orbifold has no cusps, i.e. when its convex core is compact, we say that the orbifold is convex cocompact. Danciger-Guéritaud-Kassel provided a good definition of convex cocompactness for convex projective orbifolds that are not necessarily strictly convex. They proved that the holonomy of a convex cocompact convex projective orbifold is Gromov hyperbolic if and only if the associated representation is P1-Anosov. Using these results, Vinberg’s theory and work of Agol and Haglund-Wise about cubulated hyperbolic groups, we construct, in collaboration with S. Douba, T. Weisman and F. Zhu, examples of P1-Anosov representations for any cubulated hyperbolic group. This gives new examples of hyperbolic groups admitting Anosov representations
Scott, Phil. "Ordered geometry in Hilbert's Grundlagen der Geometrie." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/15948.
Повний текст джерелаLiu, Yang, and 劉洋. "Optimization and differential geometry for geometric modeling." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40988077.
Повний текст джерелаGreene, Michael Thomas. "Some results in geometric topology and geometry." Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.397717.
Повний текст джерелаLiu, Yang. "Optimization and differential geometry for geometric modeling." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B40988077.
Повний текст джерелаHidalgo, García Marta R. "Geometric constraint solving in a dynamic geometry framework." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/134690.
Повний текст джерелаChuang, Wu-yen. "Geometric transitions, topological strings, and generalized complex geometry /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Повний текст джерелаVilla, E. "Methods of geometric measure theory in stochastic geometry." Doctoral thesis, Università degli Studi di Milano, 2007. http://hdl.handle.net/2434/28369.
Повний текст джерелаPersson, Aron. "On the Existence of Electrodynamics on Manifold-like Polyfolds." Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-155488.
Повний текст джерелаDen här uppsatsen betraktar huruvida klassisk elektrodynamik kan generaliseras till en rumtid som lokalt byter dimension samt om detta är matematiskt möjligt. Nyligen har forskningen utvecklat en generalisering av släta mångfalder, så kallade M-polyfolds, vilka ger oss en tillräcklig grund för att göra detta till en fysikalisk möjlighet. Dessa M-polyfolds möjliggör förmågan att definiera hastigheten av en kurva som går igenom en dimensionellt varierande rumtid. Därutöver utvecklas vissa nödvändiga förlängningar av teorin om M-polyfolds, detta för att skräddarsy teorin till ett mer fysikaliskt ramverk. Därefefter avslutas uppsatsen genom att definiera Maxwells ekvationer på M-polyfolds.
Книги з теми "Geometry"
Sal'kov, Nikolay. Geometry in education and science. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1158751.
Повний текст джерелаCollezione Maramotti (Gallery : Reggio Emilia, Italy), ed. Geometria figurativa: Figurative geometry. Cinisello Balsamo, Milano: Silvana editoriale, 2017.
Знайти повний текст джерелаPedoe, Daniel. Geometry: A comprehensive course. New York: Dover, 1988.
Знайти повний текст джерелаPedoe, Daniel. Geometry, a comprehensive course. New York: Dover Publications, 1988.
Знайти повний текст джерелаJost, Jürgen. Riemannian geometry and geometric analysis. 3rd ed. New York: Springer, 2002.
Знайти повний текст джерелаW, Henderson David. Differential geometry: A geometric introduction. Upper Saddle River, N.J: Prentice Hall, 1998.
Знайти повний текст джерелаQuinto, Eric, Fulton Gonzalez, and Jens Christensen, eds. Geometric Analysis and Integral Geometry. Providence, Rhode Island: American Mathematical Society, 2013. http://dx.doi.org/10.1090/conm/598.
Повний текст джерелаJost, Jürgen. Riemannian Geometry and Geometric Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03118-6.
Повний текст джерелаJost, Jürgen. Riemannian Geometry and Geometric Analysis. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61860-9.
Повний текст джерелаElkadi, Mohamed, Bernard Mourrain, and Ragni Piene, eds. Algebraic Geometry and Geometric Modeling. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-33275-6.
Повний текст джерелаЧастини книг з теми "Geometry"
Pütz, Ralph, and Ton Serné. "Geometrie Geometry." In Rennwagentechnik - Praxislehrgang Fahrdynamik, 105–41. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-16102-6_5.
Повний текст джерелаPütz, Ralph, and Ton Serné. "Geometrie Geometry." In Rennwagentechnik - Praxislehrgang Fahrdynamik, 127–69. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-26704-9_5.
Повний текст джерелаVince, John. "Geometry Using Geometric Algebra." In Imaginary Mathematics for Computer Science, 229–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94637-5_10.
Повний текст джерелаWattenhofer, Mirjam, Roger Wattenhofer, and Peter Widmayer. "Geometric Routing Without Geometry." In Structural Information and Communication Complexity, 307–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11429647_24.
Повний текст джерелаWu, Wen-tsün. "Orthogonal geometry, metric geometry and ordinary geometry." In Mechanical Theorem Proving in Geometries, 63–113. Vienna: Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-6639-0_3.
Повний текст джерелаJost, Jürgen. "Geometry." In Geometry and Physics, 1–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00541-1_1.
Повний текст джерелаStillwell, John. "Geometry." In Numbers and Geometry, 37–67. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0687-3_2.
Повний текст джерелаBronshtein, Ilja N., Konstantin A. Semendyayev, Gerhard Musiol, and Heiner Muehlig. "Geometry." In Handbook of Mathematics, 128–250. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05382-9_3.
Повний текст джерелаBronshtein, I. N., K. A. Semendyayev, Gerhard Musiol, and Heiner Mühlig. "Geometry." In Handbook of Mathematics, 129–268. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46221-8_3.
Повний текст джерелаHurlbert, Glenn H. "Geometry." In Undergraduate Texts in Mathematics, 59–72. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-79148-7_3.
Повний текст джерелаТези доповідей конференцій з теми "Geometry"
Qing, Ni, and Wang Zhengzhi. "Geometric invariants using geometry algebra." In 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering (CCIE 2011). IEEE, 2011. http://dx.doi.org/10.1109/ccieng.2011.6008094.
Повний текст джерелаCaticha, Ariel. "Geometry from information geometry." In TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES. Author(s), 2016. http://dx.doi.org/10.1063/1.4959050.
Повний текст джерелаIvic, Aleksandar. "Number of digital convex polygons inscribed into an (m,m)-grid." In Vision Geometry II. SPIE, 1993. http://dx.doi.org/10.1117/12.165003.
Повний текст джерелаAllili, Madjid. "A deformable model with topology analysis and adaptive clustering for boundary detection." In Vision Geometry XIV. SPIE, 2006. http://dx.doi.org/10.1117/12.642353.
Повний текст джерелаNguyen, Hung, Rolf Clackdoyle, and Laurent Desbat. "Automatic geometric calibration in 3D parallel geometry." In Physics of Medical Imaging, edited by Hilde Bosmans and Guang-Hong Chen. SPIE, 2020. http://dx.doi.org/10.1117/12.2549568.
Повний текст джерелаPlauschinn, Erik. "Non-geometric fluxes and non-associative geometry." In Proceedings of the Corfu Summer Institute 2011. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.155.0061.
Повний текст джерелаLima, Guilherme. "In-memory Geometry Converter." In In-memory Geometry Converter. US DOE, 2023. http://dx.doi.org/10.2172/2204991.
Повний текст джерелаFernández, M., A. Tomassini, L. Ugarte, R. Villacampa, Fernando Etayo, Mario Fioravanti, and Rafael Santamaría. "On Special Hermitian Geometry." In GEOMETRY AND PHYSICS: XVII International Fall Workshop on Geometry and Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3146230.
Повний текст джерелаSzabo, Richard. "Higher Quantum Geometry and Non-Geometric String Theory." In Corfu Summer Institute 2017 "Schools and Workshops on Elementary Particle Physics and Gravity". Trieste, Italy: Sissa Medialab, 2018. http://dx.doi.org/10.22323/1.318.0151.
Повний текст джерелаLai, Y. K., S. M. Hu, D. X. Gu, and R. R. Martin. "Geometric texture synthesis and transfer via geometry images." In the 2005 ACM symposium. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1060244.1060248.
Повний текст джерелаЗвіти організацій з теми "Geometry"
Chuang, Wu-yen, and /SLAC /Stanford U., Phys. Dept. Geometric Transitions, Topological Strings, and Generalized Complex Geometry. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/909289.
Повний текст джерелаHeath, Daniel, and Joshua Jacobs. Geometry Playground. Washington, DC: The MAA Mathematical Sciences Digital Library, November 2010. http://dx.doi.org/10.4169/loci003567.
Повний текст джерелаFoster, Karis. Exposed Geometry. Ames: Iowa State University, Digital Repository, 2014. http://dx.doi.org/10.31274/itaa_proceedings-180814-975.
Повний текст джерелаUngar, Abraham A. Hyperbolic Geometry. GIQ, 2014. http://dx.doi.org/10.7546/giq-15-2014-259-282.
Повний текст джерелаUngar, Abraham A. Hyperbolic Geometry. Jgsp, 2013. http://dx.doi.org/10.7546/jgsp-32-2013-61-86.
Повний текст джерелаEarnshaw, Connie. Overgrown geometry. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5380.
Повний текст джерелаButler, Lee A., and Clifford Yapp. Adaptive Geometry Shader Tessellation for Massive Geometry Display. Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada616646.
Повний текст джерелаHansen, Mark D. Results in Computational Geometry: Geometric Embeddings and Query- Retrieval Problems. Fort Belvoir, VA: Defense Technical Information Center, November 1990. http://dx.doi.org/10.21236/ada230380.
Повний текст джерелаCONCEPT ANALYSIS CORP PLYMOUTH MI. Missile Geometry Package. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada253181.
Повний текст джерелаZhanchun Tu, Zhanchun Tu. Geometry of Membranes. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-24-2011-45-75.
Повний текст джерела