Добірка наукової літератури з теми "Geochemistry"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Geochemistry".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Geochemistry":

1

Price, Jonathan G. "SEG Presidential Address: I Never Met a Rhyolite I Didn’t Like – Some of the Geology in Economic Geology." SEG Discovery, no. 57 (April 1, 2004): 1–13. http://dx.doi.org/10.5382/segnews.2004-57.fea.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACT Rhyolites and their deep-seated chemical equivalents, granites, are some of the most interesting rocks. They provide good examples of why it is important to look carefully at fresh rocks in terms of fıeld relationships, mineralogy, petrography, petrology, geochemistry, and alteration processes. Because of their evolved geochemisty, they commonly are important in terms of ore-forming processes. They are almost certainly the source of metal in many beryllium and lithium deposits and the source of heat for many other hydrothermal systems. From other perspectives, rhyolitic volcanic eruptions have the capacity of destroying civilizations, and their geochemistry (e.g., high contents of radioactive elements) is relevant to public policy decision-making.
2

DEMETRIADES, A. "Applied geochemistry in the twenty-first century: mineral exploration and environmental surveys." Bulletin of the Geological Society of Greece 34, no. 3 (January 1, 2001): 1131. http://dx.doi.org/10.12681/bgsg.17173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Applied (exploration and environmental) geochemistry in the twentieth century is briefly reviewed, and its future developments in the twenty-first century are envisaged in the light of advances in analytical instruments (laboratory and field) and computer technology. It is concluded that applied geochemical methods must be used by well-trained applied geochemists, and the potential for future developments is limited only by their ingenuity.
3

VAN SCHMUS, W. R. "Crustal Geochemistry: Archaean Geochemistry." Science 231, no. 4739 (February 14, 1986): 751–52. http://dx.doi.org/10.1126/science.231.4739.751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hunt, John M. "Geochemistry." Geochimica et Cosmochimica Acta 53, no. 12 (December 1989): 3343. http://dx.doi.org/10.1016/0016-7037(89)90115-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Volkman, John K. "Future Outlook for Applications of Biomarkers and Isotopes in Organic Geochemistry." Elements 18, no. 2 (April 1, 2022): 115–20. http://dx.doi.org/10.2138/gselements.18.2.115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Organic geochemistry continues to make important contributions to our understanding of how the biogeochemistry of our planet and its environment has changed over time and of the role of human impacts today. This article provides a brief overview of the field and a perspective on how it might develop in the near future. Particular emphasis is placed on biomarkers (compounds with a distinctive chemical structure that can be related to specific organisms) and stable isotopes of carbon, hydrogen, and nitrogen, as these are major tools used by organic geochemists. Many geochemical studies involve a mixture of disciplines and so this article also focuses on how this research area can complement work in other fields.
6

Canfield, Donald E. "Marine Geochemistry." Limnology and Oceanography 45, no. 7 (November 2000): 1680. http://dx.doi.org/10.4319/lo.2000.45.7.1680.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hanson, B. "GEOCHEMISTRY: Selenospheres." Science 303, no. 5656 (January 16, 2004): 289b—289. http://dx.doi.org/10.1126/science.303.5656.289b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Till, Christy. "Big geochemistry." Nature 523, no. 7560 (July 2015): 293–94. http://dx.doi.org/10.1038/523293a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

WILSON, ELIZABETH K. "MODELING GEOCHEMISTRY." Chemical & Engineering News 88, no. 14 (April 5, 2010): 39–40. http://dx.doi.org/10.1021/cen-v088n014.p039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Elderfield, H. "Marine Geochemistry." Marine and Petroleum Geology 17, no. 9 (November 2000): 1083–84. http://dx.doi.org/10.1016/s0264-8172(00)00036-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Geochemistry":

1

Spivack, Arthur J. "Boron isotope geochemistry." Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/15187.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, and Woods Hole Oceanographic Institution, 1986.
MICROFICHE COPY AVAILABLE IN ARCHIVES AND LINDGREN
Vita.
Includes bibliographies.
by Arthur J. Spivack.
Ph.D.
2

Thomas, Jay Bradley. "Melt Inclusion Geochemistry." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/11262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Silicate melt inclusions (MI) are small samples of melt that are trapped during crystal growth at magmatic pressures and temperatures. The MI represent a sample of the melt that was isolated from the magma during host crystal growth. Thus, MI provide a valuable tool for constraining the magmatic history of igneous systems because they provide an unambiguous method to directly determine compositions of melts from which the host crystal grew. As such, coupled petrographic examination and geochemical analyses of MI and host crystals can reveal information about crystal/melt processes in igneous systems that are difficult (or impossible) to assess through conventional methods. Many studies have used MI to monitor large scale petrogenetic processes such as partial melting and fractional crystallization. The research presented below focuses on using MI to constrain processes that operate at the crystal/melt interface because MI are samples of melt that resided adjacent to the host crystal prior to entrapment as an inclusion. Chapter one addresses challenges associated with preparing small crystals containing MI for geochemical analysis. In chapter two trace element analyses of MI and the immediately adjacent host zircon crystals are used to determine zircon/melt partition coefficients. In chapter 3 the significance of boundary layer development adjacent to growing crystals is evaluated by comparing the trace element compositions of MI host crystals that have significantly different trace element mineral/melt partitioning behavior.
Ph. D.
3

Heri, Alexandra Regina. "Geochemistry, geochronology and isotope geochemistry of eocene dykes intruding the Ladakh batholith." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B50899624.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Eocene dykes intruding the Ladakh batholith were sampled along the southern margin of the Trans-himalayan plutonic arc in Ladakh, NW-India. Approximately 30 dykes were encountered in the 40 km trail between Leh and Hemis Shugpachan. The dykes in the east of the field are trending E to NE and those in the west trending N to NW, exhibiting sub-parallel orientations within each area. Eighteen dykes were sampled (two of them multiple times) and subjected to petrographic, geochemical and isotopic analyses. They exhibit various degrees of differentiation from basaltic to rhyolitic compositions and are mainly composed of plagioclase, quartz, hornblende (s.l.) and/or biotite and magnetite. Furthermore, dykes in the eastern part of the field area contain quartz xenocrysts resulting from crustal assimilation, while no relict quartz was found in the west. The dykes exhibit alteration phases and features suggesting that they underwent autometamorphism, i.e. hydration reactions due to igneous cooling. Whereas the dykes in the east of the field area record low-T alteration, the mineral parageneses in the west are typical for alteration at elevated temperatures typical for greenschist metamorphic facies. Al-in-hornblende barometry performed on Magnesio-hornblende and Tschermakitic-hornblende phenocrysts of the least altered dyke indicates formation in upper-amphibolite metamorphic facies conditions and pressures of about 6 kbar corresponding to an intrusion depth of approximately 20 km. Major and trace element analyses and Rb-Sr and Sm-Nd isotope analyses revealed a stunning variability in geochemistry and isotopic composition amongst the coeval dykes. All dykes exhibit LREE enrichment and HREE depletion as well as negative Tb and Nb anomalies characteristic for subduction-related intrusives and extrusives. Their REE patterns support a clear subdivision into chemically distinct groups. The group hypothesis was further tested and found valid using statistical tools designed to assess similarity/dissimilarity amongst individuals of a group with a common ancestor, such as hierarchical cluster analysis and multidimensional scaling. The dykes are cogenetic, but clearly not consanguineous, i.e. have not formed from one, progressively differentiating magma chamber. The variability observed in Sr-Nd isotopes can be explained by the dykes having undergone differing degrees of crustal assimilation. In particular the dykes in the east containing quartz xenocrysts show negative iiNd) and positive N(Sr) values caused by crustal assimilation, whereas the dykes in the west with no quartz xenocrysts exhibit positive qqNd) and N(Sr) near zero. 39Ar-40Ar dating by incremental heating of several hornblende-bearing dykes revealed crystallization ages between 50 and 54 Ma, whereas two biotite-bearing dykes gave ages of 45 and 37 Ma, likely to be cooling or recrystallisation ages. The combination of structural field evidence with petrographic, petrologic, geochemical, isotopic and geochronological analyses demonstrates that the dykes, although sharing a common origin, i.e. having formed in the same tectonic setting at roughly the same time, have undergone further geological processes leading to an unexpected diversification of the dykes. These findings provide ample scope for further in-depth and breadth investigations on “late-magmatic dykes” in the future.
published_or_final_version
Earth Sciences
Doctoral
Doctor of Philosophy
4

Kiriakoulakis, Konstadinos. "Organic geochemistry of carbonate concretions." Thesis, University of Liverpool, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337141.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dredge, Jonathan. "Aerosol contributions to speleothem geochemistry." Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/5136/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
There is developing interest in cave aerosols due to the increasing awareness of their impacts on the cave environment and speleothems. This study presents the first multidisciplinary investigation into cave aerosols and their contribution to speleothem geochemistry. Modern monitoring of suspended aerosol concentrations, CO2 and temperature in Gough’s Cave, Cheddar Gorge have presented a strong relationship with cave ventilation processes. Temporal variations of aerosol levels have demonstrated the ability of aerosol monitoring to record seasonal ventilation shifts, beyond anthropogenic influences. When used in combination with more established monitoring methods, suspended aerosol monitoring is a beneficial addition to cave environmental studies Theoretical modelling and calculations based on modern aerosol monitoring have established that aerosol contributions are highly variable. Aerosol contributions are of greatest significance under slow growth or hiatus scenarios and high aerosol deposition scenarios. Marine and terrestrial aerosol contributions have been quantified in a flowstone core from New St Michaels Cave, Gibraltar. Additionally, bio-aerosol deposits and bacterial colonisation have been identified as a potential source of trace element bioaccumulation and flowstone coloration in Yarrangobilly Caves, Australia.
6

Wang, David Texan. "The geochemistry of methane isotopologues." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111690.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis: Ph.D. in Geochemistry, Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2017.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 123-143).
This thesis documents the origin, distribution, and fate of methane and several of its isotopic forms on Earth. Using observational, experimental, and theoretical approaches, I illustrate how the relative abundances of ¹²CH₄, ¹³CH₄, ¹²CH₃D, and ¹³CH₃D record the formation, transport, and breakdown of methane in selected settings. Chapter 2 reports precise determinations of ¹³CH₃D, a "clumped" isotopologue of methane, in samples collected from various settings representing many of the major sources and reservoirs of methane on Earth. The results show that the information encoded by the abundance of ¹³CH₃D enables differentiation of methane generated by microbial, thermogenic, and abiogenic processes. A strong correlation between clumped- and hydrogen-isotope signatures in microbial methane is identified and quantitatively linked to the availability of H₂ and the reversibility of microbially-mediated methanogenesis in the environment. Determination of ¹³CH₃D in combination with hydrogen-isotope ratios of methane and water provides a sensitive indicator of the extent of C-H bond equilibration, enables fingerprinting of methane-generating mechanisms, and in some cases, supplies direct constraints for locating the waters from which migrated gases were sourced. Chapter 3 applies this concept to constrain the origin of methane in hydrothermal fluids from sediment-poor vent fields hosted in mafic and ultramafic rocks on slow- and ultraslow-spreading mid-ocean ridges. The data support a hypogene model whereby methane forms abiotically within plutonic rocks of the oceanic crust at temperatures above ca. 300 °C during respeciation of magmatic volatiles, and is subsequently extracted during active, convective hydrothermal circulation. Chapter 4 presents the results of culture experiments in which methane is oxidized in the presence of O₂ by the bacterium Methylococcus capsulatus strain Bath. The results show that the clumped isotopologue abundances of partially-oxidized methane can be predicted from knowledge of ¹³C/¹²C and D/H isotope fractionation factors alone.
by David Texan Wang.
Ph.D. in Geochemistry
7

Gurriet, Philippe C. (Philippe Charles). "Geochemistry of Hawaiian dredged lavas." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/54327.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lamadrid, De Aguinaco Hector M. "Geochemistry of fluid-rock processes." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/71350.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
When these fluids interact with the surrounding rocks, small aliquots of these fluids are trapped as imperfections in the crystal lattice and fractures of minerals. These microscopic features are called fluid and melt inclusions, and are one of the best tools available to probe, measure and determine the chemical and physical properties of crustal fluids. In the present study we examine new developments into our understanding of fluid-rock interactions using fluid and melt inclusion as tools to provide insights into the evolution of the Earth's crust from the deep continental crust to the surface. Chapter II "Raman spectroscopic characterization of H2O in CO2-rich fluid inclusions in granulite facies metamorphic rocks", is a brief review of the current understanding of granulite rocks and their formation, and a new development into our ability to characterize the composition of the fluids trapped as fluid inclusions in minerals in granulite facies rocks. Chapter III "Reassessment of the Raman CO2 densimeter", details new developments in the use of the Raman spectroscopy to characterize the density of CO2. In this chapter we describe briefly the Raman effect of CO2 and the density dependence of the Fermi diad using different Raman instruments, laser sources and gratings to understand the differences in the published data. Chapter IV "Serpentinization reaction rates measured in olivine micro-batch reactors" describes new insights into the serpentinization process by using olivine micro-reactors. The micro-reactor technique is a new experimental development that allows researchers to monitor the fluid chemistry as well as the mineral composition changes inside synthetic fluid inclusion.
Ph. D.
9

Wood, Tamara Michelle. "Numerical modeling of estuarine geochemistry /." Full text open access at:, 1993. http://content.ohsu.edu/u?/etd,240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Curtis, John B. "Evaluation of the hydrocarbon source-rock potential of carbonaceous shales : upper Devonian shales of the Appalachian basin /." Connect to resource, 1989. http://rave.ohiolink.edu/etdc/view.cgi?acc%5Fnum=osu1263906458.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Geochemistry":

1

Brownlow, Arthur H. Geochemistry. 2nd ed. Upper Saddle River, N.J: Prentice Hall, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

1910-, Krauskopf Konrad Bates, and Ernst W. G. 1931-, eds. Frontiers in geochemistry: Global inorganic geochemistry. Columbia, MD: Bellwether Pub. for the Geological Society of America, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alexandre, Paul. Practical Geochemistry. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72453-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nordstrom, Darrell K., ed. Groundwater Geochemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74668-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Censi, Paolo, Thomas Darrah, and Yigal Erel, eds. Medical Geochemistry. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-4372-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Engel, Michael H., and Stephen A. Macko, eds. Organic Geochemistry. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2890-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Schulz, Horst D., and Matthias Zabel, eds. Marine Geochemistry. Berlin/Heidelberg: Springer-Verlag, 2006. http://dx.doi.org/10.1007/3-540-32144-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chester, Roy, and Tim Jickells. Marine Geochemistry. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118349083.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Berkowitz, Brian, Ishai Dror, and Bruno Yaron. Contaminant Geochemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74382-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schulz, Horst D., and Matthias Zabel, eds. Marine Geochemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04242-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Geochemistry":

1

White, William M. "Geochemistry." In Encyclopedia of Earth Sciences Series, 1–10. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_294-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

White, William M. "Geochemistry." In Encyclopedia of Earth Sciences Series, 561–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_294.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Su, Ben-Xun. "Geochemistry." In Mafic-ultramafic Intrusions in Beishan and Eastern Tianshan at Southern CAOB: Petrogenesis, Mineralization and Tectonic Implication, 107–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54262-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Galitskaya, I. V., and E. P. Yanin. "Geochemistry." In Encyclopedia of Earth Sciences Series, 1–4. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-12127-7_133-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ruffine, Livio, Sandrine Chéron, Emmanuel Ponzevera, Christophe Brandily, Patrice Woerther, Vivien Guyader, Audrey Boissier, Jean-Pierre Donval, and Germain Bayon. "Geochemistry." In Gas Hydrates 2, 57–84. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119451174.ch6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Galitskaya, I. V., and E. P. Yanin. "Geochemistry." In Encyclopedia of Earth Sciences Series, 378–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73568-9_133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rouse, Jim V., and Roman Z. Pyrih. "Geochemistry." In Geotechnical Practice for Waste Disposal, 15–32. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3070-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pande, Chaitanya B. "Geochemistry." In Geology, Petrography and Geochemistry of Basaltic Rock in Central India, 75–150. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30574-0_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Terry, Richard E. "Field Geochemistry." In Encyclopedia of Geoarchaeology, 263–71. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-1-4020-4409-0_165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jartun, Morten, and Rolf Tore Ottesen. "Urban Geochemistry." In Frontiers in Geochemistry, 221–37. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781444329957.ch11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Geochemistry":

1

Bazhenova, T. K. "Ruls of Organic Geochemistry." In Modern challenges of petroleum geology. Alternatives and prospects of development. All-Russia Petroleum Research Exploration Institute (VNIGRI), 2019. http://dx.doi.org/10.17353/anniversaryconference2019/bazhenova.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wasli, Syazaila, Baba Musta, and Swapan Kumar Bhattachrya. "Geochemistry of Kalabakan soils." In 2011 National Postgraduate Conference (NPC). IEEE, 2011. http://dx.doi.org/10.1109/natpc.2011.6136464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vannier, G., N. Bernard, N. Brun, O. Ruau, and R. Elias. "Production Allocation Using Combined Geochemical Fingerprinting and Multivariate Curve Resolution." In Third EAGE Geochemistry Workshop. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.2021623007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gallo, Y. Le, A. Garcia Dominguez, and B. Gonzalez Cansado. "Hydrogen reactivity with a carbonated underground gas storage." In Third EAGE Geochemistry Workshop. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.2021623012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wayne, J., and L. Rock. "Groundwater Spatiotemporal Data Analysis Tool (GWSDAT): An overview." In Third EAGE Geochemistry Workshop. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.2021623010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hoteit, H., and M. Addassi. "Integrated Uncertainty Quantification for Reactive Transport Modeling of CO2 Mineralization in Basalts." In Third EAGE Geochemistry Workshop. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.2021623004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Spaak, G., J. Weijers, F. Akbas, A. Bell, P. Van Bergen, and O. Podlaha. "Significance of long chain alkylated aromatic compounds for Neoproterozoic-Cambrian petroleum systems." In Third EAGE Geochemistry Workshop. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.2021623003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gaile, Z. Vincevica, K. Stankevica, M. Stapkevica, M. Klavins, and J. Burlakovs. "Perspectives of sapropel- and clay-containing soil amendments in bioremediation of complex pollution." In Third EAGE Geochemistry Workshop. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.2021623011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Alfraih, I., and I. Atwah. "The Role of Grain Size and Sample Freshness on Pyrolysis Analysis." In Third EAGE Geochemistry Workshop. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.2021623008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Baraka-lokmane, S., P. Pedenaud, M. Al Kalbani, O. Ishkov, and E. Mackay. "Prevention of sulphate scale in production wells-Challenging the 40 mg/L of sulphate in seawater injection." In Third EAGE Geochemistry Workshop. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.2021623002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Geochemistry":

1

Cranston, R. E. Geochemistry. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132223.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Seitz, S. S., D. A. Reioux, M. J. Blessington, Diana Jozwik, and K. M. Mulliken. Alaska Geochemistry. Alaska Division of Geological & Geophysical Surveys, November 2017. http://dx.doi.org/10.14509/29770.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gammon, P. Permafrost geochemistry. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2019. http://dx.doi.org/10.4095/314910.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

McCurdy, M. W., S. D. Amor, D. Corrigan, R. G. Garrett, and F. Solgadi. Lake sediment geochemistry. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/306141.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

McCurdy, M. W. Lake sediment geochemistry. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/297400.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Franklin, J. M., J. M. Duke, W. W. Shilts, W. B. Coker, P. W B Friske, Y. T. Maurice, S B Ballantyne, C. E. Dunn, G. E M Hall, and R. G. Garrett. Exploration geochemistry workshop. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132388.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Whalen, J. B., N. Wodicka, and G. D. Jackson. Geochemistry of granitoids. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2007. http://dx.doi.org/10.4095/223358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Whalen, J. B., and N. Wodicka. Geochemistry of granitoids. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2007. http://dx.doi.org/10.4095/223372.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Seitz, S. S., D. A. Reioux, M. J. Blessington, Diana Jozwik, and K. M. Mulliken. Alaska Geochemistry (interactive map). Alaska Division of Geological & Geophysical Surveys, November 2017. http://dx.doi.org/10.14509/geochem.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

McClenaghan, M. B., R. C. Paulen, J. M. Rice, H. E. Campbell, and M. Ross. Till geochemistry and mineralogy. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/306140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії