Добірка наукової літератури з теми "Geology of Indonesia"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Geology of Indonesia".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Geology of Indonesia"

1

Budiono, Kris, and Godwin Latuputty. "SUBSURFACE GEOLOGICAL CONDITION OF SEVERAL LAND COASTAL ZONE IN INDONESIA BASED ON THE GSSI GROUND PROBING RADAR (GPR) RECORD INTERPRETATION." BULLETIN OF THE MARINE GEOLOGY 23, no. 1 (February 15, 2016): 9. http://dx.doi.org/10.32693/bomg.23.1.2008.6.

Повний текст джерела
Анотація:
The GSSI Ground Penetrating radar have been used to profile the shallow depth of subsurface geology of several area of Land Coastal zone in Indonesia Analysis of a large data base of GPR profile from natural subsurface geological condition along the land coast line have allowed identification of reflection configuration that characterize this type of sub surface geological environment. In many contamination problem, the geological information of coastal area is sparse and drill-core description only gives a limited picture of the geometry of inhomogeneties. The Ground-Probing Radar (GPR) method is a promising tool for resolving changes of physical properties in subsurface geological condition at the scale of natural inhomogeneties arising from changing lithology composition. The objective of present work are to examine whether and to what extent the characteristic lithofacies of subsurface lithology can be recognised as mapable reflection pattern on ground probing radar (GPR) reflection profiles in order to gain information about the subsurface geometry of subsurface geology in coastal area. Key word: Subsurface geology, coastal zone, Ground Probing Radar Ground probing radar produksi GSSI telah dipergunakan untuk membuat penampang geologi bawah permukaan dangkal di beberapa kawasan pantai Indonesia. Analisa data dasar penampang GPR dari geologi bawah permukaan di kawasan pantai dapat memperlihatkan konfigurasi reflector yang mencerminkan jenis lingkungan geologi bawah permukaan. Dalam masalah kontaminasi, informasi geologi di daerah pantai yang dihasilkan dari pemboran inti hanya dapat memperlihatkan gambaran yang sederhana tentang geometri ketidakseragaman. Metoda ground probing radar merupakan alat bantu yang menjanjikan untuk menanggulangi masalah sifat fisik kondisi geologi bawah permukaan pada skala ketidak seragaman yang sebenarnya dari perubahan komposisi litologi. Tujuan utama dari penelitian ini adalah untuk menguji sampai sejauh mana karakteristik litofasies dari litologi bawah permukaan dapat dilihat sebagai pola refleksi yang dapat dipetakan dalam penampang GPR dengan maksud untuk mendapatkan informasi geometri geologi bawah permukaan di daerah pantai. Kata kunci: Geologi bawah permukaan, zona pantai, “Ground probing radar”
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Anjarwati, R., A. Idrus, and L. D. Setijadji. "Geology at Beruang Kanan, Central Kalimantan, Indonesia." IOP Conference Series: Earth and Environmental Science 212 (December 31, 2018): 012017. http://dx.doi.org/10.1088/1755-1315/212/1/012017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

BAKER, SIMON, ROBERT HALL, and EMILY FORDE. "Geology and jungle fieldwork in eastern Indonesia." Geology Today 10, no. 1 (January 1994): 18–23. http://dx.doi.org/10.1111/j.1365-2451.1994.tb00853.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Budiono, Kris, and Yogi Noviadi. "INVESTIGATION OF GROUND PENETRATING RADAR FOR DETECTION OF ROAD SUBSIDENCE NORTHCOAST OF JAKARTA, INDONESIA." BULLETIN OF THE MARINE GEOLOGY 27, no. 2 (February 15, 2016): 87. http://dx.doi.org/10.32693/bomg.27.2.2012.48.

Повний текст джерела
Анотація:
A survey of Ground Penetrating Radar (GPR) was conducted in the coastal zone of northern part of Jakarta, Indonesia. The purpose of this survey was to provide the subsurface of coastal Quaternary sedimentary features and stratigraphy disturbances associated with induce post road subsidence 2009. The possibility of subsurface lithology disturbance shown by the GPR record. This record resulted from GPR methods using SIR system 20 GSSI, 270 MHz and 400 MHz and MLF 3200 transducer. The method is a promising tool for resolving changes of physical properties in subsurface lithology condition at the natural scale due to composition changes of physical properties.The reflection data resulted that GPR can distinguish between image the basic geometry forms such as lithology , structure geology , soil and subsurface utilities condition Keywords: Quaternary geology, Jakarta subsidence northern road 2009, Ground Penetrating Radar Penyelidikan “Ground Penerating Radar” (GPR) telah dilaksanakan di kawasan pantai utara Jakarta Utara, Indonesia. Tujuan dari penyelidikan GPR ini adalah untuk melihat kondisi sedimen Kuarter bawah permukaan dan gangguan stratigrafi sehubungan dengan penurunan jalan raya pada tahun 2009. Kemungkinan gangguan terhadap litologi bawah permukaan terlihat pada rekaman GPR. Hasil rekaman metoda GPR mempergunakan model SIR 20 GSSI, transduser 270MHz, 400 MHz dan MLF 3200.Metoda GPR merupakan alat bantu yang cukup menjanjikan untuk melihat perubahan sifat fisik litologi bawah permukaan pada skala sebenarnya yang disebabkan oleh perubahan komposisi sifat fisiknya. Hasil refleksi data GPR dapat membedakan bentuk dasar geometri seperti litologi, struktur geologi, kondisi utilitas bawah permukaan. Kata kunci : Geologi Kuarter, Penurunan jalan utara Jakarta 2009, Ground Penetrating Radar
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yoshino, Hiroatsu, Tetsuo Tanaka, and Hitoshi Yamaguchi. "Petroleum geology in Bintuni Basin in East Indonesia." Journal of the Japanese Association for Petroleum Technology 68, no. 2-3 (2003): 200–210. http://dx.doi.org/10.3720/japt.68.2-3_200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ratri, Diyaning, and I. Gde Budi Indrawan. "Engineering Geology of Sidosari Area, Magelang, Central Java, Indonesia." Journal of Applied Geology 2, no. 1 (November 13, 2017): 15. http://dx.doi.org/10.22146/jag.30254.

Повний текст джерела
Анотація:
Development of settlement area in Sidosari area and the surroundings requires complete understanding of the engineering geological conditions, including susceptibility to landslides, to prevent damaged properties and loss of lives. Surface engineering geological mapping at a 1:25000 scale was conducted to develop a detailed landslide susceptibility map for spatial planning and to identify most controlling factor of landslides in the research area based on conditions of geomorphology, rock and soil, geological structure, groundwater seepage, and land use. The engineering geological mapping showed that landslides commonly occurred in the moderate slopes of the denudational hill landform having slope inclination ranging from 9 to 17°, in the areas covered by residual soils of the vitric tuff 2 unit, in the areas of no groundwater seepage, and in the settlement areas, including in Kranjang Lor area where soil creeping occurred. The high susceptibility zone covered 55.5 % of the research area and was characterized by having slope inclinations ranging from 9 to 35°, engineering geological units of vitric tuff 2 and tuff breccia, and land uses of rice and dry fields and settlement. The low cohesion and very high swelling potential of the residual soils of the vitric tuff 2 unit were considered to be the main controlling factor of landslides in the research area.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Daryono, Mudrik R., Danny H. Natawidjaja, Benjamin Sapiie, and Phil Cummins. "Earthquake Geology of the Lembang Fault, West Java, Indonesia." Tectonophysics 751 (January 2019): 180–91. http://dx.doi.org/10.1016/j.tecto.2018.12.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

U, Ko Ko. "Preliminary synthesis of the geology of Bangka Island, Indonesia." Bulletin of the Geological Society of Malaysia 20 (August 30, 1986): 81–90. http://dx.doi.org/10.7186/bgsm20198606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

SMITH, RANDALL B., and ELI A. SILVER. "Geology of a Miocene collision complex, Buton, eastern Indonesia." Geological Society of America Bulletin 103, no. 5 (May 1991): 660–78. http://dx.doi.org/10.1130/0016-7606(1991)103<0660:goamcc>2.3.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Naufal, M. H., and H. Setiawan. "Characteristics of Engineering Geology in Talegong Road, Talegong, Garut, West Java, Indonesia." IOP Conference Series: Earth and Environmental Science 1071, no. 1 (August 1, 2022): 012036. http://dx.doi.org/10.1088/1755-1315/1071/1/012036.

Повний текст джерела
Анотація:
Abstract Talegong road, Garut, West Java, is provincial road with a length of 7 kilometers that connects Garut and Bandung. The road segment KM 2.3 – KM 7 is located between the steep slope of high hills and has potential for landslide. To find out the landslide potential, determining the characteristics of geology and engineering geology at this road segment are needed. The methods used in this research are engineering geology mapping (geomorphology, lithology, structural geology and rock mass quality) and laboratory analyses of soil and rock properties index, shear strength test, petrographic analysis and uniaxial compressive strength test. The results of geological mapping show the aspect geomorphological in the area consists of high hills with rather steep to very steep slopes. Lithological, the area consists of aphanitic andesite and porphyritic andesite. The area is dominated by Northeast – Southeast stress regime. In term of rock mass quality, the study area consists of three class with value in Rock Mass Rating classification, which are good rock, fair rock, poor rock and no value rock (soil). The study area is divided into three units in the engineering geological map: (1) unit A has fair – good rock (II – III) with rather steep - very steep slope with low landslide potential, (2) unit B has fair rock (III) with steep – very steep slope with medium landslide potential, and (3) unit C has poor – no value rock or soil (IV – 0) with a very steep slope with high landslide potential.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Geology of Indonesia"

1

Bronto, Sutikno. "Volcanic geology of Galunggung, West Java, Indonesia." Thesis, University of Canterbury. Geology, 1989. http://hdl.handle.net/10092/5667.

Повний текст джерела
Анотація:
Galunggung volcano is located in West Java, Indonesia and covers an area about 275 km2. The volcano is very active and the slopes are highly populated (over 1.5 million people). There is therefore always the threat of volcanic disaster. This study investigates the character of past Galunggung volcanic activity and assesses likely future activity in order to advise on volcanic hazard and risk. The approach involves a study of stratigraphy, mineralogy and petrology of the Galunggung rocks, and the presentation of volcanic hazard zonation maps. Galunggung volcanic rocks are included within the Galunggung Group and can be divided into Old Galunggung Formation, Tasikmalaya Formation and Cibanjaran Formation. The first formation represents rocks of Old Galunggung stratovolcano (50,000 - 10,000 yrs. BP ?), the second formation covers rocks erupted during caldera formation (4200 ± 150 yrs. BP) and the third one comprises rocks erupted in 1822, 1894, 1918 and 1982-83. The Old Galunggung Formation consists mainly of pyroclastic flow, pyroclastic fall and lahar deposits and lava flows which have a total rock volume of about 56.5 km3. This activity ended with the intrusion of a cryptodome under the crater. The cryptodome blocked the existing vent and subsequent activity moved to the weakest part of the old cone to the ESE, resulting in the caldera forming-event. This destructive eruption formed a horseshoe-shaped caldera and ejected more than 20 km3 of material comprising debris avalanche, pyroclastic flow, pyroclastic fall, pyroclastic surge and lahar deposits. Historic eruptions separated by relatively long dormant periods produced less voluminous (< 0.4 km3) volcanic deposits. Galunggung volcanic rocks are basalt (49 - 53 % SiO2) to basaltic andesite (53 - 57 % SiO2) having porphyritic textures with medium sized phenocrysts (15 - 40 %), mainly plagioclase (av. 18 %) and clinopyroxene (1.6 %). Olivine is observed in basic rocks, whereas orthopyroxene and magnetite are present in the most evolved rocks. Amphibole is common in pyroclastic deposits and gabbro clasts ejected during caldera formation. On the basis of Mg contents, Galunggung rocks are divided into: 1. high-Mg basalt (12.5 10 % MgO) , 2. "Transitional" high-Mg basalt (9 - 6.5 % MgO) , 3. low-Mg basalt (< 6 % MgO), 4. high-Mg basaltic andesite (7 - 6 % MgO) and 5. low-Mg basaltic andesite (< 5 % MgO). The high-Mg basalts are subdivided into low-K high-Mg basalt (<0.4 % K2O) and medium-K high-Mg basalt (0.6 % K2O). Alkali and incompatible elements increase whereas Mg, Fe, Ca and compatible trace elements decrease with increasing SiO2. The high-Mg basalts are the most primitive Galunggung rocks with highest Mg# = 75 - 69, Ni (up to 193 ppm), and Cr (711 ppm) but lowest incompatible elements. The "primitiveness" of the basalts is also reflected by their 230Th/232Th ratio (= 0.68) which is one of the lowest ratios yet found. The Galunggung high-Mg basalts are considered to represent liquid compositions which have been derived from upper mantle peridotites. The low-K high-Mg basalt originate from spinel-peridotite by 15 % melting at about 50 km depth, and the medium-K high-Mg basalt from plagioclase-peridotite by 25 - 40 % melting at about 30 km depth. These primitive magmas probably rose rapidly to the surface as mantle "diapirs". During Old Galunggung volcanic activity, low-K high-Mg basalt magma moved upward diapirically and formed a magma chamber in the crust at a depth of about 10 km. Fractionation of this magma formed low-Mg basalts and basaltic andesites. This activity ended when a medium-K high-Mg basalt intruded as a cryptodome. Another low-K high-Mg basalt magma migrated into the crust and fractionated to produce low-Mg basalt basaltic andesite. Gas was trapped and high water pressure was attained; and amphibole gabbro solidified in the roof of the magma body. These rocks were erupted during the Galunggung caldera forming-event. In 1982-83, a new generation of low-K high-Mg basalt magma was erupted. Fractionation in a conduit system changed compositions at the top part but not significantly in the lower part of the magma body. During the eruptive sequence firstly low-Mg basaltic andesite, then high-Mg basaltic andesite, "transitional" high-Mg basalt, and finally the low-K high-Mg basalt were erupted. Rhyolite pumice erupted in September 1982 is considered to be a product of melting of Miocene dacite by the high temperature (1300ºC) Galunggung high-Mg basalt magma. Galunggung eruptions vary from non-violent effusive to destructive explosive events. These create hazards which are divided into four levels. First degree hazards are long-term and require further study. In this thesis hazard maps are presented for second, third and fourth degree hazards. Evacuation routes are suggested away from the volcano as all arrangements must be planned well in advance of an actual event.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Abidin, Hamdan Zainal. "Tectonic history and mineral deposits of the East-Central Kalimantan volcanic belt, Indonesia : a comparative study of the Kelian, Muyup and Masupa Ria gold deposits /." Title page, contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09pha1483.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Loopuyt-Turner, Penelope J. "Recent and Miocene carbonate sediments from Indonesia." Thesis, Aston University, 1986. http://publications.aston.ac.uk/14377/.

Повний текст джерела
Анотація:
Mapping and sediment sampling in reefs of the Pulau Seribu group (southwest Java Sea) shows the existence of ten physiographic zones and subzones represented by seven lithofacies. Reefs in the northern part of the archipelago are smaller, more closely spaced and morphologically sim pler than those in the south. This pattern is attributed to differences in subsidence rate. A th reedimensional model is proposed for the evo lution of these reefs but borehole data are requi red to test this model. Miocene limestones are described in detail from hydrocarbon reservoirs in the Batu Raja Formation of the same area. Brief comparisons a re made with surface outcrops of approximately coeval carbonate developments. The lithofacies developed within these limestones reflect variations in hydrodynam ic regime and basement topography . Ele\le.n diagenetic processes affected the Batu Raja limestones and the dist ribution of these is primarily related to sealevel fluctuations. Early diagenesis was marine and characterised by micritisation and preCipitation of fibrous and bladed cements. Dolomitisat ion occurred in the mixed- water zone and its variable intensity is attributed to the configuration of the carbonate body relative to this zone. Subsequently the limestones were subjected to freshwater phreatic zone diagenesis resulting in dissolution and cementation, and a t a late stage underwent burial compaction. Secondary porosity, which \ar9e1.y determines the suitability of these limestones as hydrocarbon reserVOirs, is a function of the variable intensity of dissolution and cementation, burial compaction, dolomitisation and possibly micrite neomorphism. The sedimentary processes that generated the Batu Raja buildups are inferred f rom comparisons with the Pulau Seribu and other Recent analogues. The contrasting pinnacle form of the Pulau Seribu patch reefs compared with the low relief of the Batu Raja buUdups results from differences in the initial substrate topography and subsequent subsidence rate
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Calvert, Stephen John. "The Cenozoic geology of the Cariang and Karama regions, Western Sulawesi, Indonesia." Thesis, Royal Holloway, University of London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393884.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wilson, Moyra Elizabeth Jane. "The Tonasa Limestone Formation, Sulawesi, Indonesia : development of a Tertiary carbonate platform." Thesis, Royal Holloway, University of London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338775.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Baker, Simon. "Isotopic dating and island arc development in the Halmahera region, Eastern Indonesia." Thesis, University College London (University of London), 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267534.

Повний текст джерела
Анотація:
The islands of Halmahera, Morotai, Bacan, Obi and Waigeo lie in a zone of complex tectonics at the junction between the Eurasian margin and the Philippine Sea and Australian plates. New age data from the region using Sm-Nd, Rb-Sr and K-Ar systems and geochemical data are presented and are integrated with existing geological, geochemical and isotopic data to produce a regional geochronological framework. Continental metamorphic rocks of probable Palaeozoic age, derived from New Guinea, are found on Bacan and Obi. Sm-Nd model ages indicate that metamorphic protoliths contained Precambrian cratonic material which was subsequently mixed with younger mantle-derived material. Rb-Sr and K-Ar systematics give Neogene ages which relate to exhumation and emplacement of these rocks by strike-slip processes in the Sorong fault system. Ophiolitic rocks from Halmahera, Obi and Gag are of Philippine Sea plate origin and are interpreted to have formed an intra-oceanic forearc-arc-backarc system of Jurassic age based on Sm-Nd, K-Ar dating and geochemical and stratigraphic evidence. Subsequent Cretaceous to Tertiary arc activity has largely disturbed K-Ar ages of ophiolitic rocks. Cretaceous calc-alkaline arc activity formed the Gowonli and related volcaniclastic formations on Obi and Waigeo. Unusual amphibole-rich cumulates, hornblende gabbros and ultramafic rocks occur adjacent to continental metamorphic rocks. These yield Cretaceous and younger isotopic ages and are interpreted as the roots of a calc-alkaline island arc subsequently disrupted and uplifted by faulting in the Early Cretaceous and Neogene. Diorites and trondjhemites intruded into ophiolitic rocks on Halmahera and Obi date two phases of arc-related plutonic activity in the Middle to Late Cretaceous. One Paleocene diorite has also been dated. Isotopic ages from amphibolites, derived from basic protoliths, and biostratigraphic ages from sedimentary fault-related breccia deposits indicate deformation of ophiolitic rocks in the Late Cretaceous. Ar-Ar plateau ages and reset K-Ar ages suggest another period of deformation in the Paleocene. Isotopic dating shows that Tertiary arc activity occurred in three phases: a brief, Middle Eocene phase of diorite and andesite formation in eastern Halmahera; a dominantly Oligocene period of arc activity related to subduction beneath the Philippine Sea plate and a Neogene phase related to subduction of the Molucca Sea plate. Oligocene arc activity was terminated by Early Miocene collision of the Philippine Sea plate with the northern Australian margin. Convergence of the Philippine Sea plate with the Eurasian margin led to Neogene arc activity above an eastward-dipping Molucca Sea plate slab. Isotopic dating indicates that Neogene arc volcanism migrated northwards over time. Pliocene compressional deformation in Halmahera and Bacan caused a westward shift of the arc to its present position and may be related to collision events within the Sorong Fault system
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lokier, Stephen William. "The Miocene Wonosari Formation, Java, Indonesia : volcaniclastic influences on carbonate platform development." Thesis, Royal Holloway, University of London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343844.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dahrén, Börje. "Magma plumbing architecture in Indonesia and the North Atlantic Igneous Province." Doctoral thesis, Uppsala universitet, Mineralogi, petrologi och tektonik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-267764.

Повний текст джерела
Анотація:
Magma plumbing systems represent the physical framework of magma transport and storage from the source region in the mantle, through the crust, until reaching the surface in a volcanic eruption. Characterising the different aspects of magma plumbing, in particular the distribution of magma storage zones throughout the crust, is of key importance to better understand the behaviour of individual volcanoes. In particular, shallow crustal magma storage and associated magma-crust interaction processes could potentially explain some of the worlds most unpredictable and explosive volcanoes. This thesis studies magma plumbing architecture in the Sunda Arc (Indonesia), and the North Atlantic Igneous Province, based on elemental and isotope geochemistry, and derived petrological modelling. In this study, I have employed petrological models, so called geothermobarometers, to calculate pressures and temperatures (P-T) of crustal magma storage. Geothermobarometers are calibrated thermodynamic formulations based on the composition of magmatic minerals and their co-existing melt as a function of the P-T conditions of crystallisation. Using the calculated P-T estimates, I was able to derive the depth of magma storage, and thereby reconstruct the architecture of magma storage systems. A number of different geothermobarometers based on different mineral phases, including plagioclase, clinopyroxene and olivine, were used for this purpose, The geothermobarometric modelling was combined with additional elemental and isotope geochemical analyses, as well as collaborations with geophysical investigations. These additional approaches were used to corroborate the findings of the geothermobarometric modelling, and also to model and quantify magma-crust interaction processes that take place during crustal magma storage, such as assimilation of crustal lithologies into the magmatic system. The findings of this thesis build upon the growing body of evidence in support of the prevalence of shallow magma storage in different volcanic settings worldwide. This realisation is relevant to volcano monitoring and hazard mitigation worldwide.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kwong, Hiu-jing, and 鄺曉靖. "Paleomagnetic investigation of the Balangbaru formation, SW Sulawesi, Indonesia." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B45865553.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Edwards, Caroline Marion Hawkey. "A comparison of arc evolution on continental and oceanic crust, Sunda Arc, Indonesia." Thesis, Royal Holloway, University of London, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361452.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Geology of Indonesia"

1

Indonesia. Direktorat Jenderal Minyak dan Gas Bumi. Indonesia petroleum bidding round, 2009. Jakarta, Indonesia]: Dept. of Energy and Mineral Resources, Directorate General of Oil and Gas, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sukamto, Rab. Pengetahuan geologi Indonesia: Tantangan dan pemanfaatan. Bandung, Indonesia: Republik Indonesia, Departemen Energi dan Sumberdaya Mineral, Direktorat Jenderal Geologi dan Sumberdaya Mineral, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Formation Evaluation Conference (1986 Jakarta?, Indonesia). Formation Evaluation Conference, Indonesia, 1986: [papers]. [Jakarta]: IBVH, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dam, M. A. C. The late quaternary evolution of the Bandung Basin, West-Java, Indonesia. Bandung: Republic of Indonesia, Ministry of Mines and Energy, Directorate General of Geological and Mineral Resources, Geological Research and Development Centre, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ikatan Ahli Geologi Indonesia. Pertemuan Ilmiah. Proceedings of Indonesian Association of Geologists: The 28th annual Convention, Jakarta, Indonesia, 30 November-1 December 1999. Jakarta: IAGI, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Abdurahman, Oman. Langlang bumi: Menjelajahi bumi Indonesia. Edited by Priatna 1963 author editor and Indonesia Badan Geologi. Bandung: Badan Geologi, Kementerian Energi dan Sumber Daya Mineral, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hasibuan, Fauzie. Mesozoic geology and paleontology of Misool Archipelago, Eastern Indonesia. Bandung: Geological Agency, Ministry of Energy and Mineral Resources, Republic of Indonesia, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ikatan Ahli Geologi Indonesia. Pertemuan Ilmiah. The Twentieth IAGI Annual Convention, Jakarta, Indonesia, December 10-12, 1991. [Jakarta]: Indonesian Association of Geologists, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Situmorang, Mangatas. Sedimentology and marine geology of the Banda Arc, eastern Indonesia. [Utrecht: Instituut voor Aardwetenschappen der Rijksuniversiteit te Utrecht, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sukamto, Rab. Menguak sejarah kelembagaan geologi di Indonesia: Dari kantor pencari bahan tambang hingga Pusat Survei Geologi. Bandung: Republik Indonesia, Departemen Energi dan Sumber Daya Mineral, Badan Geologi, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Geology of Indonesia"

1

Gao, F., H. B. Chen, and Y. Luo. "3D Sediment Physical Model Test Study for PLTU 2 JATENG 1 × 660 MW Adipala, Cilacap, Indonesia." In Springer Geology, 117–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31671-5_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Johari, S. "Geochemistry and Tin Mineralization in Northern Sumatra, Indonesia." In Geology of Tin Deposits in Asia and the Pacific, 541–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-72765-8_42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sumaryono, S. T., C. Sulaiman, Y. Dasa Triana, R. Robiana, and Wawan Irawan. "Landslide Investigation and Monitoring at Ciloto, West Java, Indonesia." In Engineering Geology for Society and Territory - Volume 2, 1089–96. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09057-3_193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Suparman, Murni Sulastri, and Suci Sarah Andriany. "Wells Declivity Temperature Geothermal Field Bora-Sigi, Central Sulawesi, Indonesia." In Engineering Geology for Society and Territory - Volume 1, 373–78. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09300-0_71.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nasution, Asnawir. "The geothermal energy resource developments and their hazards of the Indonesia Volcanic Areas." In Rock Mechanics and Engineering Geology in Volcanic Fields, 159–67. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003293590-22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dicky, Muslim, Evi Haerani, Motohiko Shibayama, Masaaki Ueshima, Naoko Kagawa, and Febri Hirnawan. "Disaster Awareness Education for Children in Schools Around Geological Hazard Prone Areas in Indonesia." In Engineering Geology for Society and Territory - Volume 6, 107–11. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09060-3_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Orihara, Keiji, Tomohiro Yasuda, Koji Nishida, Koki Kimura, Achmad Sri Fadli, and Reza Ardiansyah Suyono. "Geological investigation of the excavation-induced landslide in a geothermal area in Sumatra, Indonesia." In Rock Mechanics and Engineering Geology in Volcanic Fields, 63–70. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003293590-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Umar, Zahrul, Anuar Ahmad, and Wan Aziz Wan Akib. "Prediction of Susceptible Areas of Future Earthquake Induced by Landslides in Padang Pariaman District, West Sumatera, Indonesia." In Engineering Geology for Society and Territory - Volume 2, 721–26. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09057-3_121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Surjono, Sugeng Sapto, Muhamad Rizki Asy’ari, and Arif Gunawan. "Petroleum Play Potential in the Thrust and Fold Belt Zone of the Offshore Timor-Tanimbar, Eastern Indonesia." In The Structural Geology Contribution to the Africa-Eurasia Geology: Basement and Reservoir Structure, Ore Mineralisation and Tectonic Modelling, 145–48. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01455-1_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

S. Parwata, I. Nyoman, Shinichiro Nakashima, and Norikazu Shimizu. "Monitoring volcanic activity of Mount Agung, Indonesia by SBAS-DInSAR using Sentinel-1 data from 2014 to 2020." In Rock Mechanics and Engineering Geology in Volcanic Fields, 50–57. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003293590-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Geology of Indonesia"

1

Mouly, B., G. Nesen, and L. M. Moinier. "Acquisition 3D Design and Geology in the Mahakam Delta, Kutei Basin, Indonesia." In 66th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2004. http://dx.doi.org/10.3997/2214-4609-pdb.3.p198.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Muammar, R., Z. Firdaus, and R. Pardede. "Integrating Geophysics, Geology, and Geochemistry Methods for Shallow Biogenic Gas Exploration in Indonesia." In 80th EAGE Conference and Exhibition 2018. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201801593.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Firdaus, Z., R. Muammar, and D. Ralanarko. "Integrating Geophysics, Geology, and Geochemistry Methods for Shallow Biogenic Gas Exploration in Indonesia." In EAGE-HAGI 1st Asia Pacific Meeting on Near Surface Geoscience and Engineering. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201800363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ma'ruf, M. F., A. Arsyad, G. Crouzet, S. Handoko, and F. Langitan. "Improved Reservoir Geology Model Using Seismic 3D and Well Data, a Case Study Rantau Field, Indonesia." In SPE Asia Pacific Oil and Gas Conference. Society of Petroleum Engineers, 1996. http://dx.doi.org/10.2118/36969-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sapiie*, Benyamin, Harya Danio, Ariesty Asikin, and Awali Priyono. "Geology and Geomechanics Evaluation of CCS Pilot Project in The Gundih Field, East Java Basin, Indonesia." In International Conference and Exhibition, Melbourne, Australia 13-16 September 2015. Society of Exploration Geophysicists and American Association of Petroleum Geologists, 2015. http://dx.doi.org/10.1190/ice2015-2210557.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Stephani, G., A. Badril, R. Widayanto, and N. Handayani. "Squeezing Out the Oil of Jirak Field-Indonesia - an Integrated Geology & Production Study for Waterflood Project." In 76th EAGE Conference and Exhibition 2014. Netherlands: EAGE Publications BV, 2014. http://dx.doi.org/10.3997/2214-4609.20141520.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sutadiwiria, Gunawan, and Hadi Prasetyo. "Uncertainty in Geophysic-Geology-Reservoir Modelling for Globigerinid Sand Carbonate in NE-Java Basin, Indonesia; Case Study: Planning vs. Actual of Fields Development at Madura Strait, Indonesia." In SPE Asia Pacific Oil & Gas Conference and Exhibition. Society of Petroleum Engineers, 2006. http://dx.doi.org/10.2118/100957-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Ming, Longxin Mu, Chunlei Li, Kening Zheng, Lijiang Duan, Guihong Wang, Shengjie Zuo, and Danmei Li. "Mature Condensated Gas Field Development Strategy: An Integration of Geophysics, Geology and Log for the South Sumatra Basin, Indonesia." In SPE Reservoir Characterisation and Simulation Conference and Exhibition. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/186060-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sarah, Lia Laela, Ary Setijadi Prihatmanto, and Pranoto Hidaya Rusmin. "The design and implementation discovery learning method on virtual museum of Indonesia:(A case study museum of geology for rock materials)." In 2012 International Conference on System Engineering and Technology (ICSET). IEEE, 2012. http://dx.doi.org/10.1109/icsengt.2012.6339312.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fadriana, Novita, I. Gde Budi Indrawan, and I. Wayan Warmada. "Engineering geology characteristics and geometry of slope stability of Tukul Dam reservoir in Karanggede Village, Pacitan Regency, East Java Province, Indonesia." In 3RD INTERNATIONAL CONFERENCE ON EARTH SCIENCE, MINERAL, AND ENERGY. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0062458.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії