Добірка наукової літератури з теми "Geochemical exploration"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Geochemical exploration".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Geochemical exploration"

1

Angino, Ernest E. "Geochemical exploration 1983." Chemical Geology 56, no. 3-4 (October 1986): 337–38. http://dx.doi.org/10.1016/0009-2541(86)90016-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Closs, L. Graham. "Geochemical exploration 1982." Chemical Geology 54, no. 1-2 (January 1986): 177–78. http://dx.doi.org/10.1016/0009-2541(86)90083-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ikramuddin, Mohammed. "Geochemical exploration 1985." Geochimica et Cosmochimica Acta 52, no. 11 (November 1988): 2737. http://dx.doi.org/10.1016/0016-7037(88)90044-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Siegel, Frederic R. "Geochemical exploration 1987." Geochimica et Cosmochimica Acta 54, no. 2 (February 1990): 487. http://dx.doi.org/10.1016/0016-7037(90)90338-l.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cadigan, R. A. "Geochemical exploration 1982." Journal of Volcanology and Geothermal Research 26, no. 3-4 (December 1985): 387–88. http://dx.doi.org/10.1016/0377-0273(85)90068-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Verleun, Leo J. "Geochemical exploration 1982." Journal of Geochemical Exploration 27, no. 1-2 (October 1987): 221–22. http://dx.doi.org/10.1016/0375-6742(87)90017-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Leybourne, M. I., and E. M. Cameron. "Groundwater in geochemical exploration." Geochemistry: Exploration, Environment, Analysis 10, no. 2 (May 2010): 99–118. http://dx.doi.org/10.1144/1467-7873/09-222.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Horvitz, L. "Geochemical Exploration for Petroleum." Science 229, no. 4716 (August 30, 1985): 821–27. http://dx.doi.org/10.1126/science.229.4716.821.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhou, Shuguang, Jinlin Wang, Wei Wang, and Shibin Liao. "Evaluation of Portable X-ray Fluorescence Analysis and Its Applicability As a Tool in Geochemical Exploration." Minerals 13, no. 2 (January 24, 2023): 166. http://dx.doi.org/10.3390/min13020166.

Повний текст джерела
Анотація:
Large-scale, high-density geochemical explorations entail enormous workloads and high costs for sample analysis, but, for early mineral exploration, absolute concentrations are not essential. Geochemists require ranges, dynamics of variation, and correlations for early explorations rather than absolute accuracy. Thus, higher work efficiency and lower costs for sample analysis are desirable for geochemical exploration. This study comprehensively analyzed the reliability and applicability of portable X-ray fluorescence (pXRF) spectrometry in geochemical exploration. The results show that pXRF can be applied effectively to rock and rock powder samples, and sample preparation and a longer detection time have been shown to increase the precision of the pXRF results. When pXRF is used on rock samples, if less than 30% of the samples are assessed as containing an element, the element is usually undetectable using pXRF when these rock samples are prepared as rock powders, indicating that the data about the detected element are unreliable; thus, it is suggested that some representative samples should be selected for testing before starting to use a pXRF in a geochemical exploration project. In addition, although the extended detection time increased the reliability of the analysis results, an increase in detection time of more than 80 s did not significantly affect the accuracy of the results. For this reason, the recommended detection time for the pXRF analysis of rock powder samples is 80 s for this study. pXRF has the advantages of being low-cost, highly efficient, and stable, and its results are reliable enough to exhibit the spatial distribution of indicator elements (arsenic, nickel, lead, sulfur, titanium, and zinc) in polymetallic mineralization exploration. Therefore, pXRF is recommendable for practical use in geochemical exploration.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Baedecker, Philip A. "Analytical methods for geochemical exploration." Geochimica et Cosmochimica Acta 53, no. 7 (July 1989): 1713. http://dx.doi.org/10.1016/0016-7037(89)90262-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Geochemical exploration"

1

Krug, Mark Alan. "Geochemical exploration in calcrete terrains." Thesis, Rhodes University, 1995. http://hdl.handle.net/10962/d1006891.

Повний текст джерела
Анотація:
This work takes a look at some of the literature on calcretes and especially the problem of geochemical exploration in calcrete terrains. The conclusion that will be reached is that exploration in calcrete terrains is not futile and that provided the explorationist is aware of the types of calcrete and their genetic implications calcrete can be used as a sampling medium and anomalies can be detected through calcrete (p.1.)
KMBT_363
Adobe Acrobat 9.54 Paper Capture Plug-in
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fotakis-Tsipouras, Constantine. "Geochemical exploration studies in the Lavrion (Laurium) area of Greece." Thesis, University of Leicester, 1986. http://hdl.handle.net/2381/35027.

Повний текст джерела
Анотація:
Detailed geochemical studies of the dispersion patterns of selected elements (Cu, Pb, Zn, Ag, Mn, As, Fe, Ni, Co) were undertaken in the drainage sediments and soils in the Lavrion peninsula with the objective of demonstrating the application of geochemical techniques to the search for previously unknown mineral deposits. The study area comprises three geological units; the Anavissos, Kamareza and Plaka, each with its distinct stratigraphy and structural history. The Kamareza and Anavissos units are separated by the Legraina fault, while the overlying Plaka unit is separated from these underlying two units by an unconformity. Both geological and geochemical data indicate that karstic mixed sulphide mineralization is largely restricted in the Kamareza and Plaka units. An area of approximately 65 square kilometres was chosen for detailed stream sediment, soil, rock and bigeochemical studies. Digestion of 0.2 gms. Of minus 80-mesh material in 25% (HNO3 at 90°C) for 4 hours appeared to provide the optimum technique for dissolution of elements such as Cu, Pb, Zn, Mn, Fe and Ni. Analysis was performed by AAS for all these elements. Arsenic was also determined by the cold extraction method (James, 1957). The data obtained were treated by graphical, univariate and multivariate statistical techniques including histograms, bar-diagrams, graphs, frequency distribution analysis, moving averages, correlation coefficient, factor and regression analysis. Other properties including pH, conductivity, organic matter content and CaCO3, and both Fe-and Mn-oxide concentrations, were also investigated in order to establish their influence on the distribution patters of the various elements. It was demonstrated that within the study area mechanical dispersion dominates over chemical. In spite of contamination from extensive past mining activity, geochemical stream and soil surveys produce reliable distribution patterns in the Mediterranean environment of Lavrion. The occurrence of previously unknown mineralization was proven by trenching in target areas indicated by geochemical patterns. Biochemical surveys were also found to yield useful information, although they are time consuming and suffer from problems associated with the uneven distribution of plant species.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hartzler, Joy R. "The geological exploration of kimberlitic rocks in Québec /." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101135.

Повний текст джерела
Анотація:
Diamonds have been discovered in a variety of potassic ultramafic rocks including group-I and group-II kimberlites, olivine lamproites and aillikites, all of which are macroscopically similar and can be difficult to differentiate when viewed under the microscope. However, group-I kimberlites, and to a much lesser extent group-II kimberlites and olivine lamproites, are known to contain economic concentrations of diamonds. This study addresses the problem of distinguishing among different types of kimberlitic and related rocks by developing a geochemically-based method for classifying them.
Geochemical methods have been largely ignored in the classification of kimberlites and related rock types due to high concentrations of xenoliths. However, this problem can be largely overcome by only selecting matrix material for analysis. An evolving kimberlitic magma will become enriched or improvished in Si due to the fractionation of olivine and phlogopite, depending on the initial Si concentration of the magma. As they have low Si concentrations, group-I kimberlites and aillikites can be separated from group-II kimberlites and meimechites, which have higher Si concentrations for any Mg content. Furthermore, since aillikites and meimechites are relatively rich in Fe compared to group-I and group-II kimberlites, these rock types form four separate fields on a Si vs. Fe discrimination diagram. Similar rock-type separation is observed when the ratio of La to Yb is plotted against the ratio of Sm to Yb. Kimberlite and other potassic ultramafic rocks were sampled from nine areas in Quebec: the Otish Mountains, Wemindji, Torngat Mountains, Desmaraisville, Temiscamingue, Ile Bizard, Lac Leclair, Baie James and Ayer's Cliff regions. Major and selected trace element concentrations were determined by XRF analysis for all samples, while a subset of representative samples was selected for trace element analysis by ICP-MS. Electron microprobe analyses of unaltered olivine and phlogopite were also conducted.
Of the 37 samples that were classified both mineralogically and chemically, 23 or 62% were correctly classified using Fe and Si. This number increases to 84%, if the REE are used in conjunction with Si and Fe. The Si vs. Fe discrimination diagram separates group-I kimberlite from most aillikite and meimechite rocks and group-II kimberlite/olivine lamproite rocks from most aillikite and meimechite rocks. Therefore, major and trace element geochemistry offers an important tool for the classification of kimberlitic rocks.
Vasilenko et al. (2002) and Francis (2003) both suggested that diamond grades can be correlated with the major element compositions of the kimberlites. The data collected in this study confirm the inverse relationship between TiO2 concentration and diamond grade. The lowest TiO 2 values were obtained on samples from the Otish Mountains and Renard samples in particular. Other areas of Quebec are characterized by higher TiO2 contents with most samples containing greater than 2 wt% TiO 2. Therefore, the kimberlitic rocks from the Renard locality have the greatest potential for an economic diamond deposit. The origin of this correlation needs to be explored, however, because it is unclear whether this is a feature of the mantle source, or reflects the survivability of diamonds within the kimberlites.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dalrymple, Iain Faculty of Science UNSW. "An approach to the optimisation of partial extractions for use in geochemical exploration." Awarded by:University of New South Wales, 2007. http://handle.unsw.edu.au/1959.4/40473.

Повний текст джерела
Анотація:
Geochemical exploration for mineral deposits has generally been restricted to regions dominated by residual regolith or where transported regolith cover is thin. A variety of partial geochemical extraction techniques, linked to new predictive models for element migration through transported regolith cover, have demonstrated a potential to detect deeply buried mineralisation under certain circumstances. Problems with the reliability and further development of such partial extractions are linked to the lack of information on either the form of metals or the factors that control the extraction of metals from regolith materials. This study quantitatively examines the mechanisms of a range of partial extraction methods, based on a suite of surface regolith samples from the Mandamah Cu-Au deposit that is covered by 50m of transported regolith. Samples at were subjected to acetate, hydroxylamine.HCI and Na-pyrophosphate extractions at various reagent concentrations, pH values, temperatures and durations, following various sample preparation and chemical pretreatment permutations. The data were modelled, and reaction conditions subsequently optimized, on the basis of central composite designs. Conventional partial extraction (acetate, hydroxylamine and aqua regia) data, displayed high variability for some major and trace metals surrounding the periphery of mineralisation at Mandamah but little indication of direct vertical migration of ore-related metals. The buffered acetate extraction is primarily controlled by the capacity of the solution to generate acid rather than exchange induced by the cation ofthe acetate salt. Trace metals were highly susceptible to readsorption effects. Acidic hydroxylamine extraction is driven by kinetically limited acid hydrolysis and the hydroxylamine concentration has little effect on metal extractability. Alkaline Na-pyrophosphate extraction proved difficult to model. Two new partial extractions developed in this study - alkaline hydroxylamine.HCI and pH-static calcium nitrate - offer a different functionality to conventional extractions and provide more coherent geochemical patterns at Mandamah related to the location of buried mineralisation. These patterns are also related to the capacity of samples to resist pH neutralization. Systematic optimisation of geochemical extraction procedures is demonstrated to be an effective approach to improving detection of geochemical patterns in surface regolith that can be spatially related to the effects of mineralisation on the chemistry and mineralogy of overlying transported regolith cover.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ackerman, Benjamin R. "Regolith geochemical exploration in the Girilambone District of New South Wales." Access electronically, 2005. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20051027.095334/index.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chiconela, Domingos Rubão. "Geochemical exploration in tropical terrains with special reference to base metals." Thesis, Rhodes University, 1996. http://hdl.handle.net/10962/d1005565.

Повний текст джерела
Анотація:
In tropical areas, the high rainfall induces severe-and pervasive weathering, producing a thick soil cover. The lithologies underneath may b~ recognised using geochemical mapping, which is based on certain elements that have the ability to differentiate between various lithologic units. Elements that are independent of the weathering process are normally selected for this purpose. The chemistry of mobility of base metals is an important factor to take into account when evaluating the mobility and distribution of these elements in a soil profile. Factors such as pH, Eh, organic material, clay minerals, Fe and Mn oxides are normally key aspects to be considered. When iron-rich rocks undergo deep weathering, lateritic profiles are developed. These are widespread in a belt bordering the equatorial zone, including the Brazilian shield, West and East Africa, parts of India and Northern Australia. In these profiles, the high rainfall promotes intense leaching of the different horizons. Where the pre-existing profiles are mostly preserved, the base metals are distributed throughout the profile: in the upper ferruginous horizon, goethite and hematite can adsorb large amounts of Mo, resulting in large dispersion halo. Other base metals such as Cu and Zn are less resistant in these freely-drained profiles and, therefore, they may be partly leached from the profile. In the lower horizons, Cu, ,zn, Ni and Co are retained, hosted in kaolinite and smectite, and thus, a high geochemical contrast will be identified in this horizon at the expense of a decline in the size of the dispersion haloes. The pre-existing profiles can be truncated, with a thin stone line developing at the contact between the lateritic profile and the recent soil. The conditions in these environments favour the retention of most of the pathfinder and target elements in all soil horizons, with the B horizon showing the highest contrast. If the primary rock is rich in AI, a bauxitic profile will be developed. The world distribution of bauxites closely resembles that of laterites. The behaviour of Co and Ni is very similar to that of iron during the bauxitization. Furthermore, the factors that induce residual enrichment of Al with removal of Fe in the soil profile will cause significant depletion of Co and Ni in these profiles. These metals are then concentrated at the base of the profile because of precipitation from downward percolating solutions. Many karst bauxite deposits in Southern Europe are enriched with Ni and Co in the basal horizon. Such horizon is mined as nickel ore in the bauxites of the Lokris region in Greece. Copper and molybdenum are strongly enriched.in bauxitic profiles. Concentration ratios are 8 and 3.2 for Cu and Mo respectively. Molybdenum is closely related to goethite and hematite, and therefore, the high concentration of Mo in a bauxitic profile will be consistent with the horizon where iron is concentrated. Copper concentrates at the base of the iron rich-horizon but also appears enriched in the saprolite together with Co. When sulphide bodies occur, in this environment, deep and penetrative weathering has resulted in considerable near-surface mobilization of iron and silica. The supergene alteration commonly obscures the identity of the primary sulphides at the surface. In this case, geochemical assessment of the resulting gossan has proved to be crucial in mineral exploration. A search in the secondary mineral assemblage, volatile and precious metals may lead to the information on the composition of the primary sulphide assemblage. The conclusion that will be reached is that if the geochemical properties (mobility, affinities with Fe or Mn oxides and/or clay minerals) of each of the base metals are understood, an appropriate sampling (optimum size-depth combination) will then be done. In such cases, a subdued, weak, but significant, geochemical response will be identified in the surface horizon.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mwenze, Tshipeng. "The use of chemostratigraphy and geochemical vectoring as an exploration tool for platinum group metals in the Platreef, Bushveld Igneous Complex, South Africa: a case study on the sandsloot & overysel farms." University of the Western Cape, 2014. http://hdl.handle.net/11394/4460.

Повний текст джерела
Анотація:
>Magister Scientiae - MSc
The paucity of geochemical criteria for stratigraphic correlations and defining the styles of mineralisation pose serious problems in locating PGE-rich zones in the Platreef. This study is therefore aimed at identifying and appraising process-based mineralogical/geochemical criteria which may be useful in stratigraphic correlations and characterizing the nature and styles of PGE mineralisation. In addition, the work investigated the possible use of geochemical vectoring as a tool to locate the PGE-rich zones. Boreholes OY 482 and SS 330, drilled at the Overysel and Sandsloot farms respectively, were logged, and a total of 119 quarter cores were sampled for petrographic studies. The elemental contents in the rocks were determined by XRF and ICP-OES analyses and were evaluated using various statistical and mass balance techniques. In borehole OY 482, where the floor rock is Archaean granite, the Platreef consists of three feldspathic pyroxenite sills referred to as Lower, Middle and Upper Platreef units, from the bottom to the top, respectively. The results show that the Lower and Upper Platreef units have higher median values of Mg# (0.58 and 0.57) and Ni/Cu (0.68 and 0.75) when compared to the Middle Platreef (Mg#: 0.54 and Ni/Cu: 0.67) which may not be totally suggestive of two magmatic intrusive pulses. In borehole SS 330, where the floor rock is dolomite, the rocks consist of clinopyroxenites and olivine clinopyroxenites (variably serpentinised). These two units are intercalated with each other and are products resulting from the injection of Platreef magma sills within the dolomite floor rock. The hierarchical clustering and mass balance calculations show that when compared to the Platreef feldspathic pyroxenites, which have higher SiO2, Al2O3 and Fe2O3 median contents, the clinopyroxenites possess higher CaO median content whereas the olivine clinopyroxenites have higher MgO and LOI median contents. The PGE-rich zones (i.e. Pt+Pd) in clinopyroxenites are marked by low Ca/Mg median values, whereas in both, the olivine clinopyroxenites and the Platreef units, these zones are marked by high Mg/Fe median values. The suggested base metal index [(Cu/Zn) x (Ni/Co)] used to vector towards PGE-rich zones, which reflects the presence of the base metal sulphides (BMS), correlates with the Pt+Pd in the BMS-rich zones. This is not always the case in zones of low BMS contents which may reflect changes in the mineralogy of the BMS. In conclusion, the two boreholes studied show contrasting petrographic and geochemical attributes. This dissimilarity is mainly due to the fact that borehole OY 482 comprises Platreef magmatic rocks whereas borehole SS 330 intersected metamorphic/ metasomatic rocks.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Breedt, Machiel Christoffel. "Gold exploration in tropical and sub-tropical terrains with special emphasis on Central and Western Africa." Thesis, Rhodes University, 1996. http://hdl.handle.net/10962/d1005578.

Повний текст джерела
Анотація:
The aim of this dissertation is an attempt to' provide a general guide for future gold exploration in tropical and sub-tropical terrains. The dissertation includes a brief discussion of the various exploration techniques used in regional and local exploration. This provide the necessary background knowledge to discriminate between the constraints and applications and to be able to select the techniques which are more suitable for gold exploration in tropical and sub-tropical terrains. Weathering, gold geochemistry and soil formation, fields often neglected, are emphasized to illustrate the importance of the mobility and dispersion of gold in the weathering of the lateritic soil profile. A sound knowledge and experience in regolith mapping is to the advantage of the explorationist. Case studies with special emphasis on Central- and Western Africa are included to illustrate the effectiveness of some of the gold exploration techniques in tropical and sub-tropical terrains. Gold exploration is a highly complex and demanding science and to be successfull involves the full intergration of all geological, geochemical and geophysical information available. An intergrated exploration method and strategy would enhance the possibility of making viable discoveries in this highly competative environment where our mineral resources become more depleted every day. Where applicable, the reader is refered to various recommended literature sources to provide the necessary background knowledge which form an integral part of gold exploration.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shiva, Mohammad. "A stream sediment geochemical exploration in the arid environment of east Iran." Thesis, University of Nottingham, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243344.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hansen, Robert N. (Robert Neill). "The evaluation of whole-rock and partial leach geochemical exploration techniques applied to the exploration for tanzanite deposits : Merelani, North-Eastern Tanzania." Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/21455.

Повний текст джерела
Анотація:
Thesis (MSc)--University of Stellenbosch, 2007.
ENGLISH ABSTRACT: The aim of the study is to ascertain whether geochemical exploration techniques can be used in the search for tanzanite deposits in the Merelani area, NE Tanzania. Previous studies have successfully demonstrated a partial extraction method (in situ soil leaching) in identifying prospective ultramafic bodies at the Rockland ruby mine in the Mangare area, Kenya, thereby demonstrating the usefulness of geochemical methods in gemstone exploration. In this study, a partial extraction as well as a whole-rock geochemical method was used to determine the applicability of these methods in prospecting for tanzanite mineralisation using different sampling media, such as soil, stream sediment and calcrete. It is possible that this geochemical approach may not be as effective as physical methods such as the separation and examination of heavy mineral suites. However, its viability needs to be evaluated due to the potential efficiency and relative logistic ease of the method. In essence the scientific method employed is to compare overburden (soils, stream sediments and calcrete) chemistry with known underlying geology, the latter having been established via diamond core drilling. A positive correlation would allow the prediction of overburden covered tanzanite mineralisation. Soil samples were collected from a trench dug perpendicular to regional lithological strike over both barren and tanzanite-bearing horizons. XRF trace element data for the soils was compared to the chemistry of the underlying lithologies. ICP-AE data derived from 1 molar HCL soil leachate (12 hour leach) and soil XRF data, from the same samples, was compared, using a mass balance index, to discern any hydromorphic dispersion of selected trace elements and to evaluate the leachate as a viable alternative to XRF analysis. In general, a good correlation exists between the soil and rock trace element data profiles over the length of the section. However, Ti- and Zr-normalised mass balance calculations show some down-hill drift, but this does not disrupt the overall pattern. The ICP-AE acid leach data show that hydromorphic dispersion is low, that the trace elements of interest (V, Cr, Ni and Cu) are hosted within non-soluble phases. Consequently, the leach technique is not a viable alternative to XRF analysis of the soils. XRF analysis of the soils was shown to be potentially useful in identifying new areas of mineralisation as the soils overlying a graphitic calc-silicate schist, that always occurs adjacent to the tanzanite mineralisation in the Merelani area, was found to be easily identifiable based on anomalous concentrations of V. An exploration concession was chosen for stream sediment sampling on the basis of the presence of large streams, of a few tsavorite mines indicating high prospectivity for tanzanite, and because of a variation in geology on the property. Tanzanite and tsavorite are cogenetic in the known tanzanite deposits. In this case the aim was to investigate the possible occurrence of tanzanite-like geochemical anomolies (i.e. the anomalous V observed in the soil chemistry investigation) could be detected in the vicinity of the tsavorite mines. Tsavorite, the gem variety of grossular garnet, also contains high concentrations of V. The samples were analysed by XRF whole-rock methods for trace element content. The data shows a number of clear positive V anomalies in the study area. The data also shows that each of the existing or abandoned mines in the area is marked by a positive V anomaly. This section of the study also demonstrated a relatively low degree of stream sediment dispersion of the trace elements of interest – most likely a function of the semi-arid climate. The fine fraction (<90μm), however was shown to be mobilised to a relatively larger degree than the coarse (180μm – 300μm) and medium (90μm - 180μm) fractions. As is predictable from the leachate analysis, factor analysis of the data shows that the trace elements are dominated by heavy mineral geochemistry and that a study in heavy mineral exploration might provide a cheaper and more viable option to those explored in this study. Calcrete samples were taken from an abandoned, 10m deep mine shaft, which was sunk through the calcrete to reach the tanzanite deposit. The shaft was sampled from the bottom, closest to the tanzanite mineralisation, to the surface to investigate the association between trace element geochemistry and proximity to the deposit. There was no vertical association between the trace element geochemistry of the calcrete and proximity to the tanzanite deposit. There was also no clear indication in the geochemistry of the calcrete of the existence of the tanzanite deposit beneath it. This further indicates the immobility of the elements of interest in this environment. This study has demonstrated that properly constrained soil and stream sediment geochemical studies may be of use in tanzanite exploration. However, it must be stressed that this is only the case if the geochemical signature of the lithological package associated with the mineralisation is unique and well known.
AFRIKAANSE OPSOMMING: Die doel van hierdie studie is om te bepaal of geochemiese eksplorasie tegnieke vir die soek na tanzaniet afsettings in die Merelani area, noord-oos Tanzanië, gebruik kan word. Voorige studies het gewys dat ‘n gedeeltelike ekstraksie metode (in situ grond looging) gebruik kon word om prospektiewe ultramafiese liggame by the Rockland rubyn myn in die Mangare area, Kenia te identifiseer. Hierby is gedemonstreer dat geochemiese eksplorasie metodes suksesvol in edelsteen eksplorasie toegepas kan word. In hierdie studie is ‘n gedeeltelike ekstrasksie en heel-rots geochemiese metodes gebruik om die toepaslikheid van hierdie metodes op tanzaniet eksplorasie te toets. Verskillende geologiese materiale is gemonster, naamlik grond, stroom sedimente en kalkreet. Dit is moontlik dat hierdie geochemiese benadering nie so effektief soos fisiese metodes soos swaar mineraal skeidings mag wees nie. Dit is nogtans belangrik om die toepaslikheid van hierdie metodes op tanzanite eksplorasie te toests, as gevolg van die potensiële effektiwiteit en relatiewe logistiese gemak van die metodes. Die essensie van die wetenskaplike metodiek wat in hierdie studie gebruik is, is om die geochemie van die grond, stroom sedimente en kalkreet te vergelyk met die geochemie van die onderliggende geologie wat deur middel van diamant boorwerk vasgestel is. ‘n Positiewe korrelasie sou dan dui op ‘n bedekte tanzaniet afsetting. Grond monsters is van ‘n sloot geneem wat loodreg op die strekking van die tanzaniet gemineraliseerde en ongemineraliseerde horisonne gegrawe is. XRF spoor element data van die gronde is vergelyk met die chemie van die onderliggende gesteentes. IGP-AE data wat bekom is deur die monsters met 1 molaar HCl te loog (12 uur loging) is vergelyk met XRF data van dieselfde monsters deur middel van ‘n massa balans indeks om te bepaal of daar enige hidromorfiese dispersie van sekere spoor elemente is en om die toepaslikheid van loging as ‘n alternatief tot die heel-rots metode te bepaal. In die algemeen is daar ‘n goeie korrelasie tussen die grond en rots spoor element data profiele oor die lengte van die seksie. Alhoewel, Ti- en Zr-genormaliseerde massa balans data profiele wys dat daar ‘n mate van afwaartse beweging van grond na die voet van die heuwel is, maar dat hierdie ‘n breuk in die algemene patroon vorm nie. Die IGP-AE data dui daarop dat die hidromorfiese verspreiding van spoor elemente laag is en dat die spoor elemente wat van belang is (V, Cr, Ni en Cu) in nie-oplosbare fases gesetel is. Gevolglik is die logings metode nie ‘n toepaslike alternatief tot die heel-rots XRF metode op gronde nie. XRF analises op die gronde het gewys dat die XRF metode moontlik nuttig kan wees om nuwe areas van tanzanite mineralisasie aan te dui, omdat die gronde wat ‘n grafietiese kalk-silikaat skis oorlê, wat altyd langs die tanzaniet draende horisonne voorkom, is op grond van anomale konsentrasies van V geïdentifiseer. ‘n Eksplorasie konsessie is op die basis van die teenwoordigheid van groot strome, ‘n paar tsavoriet myne wat aanduidend is van hoë prospektiwiteit vir tanzaniet is en as gevolg van ‘n variasie in geologie in die area vir stroom sediment monstering gekies. Tanzaniet en tsavoriet is kogeneties in bekende tanzaniet afsettings. In hierdie geval was die doel om te ondersoek of tanzanietagtige anomalieë (nl. die anomale konsentrasies van V wat in die ondersoek van die grond chemie opgemerk is) in die omgewing van die tsavoriet myne geïdentifiseer kan word. Tsavoriet, die edelsteen variëteit van grossulaar granaat, bevat hoë konsentrasies V. Die monsters is deur middel van die XRF heel-rots metode vir spoor elemente geanaliseer. Die data dui op ‘n paar monsters met hoë V konsentrasies in die ondersoek area. Hierdie studie het ook gedui op ‘n lae stroom sediment verspreiding van die spoor elemente van belang, heel waarskynlik is dit ‘n funksie van die semi-ariede klimaat. Die fyn fraksie (< 90μm) blyk tot ‘n groter mate as die growwer (90μm tot 180μm en 180μm - 300μm) fraksies gemobiliseer te word. Soos voorspel kan word deur die loogings analise het faktor analise gewys dat die spoor elemente deur swaar mineraal geochemie gedomineer word en dat ‘n studie op swaar minerale moontlik ‘n goedkoper en meer toepaslike eksploraise metode is as die wat in hierdie studie ondersoek is. Kalkreet monsters is van ‘n ongebruikte, 10m diep myn skag wat deur die kalkreet gesink is om by die tanzaniet gemineraliseerde horison uit te kom geneem. Monsters is van die bodem van die skag, naaste aan die tanzaniet mineralisasie, tot die oppervlak geneem om die assosiasie tussen die spoor element geochemie en afstand van die tanzaniet mineralisasie te ondersoek. Geen vertikale assosiasie tussen spoor element geochemie en die nabyheid tot die tanzaniet afsetting kon vasgestel word nie. Daar was geen duidelike aanduiding in die geochemie van die kalkreet op die onderliggende tanzanite afsetting nie. Hierdie is ‘n verdere annduiding op die nie-mobiele toestand van spoor elemente in hierdie omgewing. Hierdie studie het suksesvol gedemonstreer dat goed gedefinieerde grond en stroom sediment geochemiese studies moontlik in geochemiese eksplorasie vir tanzaniet bruikbaar kan wees. Dit is belangrik om in gedagte te hou dat dit slegs die geval is as die geochemie van die litologiese paket wat met die mineralisasie geassosieer is uniek en goed bekend is.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Geochemical exploration"

1

Agency, International Atomic Energy, ed. Geochemical exploration for uranium. Vienna: International Atomic Energy Agency, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

R, Barefoot R., ed. Analytical methods for geochemical exploration. San Diego: Academic Press, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Seifert, Antonín V. Field manual for geochemical exploration. Prague: Czech Geological Survey, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

D, Bradshaw Peter M., and Thomson I, eds. Practical problems in exploration geochemistry. Wilmette, Ill: Applied Pub., 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

M, Butt C. R., and Zeegers H. 1942-, eds. Regolith exploration geochemistry in tropical and subtropical terrains. Amsterdam: Elsevier, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

O'Leary, Richard. Analytical methods used in geochemical exploration, 1984. [Reston, Va.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

O'Leary, Richard. Analytical methods used in geochemical exploration, 1984. [Reston, Va.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Raju, R. Dhana. Handbook of geochemistry: Techniques and applications in mineral exploration. New Delhi: Geological Society of India, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Akande, S. O. Minerals and fossil fuels discovery: The adventures of exploration. Ilorin, Nigeria: University of Ilorin, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

K, Kauranne L., Salminen Reijo, and Eriksson Karin 1937-, eds. Regolith exploration geochemistry in arctic and temperate terrains. Amsterdam: Elsevier, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Geochemical exploration"

1

Thompson, John F. H. "Geochemical Exploration." In Encyclopedia of Earth Sciences Series, 1–4. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_34-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Thompson, John F. H. "Geochemical Exploration." In Encyclopedia of Earth Sciences Series, 549–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alexandre, Paul. "Geochemical Exploration." In Springer Textbooks in Earth Sciences, Geography and Environment, 61–83. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72453-5_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Talapatra, Ashoke K. "GEOCHEMICAL EXPLORATION OF MINERAL DEPOSITS." In Geochemical Exploration and Modelling of Concealed Mineral Deposits, 53–86. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48756-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Koch, George S. "Estimating Geochemical Thresholds." In Exploration-Geochemical Data Analysis with the IBM PC, 119–29. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1973-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Marjoribanks, Roger. "Geophysical and Geochemical Methods." In Geological Methods in Mineral Exploration and Mining, 143–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-74375-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Marjoribanks, Roger W. "Geophysical and Geochemical Methods." In Geological Methods in Mineral Exploration and Mining, 77–84. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5822-0_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Coker, W. B., and W. W. Shilts. "Geochemical exploration for gold in glaciated terrain." In Gold metallogeny and exploration, 336–59. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4613-0497-5_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Coker, W. B., and W. W. Shilts. "Geochemical exploration for gold in glaciated terrain." In Gold Metallogeny and Exploration, 336–59. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2128-6_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Baskaran, Mark. "Radon: A Tracer for Geochemical Exploration." In Radon: A Tracer for Geological, Geophysical and Geochemical Studies, 189–204. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21329-3_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Geochemical exploration"

1

Munnecke, D. M., and W. P. Weaver. "Microbial Surface Geochemical Exploration Technology." In Technical Meeting / Petroleum Conference of The South Saskatchewan Section. Petroleum Society of Canada, 1999. http://dx.doi.org/10.2118/99-100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ganes, Achmat Adnan, and Dyah Rini Ratnaningsih. "Geochemical exploration of KPH geothermal field, Indonesia." In 3RD INTERNATIONAL CONFERENCE ON EARTH SCIENCE, MINERAL, AND ENERGY. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0069684.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ding, Li, Yubing Wu, and Hai Mei. "The Application of Microbiological and Geochemical Exploration in Volcanic Reservoir Exploration." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Robinson, Kirtland, Christiana Bockisch, Ian Gould, Kristopher Fecteau, Jeffrey Seewald, and Everett Shock. "Organic Compounds as Geochemical Tracers in Planetary Exploration." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Talukdar, S. C., and G. Dow. "Applications of Modern Geochemical Technique in Petroleum Exploration." In 5th Simposio Bolivariano - Exploracion Petrolera en las Cuencas Subandinas. European Association of Geoscientists & Engineers, 1994. http://dx.doi.org/10.3997/2214-4609-pdb.116.053eng.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mashhadi, Z. S., M. R. Kamali, and A. R. Rabbani. "Source Rock Evaluation and Geochemical Characterisation of Albian Kazhdumi Formation, Offshore SW Iran." In Third EAGE Exploration Workshop. Netherlands: EAGE Publications BV, 2014. http://dx.doi.org/10.3997/2214-4609.20140054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rodrigues, C., C. Rodrigues, Z. Pereira, P. Fernandes, D. Cunha, F. Gonçalves, L. Barroso, et al. "Source Rocks of the Onshore Kwanza Basin - A New Geochemical Approach." In First EAGE/ASGA Petroleum Exploration Workshop. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201702362.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kelmendi, Rrahim. "GEOCHEMICAL EXPLORATION FOR POLYMETALLIC ORES IN TREPCA ORE FIELD." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2015/b11/s1.023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nagakubo, Sadao, Toshiaki Kobayashi, Tetsuya Fujii, and Takao Inamori. "Fusion on 3D seismic exploration and seafloor geochemical survey." In Proceedings of the 8th SEGJ International Symposium. Society of Exploration Geophysicists of Japan, 2006. http://dx.doi.org/10.1190/segj082006-001.113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Boon, P., and J. Gharib. "Regional Multibeam Surveys for Seep Hunting and Geochemical Sampling in Frontier Areas." In First EAGE/ASGA Petroleum Exploration Workshop. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201702361.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Geochemical exploration"

1

Garrett, R. G. The Management, Analysis and Display of Exploration Geochemical Data. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132397.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Maurice, Y. T., and M. M. Mercier. A New Approach To Sampling Heavy minerals For Regional Geochemical Exploration. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/120378.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rheault, M. M., R. Simard, P. Keating, and M. M. Pelletier. Mineral exploration: digital image processing of LANDSAT, SPOT, magnetic and geochemical data. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/128045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wright, D. M., and E. G. Potter. Application of regional geochemical datasets to uranium exploration in the Athabasca Basin, Saskatchewan. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/295778.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wright, D. M., and E. G. Potter. Application of regional geochemical datasets to uranium exploration in the Athabasca Basin, Saskatchewan. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/296528.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Thorleifson, L. H. History and status of till geochemical and indicator mineral methods in mineral exploration. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/300285.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Thorleifson, L. H. History and status of till geochemical and indicator mineral methods in mineral exploration. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2013. http://dx.doi.org/10.4095/292681.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Walsh, Patrick, Steven Fercho, Doug Perkin, Brigette Martini, and Darrick Boshmann. Merging high resolution geophysical and geochemical surveys to reduce exploration risk at glass buttes, Oregon. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1242419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Singh, V., W. M. Moon, and M. Fedikow. Agassiz Metallotect: application of MEIS-II for biogeochemical remote sensing and geochemical exploration [Lynn Lake, Manitoba]. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1989. http://dx.doi.org/10.4095/130593.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pagé, P., S.-J. Barnes, J. Méric, and M. G. Houlé. Geochemical composition of chromite from Alexo komatiite in the western Abitibi greenstone belt: Implications for mineral exploration. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/296689.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії