Добірка наукової літератури з теми "Geoinformation system of ecological monitoring"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Geoinformation system of ecological monitoring".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Geoinformation system of ecological monitoring"
Zhurkin, I. G., A. M. Portnov, and S. S. Druchinin. "Geoinformation space monitoring in the task of sustainable development of the regions located along the main ground routes." E3S Web of Conferences 208 (2020): 01016. http://dx.doi.org/10.1051/e3sconf/202020801016.
Повний текст джерелаKotova, T. V. "Geoinformation research and vegetation mapping (digest based on the proceedings of the InterCarto. InterGIS conference. 1994–2020)." Geobotanical mapping, no. 2020 (December 2020): 78–98. http://dx.doi.org/10.31111/geobotmap/2020.78.
Повний текст джерелаLazorenko-Hevel, N., I. Galius, V. Zatserkovnyi, B. Denysiuk, and N. Shudra. "SPECIFICITIES OF THE CREATION OF GEOINFORMATION MAINTENANCE OF THE TERRITORY OF CHORNOBYL RADIATION AND ECOLOGICAL BIOSPHERE RESERVEFOR GEOINFORMATION MONITORING CONDUCTION." Visnyk of Taras Shevchenko National University of Kyiv. Geology, no. 2 (93) (2021): 100–111. http://dx.doi.org/10.17721/1728-2713.93.12.
Повний текст джерелаM.M., Mukhammadiev, and Nasrulin A.B. "The use of hydro-ecological methods of monitoring for the analysis of hydropower and irrigation structures of Uzbekistan." Ekologiya i stroitelstvo 3 (2017): 10–16. http://dx.doi.org/10.35688/2413-8452-2017-03-002.
Повний текст джерелаБочарников, V. Bocharnikov, Блиновская, and Yana Blinovskaya. "Ensuring of Ecological and Biological Safety in Far East Russia’s Seas." Safety in Technosphere 2, no. 4 (August 25, 2013): 12–16. http://dx.doi.org/10.12737/715.
Повний текст джерелаYeprintsev, S. A., O. V. Klepikov1, S. V. Shekoyan, and E. V. Zhigulina. "MODEL OF OPTIMIZATION OF SOCIO-ECOLOGICAL CONDITIONS OF URBANIZED TERRITORIES." Ecology. Economy. Informatics.System analysis and mathematical modeling of ecological and economic systems 1, no. 6 (2021): 265–70. http://dx.doi.org/10.23885/2500-395x-2021-1-6-265-270.
Повний текст джерелаAbzianidze, Vera, Dimitri Abzianidze, and Zurab Kakulia. "Assessing the Ecological Condition of the Environment and Solving the Problems of Ecological Safety Using Mathematical Ecology Methods and Geoinformation System Programs." Works of Georgian Technical University, no. 3(521) (September 29, 2021): 137–44. http://dx.doi.org/10.36073/1512-0996-2021-3-137-144.
Повний текст джерелаProkofeva, E. N., A. V. Vostrikov, H. A. Nekrasov, N. E. Bragin, and M. O. Malcev. "IT Tools for Managing Ecological Hazards." IOP Conference Series: Earth and Environmental Science 988, no. 2 (February 1, 2022): 022017. http://dx.doi.org/10.1088/1755-1315/988/2/022017.
Повний текст джерелаKrasovskyi, H. Ya, V. O. Shumeiko, T. O. Klochko, and N. I. Sementsova. "INFORMATION TECHNOLOGIES FOR MONITORING THE ENVIRONMENTAL CONSEQUENCES OF AMBER PRODUCTION IN UKRAINE." Ecological Safety and Balanced Use of Resources, no. 2(18) (June 15, 2018): 107–17. http://dx.doi.org/10.31471/2415-3184-2018-2(18)-107-117.
Повний текст джерелаAgbor, Chukwuka Friday, and Esther Oluwafunmilayo Makinde. "Land Surface Temperature Mapping using Geoinformation Techniques." Geoinformatics FCE CTU 17, no. 1 (August 23, 2018): 17–32. http://dx.doi.org/10.14311/gi.17.1.2.
Повний текст джерелаДисертації з теми "Geoinformation system of ecological monitoring"
Нааем, Хазім Рахім Нааем. "Моделі та методи розподілу мережевого ресурсу комп'ютерних мереж геоінформаційной системи екологічного моніторингу". Thesis, НТУ "ХПІ", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/34184.
Повний текст джерелаThesis for scientific degree candidate of technical sciences in the specialty 05.13.05 – computer systems and components. – National Technical University "Kharkіv Polytechnic Institute", Kharkіv 2018. The dissertation is devoted to the solution of the scientific and practical task of improving the method of network resource distribution of computer system of the geographic information system for ecological monitoring, which allows increasing the efficiency of functioning of these systems by using already developed models and methods of computing resource distribution of the network. The structure of GIS for environmental monitoring is developed, its main sub-systems and interaction principles are defined. The structure of hybrid computer network for digital data transmissions proposed, which allows optimizing the process of data transmission for environmental monitoring. The method of making decisions on the foundation of stationary posts of GIS for environmental monitoring is provided, which, in contrast to the existing ones, takes into account the parameter that determines the alteration rate of the then-current pollution level, the magnitude of the concentration of hazardous chemicals (HAZCHEM), and the wind rose specific for the area in question. Also, this method takes into consideration that the difference of HAZCHEM concentration in space varies from point to point. The whole from the abovementioned allows localizing zones of potential pollution and severely reducing the number of specialized observation posts (by 10-15%). The data transmission traffic model is developed for the hybrid computer network (CN) of the environmental monitoring GIS. This model takes into account the merging of information flows, which have different statistical models. The use of the offered model allows shortening the computer network data transmission rate by 13%. The network resources distribution method for the hybrid computer network of the environmental monitoring GIS is developed through the use of MIMO technology, which allows reducing the time required for monitoring data delivery by 12-15%. The model of hardware and software has been developed, the usage of which considers the features of wireless data transmission from several information sources in the hybrid computer network of GIS, thereby allowing to reduce the package loss ratio and to increase the speed of data transmission for the hybrid CN of GIS. The offered efficiency enhancement models and methods in computer networks of GIS have been examined in simulation modeling and experimental studies, which have thereby confirmed the veracity and significance of the derived results. The developed software and hardware model for ecological monitoring GIS allows reducing dates of receipt, processing and analysis of the ecological data, improving veracity and quality of the received results, and ensuring information safety.
Нааем, Хазім Рахім Нааем. "Моделі та методи розподілу мережевого ресурсу комп'ютерних мереж геоінформаційной системи екологічного моніторингу". Thesis, НТУ "ХПІ", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/34163.
Повний текст джерелаThesis for scientific degree candidate of technical sciences in the specialty 05.13.05 – computer systems and components. – National Technical University "Kharkіv Polytechnic Institute", Kharkіv 2018. The dissertation is devoted to the solution of the scientific and practical task of improving the method of network resource distribution of computer system of the geographic information system for ecological monitoring, which allows increasing the efficiency of functioning of these systems by using already developed models and methods of computing resource distribution of the network. The structure of GIS for environmental monitoring is developed, its main sub-systems and interaction principles are defined. The structure of hybrid computer network for digital data transmissions proposed, which allows optimizing the process of data transmission for environmental monitoring. The method of making decisions on the foundation of stationary posts of GIS for environmental monitoring is provided, which, in contrast to the existing ones, takes into account the parameter that determines the alteration rate of the then-current pollution level, the magnitude of the concentration of hazardous chemicals (HAZCHEM), and the wind rose specific for the area in question. Also, this method takes into consideration that the difference of HAZCHEM concentration in space varies from point to point. The whole from the abovementioned allows localizing zones of potential pollution and severely reducing the number of specialized observation posts (by 10-15%). The data transmission traffic model is developed for the hybrid computer network (CN) of the environmental monitoring GIS. This model takes into account the merging of information flows, which have different statistical models. The use of the offered model allows shortening the computer network data transmission rate by 13%. The network resources distribution method for the hybrid computer network of the environmental monitoring GIS is developed through the use of MIMO technology, which allows reducing the time required for monitoring data delivery by 12-15%. The model of hardware and software has been developed, the usage of which considers the features of wireless data transmission from several information sources in the hybrid computer network of GIS, thereby allowing to reduce the package loss ratio and to increase the speed of data transmission for the hybrid CN of GIS. The offered efficiency enhancement models and methods in computer networks of GIS have been examined in simulation modeling and experimental studies, which have thereby confirmed the veracity and significance of the derived results. The developed software and hardware model for ecological monitoring GIS allows reducing dates of receipt, processing and analysis of the ecological data, improving veracity and quality of the received results, and ensuring information safety.
Russell, Peter John. "Assessing long-term change in rangeland ecological health using the Western Australian rangeland monitoring system." Curtin University of Technology, Muresk Institute, Centre for the Management of Arid Environments, 2007. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=17757.
Повний текст джерелаWARMS is designed to provide data and information for assessing regional and long-term changes in rangeland ecological condition. It consists of two principal parts: (1) numerous permanent field monitoring sites and (2) a large relational database. By the end of 2006, there were 980 WARMS sites located on 377 pastoral leases (stations) in the southern rangelands of Western Australia. Average lease size is 202,190 ha and the largest is 714,670 ha. The total area occupied by leases (pastoral plus leases converted to the conservation estate) is approximately 76,250,000 ha. WARMS sites are at an average density of 2.6 sites per lease or 1 site per 77,780 ha of pastoral rangeland. Field-recorded metrics include 11 soil surface parameters and four plant parameters (location on belt-transect, species, height and maximum canopy extent). The field data collection protocol has remained essentially unchanged since 1992 and new field data are captured at each site on a 5-year cycle. This is the most extensive quantitative, ground-based rangeland monitoring system in Australia. This assessment of range condition is based a suite of soil and vegetation indices derived from the WARMS transect field metrics. Seven basic indices have been derived and algorithmically combined into three higher-order indices, one for each of three components of ecological integrity: composition, function and structure. The three indices are then combined into an overall index of ecological health called the Shrubland Range Condition (SRC) Index. In addition, the indices have been assigned to particular time-slices based on the field acquisition date of their component metrics, allowing the calculation of change through time.
The combination of the hierarchical index framework, the use of time-slices and GIS mapping techniques provided a suitable analysis platform for the elucidation of spatial and temporal change in rangeland ecological integrity or health at WARMS sites. The nature of change in the SRC Index and the landscape function, vegetation structure and vegetation composition sub-indices has enabled possible causes to be inferred. The patterns of range condition and change are complex at all landscape scales. However, based on analysis of the WARMS sites, range condition is considerably more variable, in space and time, in the northern parts of the southern rangelands compared to the southern parts, with the exception of the Nullarbor region. Through time, the Ashburton and Gascoyne regions consistently demonstrate the largest area (site clusters) of change and the greatest magnitude of change. For many areas, range trend has fluctuated markedly between improvement and decline since the mid-1990s. However, there are two large clusters of sites which show continuing decline through more than two decades. The legacy of historical degradation and ongoing poor land stewardship (principally through over-stocking) is hindering the widespread recovery in range condition, despite more than a decade of good rainfall seasons. An uncommon exception to this sad story is a group of sites located in the upper region of the Gascoyne catchment, where there has been almost continuous improvement over the same period. This work also provides empirical evidence of a fundamental difference in the behaviour of surface water-flows in different catchment types.
Using the Landscape Function Factor (LFF), there is conspicuous regional differentiation of sites located in exorheic catchments from those located in endorheic-arheic catchments. In general, sites located in the coastal draining exorheic catchments exhibit greater rates of soil erosion compared to sites located in the other internally draining catchment types; the different erosional regimes are probably related to the nature of the ultimate and local base-levels associated with each catchment type. This has important implications for the long-term management of the rangelands of Western Australia.
Moll, Remington James. "Development and evaluation of a terrestrial animal-borne video system for ecological research." Diss., Columbia, Mo. : University of Missouri-Columbia, 2008. http://hdl.handle.net/10355/5782.
Повний текст джерелаThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on September 12, 2008) Vita. Includes bibliographical references.
Semkiv, Bogdan. "Problems of monitoring existing oil wells of Western Ukraine." Thesis, National Aviation University, 2021. https://er.nau.edu.ua/handle/NAU/50623.
Повний текст джерелаThe territory of Ukraine has a large number of wells, as the history of hydrocarbon production dates back to XVI - XVII centuries. The western region of Ukraine is represented by several oil and gas regions: Lviv, Ivano-Frankivsk, Chernivtsi and Zakarpattia regions, which has a total of 91 deposits. Special attention in Western Ukraine should be paid to the Boryslav oil and gas field, which began to be developed in 1854. Since the oil was in layers at a depth of only tens, or sometimes about hundreds of meters, the production was conducted through primitive oil wells - pits. In those years in Borislav there were about 5 thousand such pits with a depth of 35-40 m. In 1870, oil production in Boryslav reached 10.6 thousand tons. There were about 800 small businesses, which employed almost 10 thousand workers [1]. Foreign firms from the USA, Canada, Belgium, France, Germany for the purpose of enrichment carried out exhaustive exploitation of deposits, respectively, without paying attention to labor protection, care of the environment and ignoring keeping records of wells in the documentation. Thus chaotically there were all new places of oil production and in a terrible state remained abandoned primitive wells.
Територія України має велику кількість свердловин, оскільки історія видобутку вуглеводнів сягає XVI - XVII століть. Західний регіон України представлений кількома нафтогазоносними регіонами: Львівською, Івано-Франківською, Чернівецькою та Закарпатською областями, що має загалом 91 родовище. Особливу увагу в Західній Україні слід приділити Бориславському нафтогазовому родовищу, яке почали розробляти в 1854 році. Оскільки нафта була шарами на глибині лише десятки, а іноді і близько сотні метрів, видобуток вівся через примітивні нафтові свердловини - ями. У ті роки в Бориславі було близько 5 тис. таких ям глибиною 35-40 м. У 1870 р. Видобуток нафти в Бориславі досяг 10,6 тис. тонн. Налічувалося близько 800 малих підприємств, на яких працювало майже 10 тис. робітників [1]. Іноземні фірми з США, Канади, Бельгії, Франції, Німеччини з метою збагачення проводили вичерпну експлуатацію родовищ, відповідно, не звертаючи уваги на охорону праці, догляд за навколишнім середовищем та ігноруючи ведення записів свердловин у документації. Таким чином хаотично з'явилися все нові місця видобутку нафти і в жахливому стані залишилися занедбані примітивні свердловини.
Мартиненко, Володимир Олександрович, Владимир Александрович Мартыненко та Volodymyr Oleksandrovych Martynenko. "Еколого-економічний моніторинг як засіб управління охороною довкілля на муніципальному рівні". Thesis, Дніпропетровськ, 2004. http://essuir.sumdu.edu.ua/handle/123456789/60632.
Повний текст джерелаWays of solving ecological problems, the strategy of ecological safety and sustainable development are still uncertain at the municipal level. This situation requires a radical change in the attitude of local authorities to the processes of environmental management and environmental activities.
Бахарєв, В. С. "Комплексна система екологічного моніторингу атмосферного повітря урбосистем". Thesis, Кременчуцький національний університет імені Михайла Остроградського, 2018. http://essuir.sumdu.edu.ua/handle/123456789/67856.
Повний текст джерелаВ диссертационной работе приведены результаты научных исследований по разработке комплексной системы экологического мониторинга атмосферного воздуха урбосистем. Доказано, что существующий теоретический базис реализации систем экологического мониторинга требует усовершенствования в части формирования единого концептуального антропоцентрического подхода к решению проблем как эффективного оценивания качества компонентов окружающей среды так и полноценного информирования общественности об их состоянии. Предложено базовую схему построения концепции экологического мониторинга атмосферного воздуха на муниципальном уровне. Конкретизированы составляющие концепции с выделением целей, задач, стратегических результатов, статических и динамических индикаторов реализации концепции. Проведено экспериментальные и аналитически-расчётные исследования состояния загрязнения атмосферного воздуха в условиях современных изменений застройки городов. Особое внимание уделено влиянию автомобильного транспорта на состояние ингредиентного и шумового загрязнения атмосферного воздуха, как в пределах магистральных улиц так и в зонах селитебной застройки. Обоснованы методологические подходы к определению зон активного загрязнения, использование которых позволит оптимизировать сеть стационарных постов наблюдения за состоянием атмосферного воздуха для ведения экологического мониторинга урбанизированных территорий. Разработан способ построения сети стационарных постов мониторинга атмосферного воздуха населенного пункта, определение их количества и мест расположения для оценки качества атмосферного воздуха. Предложенный способ отличается от существующих тем, что позволяет четко установить количество стационарных постов наблюдений на территории населенного пункта независимо от количества жителей, места расположения стационарных постов. Позволяет получить дифференцированную информацию от системы наблюдений: в зонах селитебной застройки, находящихся в пределах зон активного загрязнения промышленных объектов I-III классов опасности, автотранспортных магистралей (дорог) и в зонах селитебной застройки, расположенных вне зон активного загрязнения промышленных объектов и транспорта. Полученная таким образом информация сети наблюдений позволит определять вклад источников загрязнения различного вида в общий уровень загрязнения атмосферного воздуха урбосистемы. Разработана структура комплексной системы экологического мониторинга атмосферного воздуха на муниципальном уровне управления экологической безопасностью, основанная на взаимодействии подсистем в ее пределах. Выделены следующие подсистемы: прогнозирования метеорологических условий загрязнения атмосферы и предупреждения об опасных метеоусловиях; наблюдения, с дифференциацией качественных характеристик информации постов контроля; презентации результатов наблюдений, их анализа, наработанных решений с широким и дифференцированным доступом; оценки результатов наблюдений и краткосрочного прогнозирования изменений; независимого экспертного оценивания текущей и оперативной информации о состоянии загрязнения атмосферного воздуха; накопления исходной первичной и вторичной (в том числе разработанных организационно-управленческих решений) информации системы мониторинга (база данных). Предложена структура информационно-аналитической системы (ИАС) муниципального мониторинга качества атмосферного воздуха и структуры составляющих ИАС и подсистем комплексной системы мониторинга. Разработана теоретико-множественная модель построения структуры информационно-аналитической системы экологического мониторинга (ИАС ЭМ). Обоснована структура детализированной модели ИАС ЭМ, в составе которой четко определены функциональные подсистемы ИАС, комплексы обеспечивающие функциональные взаимоотношения, связывающие элементы ИАС в единую структуру. Определен состав и структура основных функциональных элементов ИАС ЭМ. Разработана общая схема информационной технологии мониторинга и поддержки принятия оперативных решений по управлению экологической безопасностью в системе муниципального экологического мониторинга атмосферного воздуха. На примере урбосистемы промышленного города Кременчуг разработана программа постоянного контроля и наблюдения (мониторинга) за загрязнением атмосферного воздуха на соответствие содержания загрязняющих веществ нормам ПДК, интегрированную с существующей системой наблюдения за загрязнением атмосферного воздуха.
In the dissertation work the results of scientific researches on development of integrated system of urbosystem atmospheric air environmental monitoring are given. The basic scheme of constructing the concept of atmospheric air environmental monitoring at the municipal level has been proposed. The concept components with the allocation of goals, tasks, strategic results, static and dynamic indicators of the concept implementation have been specified. The methodological approach to the active pollution zones definition, the use of which will allow optimize the stationary observation posts network for the atmospheric air state in order to conduct urbanized territories environmental monitoring, has been substantiated. The method of constructing a stationary posts network for monitoring the settlement atmosphere pollution, determining their number and locations has been developed. The method differs from the existing ones by allowing establish precisely the stationary observation posts number on the settlement territory regardless of the residents’ number, determine the stationary posts locations with the obtaining differentiated information from the observation system. The structure of the complex system of urbosystem atmospheric air environmental monitoring has been developed, the subsystems interaction within the framework of which provides a logical combination of their functioning peculiarities in order to provide the population with reliable and differentiated information. This is the basis for the organizational and managerial decisions making on ensuring environmental safety. The structure of the information-analytical system (IAS) of municipal atmospheric air quality monitoring and the structure of IAS components and the complex monitoring system subsystems has been proposed. The theoretical-multiple model of the atmospheric air environmental monitoring information-analytical system at the municipal level has been developed, which includes subsystems for the ecosystem parameters monitoring, decision-making support, "parameters database - situations awareness database" information system and allows to recognize environmentally hazardous situations operatively and to make adequate decisions regarding their correction. The general scheme of information monitoring technology and making operational decisions support on environmental safety management in the municipal environmental atmospheric air monitoring system has been developed. On the example of the urbosystem of the technogenically loaded town of Kremenchuk, a program of atmospheric air pollution permanent control and observation (monitoring) has been developed concerning the pollutants content correlation to the MPC norms, integrated with the existing system for atmospheric air pollution monitoring.
Шевченко, Валентина Володимирівна. "Науково-технічні засади підтримки конкурентоспроможності турбогенераторів і забезпечення їхньої ефективної роботи при тривалій експлуатації". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2020. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48915.
Повний текст джерелаThe thesis is submitted for the academic degree of doctor of technical sciences. Specialty 05.09.01 – Electrical machines and apparatuses. – Department of Electrical Machines of National Technical University "Kharkiv Polytechnic Institute", Kharkov, 2020. The dissertation is devoted to the scientific and applied problem of ensuring reliable operation of modern turbogenerators (TG) at thermal and nuclear power plants (TPP and NPP) units, research of TG features, which are in operation for a long time, extension of their operation, increasing the competitiveness of new TG on the world market. Scientific concepts have been developed that confirm the prospects for the implementation of work to improve TG, taking into account global environmental problems, active development and significant government support for renewable energy sources. Using the theory of cyclical development, it is established that for Ukraine is a promising stabilization and stagnation scenario, which provides for further improvement and development of thermal power plants (TPP and NPP), improvement and increase of TG capacity. A set of studies was carried out to improve the TG: increase of capacity in unit of execution, decrease in their mass and size indicators, improvement of cooling systems, use of new technologies and materials. Taking into account the technical level of the manufacturer and the technical capabilities of related industries, a structural and logical scheme of work to maintain scientific and technical competitiveness of domestic TGs was drawn up. The research was performed to reduce the specific weight of TG, to replace the hydrogen cooling system with air, to increase the capacity of new TG and TG already operating at power plants. At the same time there was a requirement to preserve the dimensions. Proven need to take into account not only the cost of electricity, but also data on their condition in determining the order of inclusion of TG in the power system. It is proved that it is expedient to maintain the nominal parameters of the power system of Ukraine with turbo-generators with a capacity of 200-300 MW, which are installed at thermal power plants. The use of NPP turbogenerators for such regulation is unacceptable. A comparison is made and it is shown to what extent and why domestic turbogenerators are inferior in specific weight to t TGs of the world's leading companies, why they are heavier than foreign counterparts. The decision of these questions allows to increase TG reliability which are in operation for a long time, allows to implement perspective decisions for maintenance of competitiveness of domestic TGs in the world market. A method of complex system monitoring of turbogenerators, which have been operating at power plants for a long time, was proposed. The method took into account the peculiarities of the turbogenerators on the modern power grid and the transition to repairs on the actual condition, rather than on the schedule of planned and preventive repairs. The directions of reduction of mass-dimensional indicators of turbogenerators by means of improvement of their inactive zone are offered and proved. To do this, it is pro-posed to use more promising technologies, standard profiles and new materials. The development, condition and prospects of increase of reliability of cooling systems are analyzed; the directions of creation and diagnostics of modern coolers are offered. Developed and scientifically substantiated method of monitoring the state of TG in the on-line mode; it is proposed to consider the level of vibration as the most informative indicator; this reduces the required additional number of control channels and reduces the load on power plant operators. The scientific results obtained in this work are based on experimental data obtained during service and repairs of turbogenerators at power plants in Ukraine and other countries. Problems are considered and directions of improvement of professional training of workers of TPP and NPP are offered, ways of increase of their economic interest for maintenance in the national electric power industry are defined.
Yu, Shih-Jhong, and 余世忠. "A Study on Master-Slave Imaging System and Application for Ecological Monitoring." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/22804636001167093013.
Повний текст джерела國立臺灣大學
生物產業機電工程學研究所
100
Video surveillance has been widely used in various applications. The master-slave imaging system architecture can provide both a large field of view (FOV) and high resolution images. A master camera is responsible for monitoring large FOV, object detection, and guiding the slave camera. A slave camera is usually a pan-tilt-zoom (PTZ) camera, which rotates and zooms in to acquire high resolution images of targeted objects. In traditional approach, a camera with wide angle or fish-eye lens is usually used as the master camera. However, such an approach is limited in applications requiring high resolution image. Instead, we propose a new kind of master camera, which is a panoramic camera set integrated with eight webcams. We employ the panorama technology to provide video images with large FOV, low image distortion and high resolution simultaneously. Moreover, we develop a new geometrical mapping method to achieve coordinate transformation between the panoramic camera set and the PTZ camera. We also apply the interactive multiple model to improve the estimation of the targeted object state, which facilitates the PTZ camera to center on the targeted object for proper image acquisition. The proposed system has been applied to pedestrian and ecological pool monitoring to test its performance. The developed master-slave imaging system provides high resolution images and the trajectory of the targeted objects. The panoramic camera is capable of acquiring video images of 4390 × 587 resolution at rate of 10 fps. The mapping error is around 0.5 degree. The overall tracking rate is about 70%. The high resolution images and the recorded trajectories are useful in further analyses of the behaviors of targeted objects.
Liao, Min-Sheng, and 廖敏勝. "An Automatic Diagnosis and Warning Scheme for the Ecological Monitoring System for the Bactrocera dorsalis (Hendel) using Self-Organizing Map." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/51665101753796785389.
Повний текст джерела國立臺灣大學
生物產業機電工程學研究所
99
Recently, wireless sensor networks (WSNs) technologies have been rapidly developed. WSNs have been widely utilized in a variety of commercial and industrial applications. If a back-end monitoring technology accompany with WSNs, it can be used to detect the specific events of WSNs. For example, with unusually high or low temperature and humidity, the back-end monitoring system can aim at the specific events and prepare for the follow-up operations of environmental control and emergency notification. However, the causation of the specific events may also be resulted from sensor calibration error or sensor failure. In order to avoid the false positives of the monitoring system, it must establish a mechanism of autonomous detection to prevent similar situations. This work instanced an oriental fruit fly (Bactrocera dorsalis) ecological monitoring network, and it designed a real-time monitoring system. This system can send warning messages to the correspondents when the pest surged. In addition, when a sensor reading error occurs, this system can accurately classified as a fault event, and notify the correspondents to conduct system maintenance. The oriental fruit fly is the major pest that attacks fruit in Taiwan. In the past, the monitor techniques mostly depended on manual measurement. Due to limited budgets on manpower, manual measurements cannot acquire much environmental data at the same time, thereby losing the immediateness of subsequent data analysis, so it is almost impossible to execute appropriate pest control in the right time at the right place. In order to replace previous manual measurements, this work combined GSM technologies with WSN technologies to develop an automated real-time monitoring system which can measure environmental parameters for cultivated land. The mechanism of autonomous detection used self-organizing map to detect the parameters of specific events. This work achieves three primary goals: 1) the sensors operate normally; 2) the sensors detect the infestation of the oriental fruit; and 3) the system detects unusual sensor readings. Two monitoring systems of the oriental fruit fly have been actually deployed in two orange orchards at Yuanshan, Yilan, on July 2 and Sept. 8, 2010, respectively. The systems can monitor the oriental fruit fly in the orchards and use self-organizing map to establish classification models for four seasons. The models will classify the readings based on three primary goals set by this work. The experimental results presented that the efficiency of classification models is excellent, and it can help the monitoring system identify whether an error in the monitoring data occurs to achieve agricultural automation.
Книги з теми "Geoinformation system of ecological monitoring"
Rotanova, I. N. Geoinformat︠s︡ionnye tekhnologii i matematicheskie modeli dli︠a︡ monitoringa i upravlenii︠a︡ ėkologicheskimi i sot︠s︡ialʹno-ėkonomicheskimi sistemami = Geoinformation technologies and mathematical models for monitoring and management of ecological and socio-economic systems. a Barnaul: Pi︠a︡tʹ pli︠u︡s, 2011.
Знайти повний текст джерелаZapotosky, John E. ELF communications system ecological monitoring program: Final summary report. Chicago, Ill: The Institute, 1996.
Знайти повний текст джерелаBand, R. Neal. ELF communications system ecological monitoring program: Soil amoeba, final report. Chicago, Ill: IIT Research Institute, 1996.
Знайти повний текст джерелаZapotosky, John E. ELF communications system ecological monitoring program: Summary of 1989 progress. Chicago, Ill: The Institute, 1990.
Знайти повний текст джерелаRay, Gary L. Ecological monitoring of a constructed intertidal flat at Jonesport, Me. Concord, MA: U.S. Army Corps of Engineers, New England District, 1999.
Знайти повний текст джерелаAn evaluation of the U.S. Navy's extremely low frequency communications system ecological monitoring program. Washington, D.C: National Academy Press, 1997.
Знайти повний текст джерела1976-, Liu Hua, and Meng Xiance, eds. Guo jia zhong dian lin ye sheng tai gong cheng jian ce yu guan li xi tong: System of monitoring and management for the state key forestry ecological project. Beijing Shi: Zhongguo lin ye chu ban she, 2011.
Знайти повний текст джерелаUnited States. National Park Service., ed. Shenandoah National Park long-term ecological monitoring system user manuals. [Washington, D.C.?]: U.S. Dept. of the Interior, National Park Service, 1990.
Знайти повний текст джерелаUnited States. National Park Service., ed. Shenandoah National Park long-term ecological monitoring system user manuals. [Washington, D.C.?]: U.S. Dept. of the Interior, National Park Service, 1990.
Знайти повний текст джерелаUnited States. National Park Service, ed. Shenandoah National Park long-term ecological monitoring system user manuals. [Washington, D.C.?]: U.S. Dept. of the Interior, National Park Service, 1990.
Знайти повний текст джерелаЧастини книг з теми "Geoinformation system of ecological monitoring"
Waide, Robert B., and McOwiti O. Thomas. "Long-Term Ecological Research Network." In Earth System Monitoring, 233–68. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5684-1_11.
Повний текст джерелаWard, Robert C. "Indicator Selection: A Key Element in Monitoring System Design." In Ecological Indicators, 147–57. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-4659-7_11.
Повний текст джерелаDaniel, Claire. "Towards the Development of a Monitoring System for Planning Policy." In Lecture Notes in Geoinformation and Cartography, 23–45. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57819-4_2.
Повний текст джерелаHübnerová, Jitka. "Towards a Solution for the Public Web-Based GIS Monitoring and Alerting System." In Lecture Notes in Geoinformation and Cartography, 121–35. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11463-7_9.
Повний текст джерелаO’Connell, Jared, and Peter Caccetta. "Testing of Alternate Classification Procedures Within an Operational, Satellite Based, Forest Monitoring System." In Lecture Notes in Geoinformation and Cartography, 121–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-93962-7_10.
Повний текст джерелаGarcía-Hernández, José, and Iskar Jasmani Waluyo-Moreno. "Spatial Analysis of a Forest Socio-Ecological System in Oaxaca, Mexico Based on the DPSIR Framework." In Lecture Notes in Geoinformation and Cartography, 53–66. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98096-2_5.
Повний текст джерелаJiang, Xiao, Liyan Huang, Junguo Zhang, Yuzhu Li, and Yang Kai. "Application of Data Fusion in Ecological Environment Monitoring System." In Lecture Notes in Electrical Engineering, 109–17. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2185-6_14.
Повний текст джерелаTalakh, Mariia, and Serhii Holub. "Information System of Ecological Monitoring “Small Mammals as Bioindicator”." In Advances in Intelligent Systems and Computing, 47–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58124-4_5.
Повний текст джерелаCostanza, Robert. "Ecological and Economic System Health and Social Decision Making." In Evaluating and Monitoring the Health of Large-Scale Ecosystems, 103–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79464-3_7.
Повний текст джерелаGaliano, Philipp, Mikhail Kharinov, and Sergey Vanurin. "Application of Sleator-Tarjan Dynamic Trees in a Monitoring System for the Arctic Region Based on Remote Sensing Data." In Lecture Notes in Geoinformation and Cartography, 137–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31833-7_9.
Повний текст джерелаТези доповідей конференцій з теми "Geoinformation system of ecological monitoring"
Akinina, Natalia V., Sergey I. Gusev, Aleksandr N. Kolesenkov, and Alexandr I. Taganov. "Construction of basic graphic elements library for geoinformation ecological monitoring system." In 2017 27th International Conference Radioelektronika (RADIOELEKTRONIKA). IEEE, 2017. http://dx.doi.org/10.1109/radioelek.2017.7937585.
Повний текст джерелаGosteva, A. A., S. P. Ilyina, and A. K. Matuzko. "Investigation of the ecological component of the urban environment quality based on the available spatial data." In Spatial Data Processing for Monitoring of Natural and Anthropogenic Processes 2021. Crossref, 2021. http://dx.doi.org/10.25743/sdm.2021.58.57.053.
Повний текст джерелаAlekseeva, M. N., and I. G. Yashchenko. "Geoinformation monitoring of the ecological state of the arctic territories." In PROCEEDINGS OF THE ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. Author(s), 2018. http://dx.doi.org/10.1063/1.5083247.
Повний текст джерелаLiashenko, D., D. Pavlyuk, R. Spitsa, V. Belenok, and S. Omelchuk. "Conceptual modeling for geoinformation modeling of landslides." In XIV International Scientific Conference “Monitoring of Geological Processes and Ecological Condition of the Environment”. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202056067.
Повний текст джерелаKutova, D., and T. Chepurna. "Methodology Of Geoinformation Approach Of Mudflow Processes Studing." In 12th International Conference on Monitoring of Geological Processes and Ecological Condition of the Environment. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201803162.
Повний текст джерелаBondarenko, E., and M. Kyryliuk. "Cartographic support of the results of geoinformation monitoring of the environment." In XIV International Scientific Conference “Monitoring of Geological Processes and Ecological Condition of the Environment”. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202056036.
Повний текст джерелаMamonov, K., A. Palamar, R. Viatkin, and I. Kondratyuk. "Geoinformation support for monitoring the land use of the ecological network of regions." In International Conference of Young Professionals «GeoTerrace-2020». European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.20205737.
Повний текст джерелаLiashenko, D., S. Kozodavov, N. Koper, Y. Nikitchenko, and S. Okhrimenko. "Geoinformation monitoring of regenerative successions at the territory of Khortytsia National Reserve." In 15th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.20215k2076.
Повний текст джерелаVyzhva, S., O. Shchyptsov, S. Shnyukov, I. Lazareva, A. Gordeev, and A. Virshylo. "Integrated Geochemical and Geophysical Monitoring of the Ecological State of Sedimentary Systems in Danube-Black Sea Region: Pilot Results and Development Prospects." In Geoinformatics. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.20215521148.
Повний текст джерелаLazorenko-Hevel, N., B. Denysiuk, I. Halius, and V. Zatserkovnyi. "Geoinformation maintenance of the territory of Chornobilskiy radio-ecological biosphere reserve for monitoring conduction." In XIV International Scientific Conference “Monitoring of Geological Processes and Ecological Condition of the Environment”. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202056056.
Повний текст джерелаЗвіти організацій з теми "Geoinformation system of ecological monitoring"
Morkun, Volodymyr S., Сергій Олексійович Семеріков, and Svitlana M. Hryshchenko. Use of the system Moodle in the formation of ecological competence of future engineers with the use of geoinformation technologies. Видавництво “CSITA”, 2016. http://dx.doi.org/10.31812/0564/718.
Повний текст джерелаStrickler, Karen, and J. Mark Schriber. ELF Communications System Ecological Monitoring Program: Pollinating Insect Studies. Fort Belvoir, VA: Defense Technical Information Center, November 1994. http://dx.doi.org/10.21236/ada297183.
Повний текст джерелаSnider, Richard J., and Renate M. Snider. ELF Communications System Ecological Monitoring Program: Soil Arthropods and Earthworms. Fort Belvoir, VA: Defense Technical Information Center, April 1995. http://dx.doi.org/10.21236/ada297182.
Повний текст джерелаMorkun, Volodymyr S., Сергій Олексійович Семеріков, Svitlana M. Hryshchenko, and Kateryna I. Slovak. Environmental Geo-information Technologies as a Tool of Pre-service Mining Engineer’s Training for Sustainable Development of Mining Industry. CEUR Workshop Proceedings, 2017. http://dx.doi.org/10.31812/0564/730.
Повний текст джерелаZapotosky, J. E. Compilation of 1993 Annual Reports of the Navy ELF Communications System Ecological Monitoring Program. Fort Belvoir, VA: Defense Technical Information Center, April 1994. http://dx.doi.org/10.21236/ada279575.
Повний текст джерелаHenderson, Tim, Vincent Santucci, Tim Connors, and Justin Tweet. National Park Service geologic type section inventory: Klamath Inventory & Monitoring Network. National Park Service, July 2021. http://dx.doi.org/10.36967/nrr-2286915.
Повний текст джерелаHenderson, Tim, Mincent Santucci, Tim Connors, and Justin Tweet. National Park Service geologic type section inventory: Chihuahuan Desert Inventory & Monitoring Network. National Park Service, April 2021. http://dx.doi.org/10.36967/nrr-2285306.
Повний текст джерелаHenderson, Tim, Vincent Santucci, Tim Connors, and Justin Tweet. National Park Service geologic type section inventory: Mojave Desert Inventory & Monitoring Network. National Park Service, December 2021. http://dx.doi.org/10.36967/nrr-2289952.
Повний текст джерелаHenderson, Tim, Vincent Santucci, Tim Connors, and Justin Tweet. National Park Service geologic type section inventory: Central Alaska Inventory & Monitoring Network. National Park Service, May 2022. http://dx.doi.org/10.36967/nrr-2293381.
Повний текст джерелаHenderson, Tim, Vincent Santucci, Tim Connors, and Justin Tweet. National Park Service geologic type section inventory: Northern Colorado Plateau Inventory & Monitoring Network. National Park Service, April 2021. http://dx.doi.org/10.36967/nrr-2285337.
Повний текст джерела