Добірка наукової літератури з теми "Generic peptide drug"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Generic peptide drug".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Generic peptide drug"
Pang, Eric, William Chong, and Markham C. Luke. "Scientific and Regulatory Considerations for the Approval of the First Generic Glucagon." Journal of the Endocrine Society 5, Supplement_1 (May 1, 2021): A324—A325. http://dx.doi.org/10.1210/jendso/bvab048.662.
Повний текст джерелаBenet, Alexander, Troy Halseth, Jukyung Kang, April Kim, Rose Ackermann, Santhanakrishnan Srinivasan, Steven Schwendeman, and Anna Schwendeman. "The Effects of pH and Excipients on Exenatide Stability in Solution." Pharmaceutics 13, no. 8 (August 16, 2021): 1263. http://dx.doi.org/10.3390/pharmaceutics13081263.
Повний текст джерелаKumar, K. Y. Kiran, Venugopala Rao Dama, Ch Suchitra, and Thirumala Chary Maringanti. "A simple, sensitive, high-resolution, customized, reverse phase ultra-high performance liquid chromatographic method for related substances of a therapeutic peptide (bivalirudin trifluoroacetate) using the quality by design approach." Analytical Methods 12, no. 3 (2020): 304–16. http://dx.doi.org/10.1039/c9ay01998g.
Повний текст джерелаZhou, Wei, Kaylah Bias, Dylan Lenczewski-Jowers, Jiliah Henderson, Victor Cupp, Anthony Ananga, Joel Winyo Ochieng, and Violeta Tsolova. "Analysis of Protein Sequence Identity, Binding Sites, and 3D Structures Identifies Eight Pollen Species and Ten Fruit Species with High Risk of Cross-Reactive Allergies." Genes 13, no. 8 (August 17, 2022): 1464. http://dx.doi.org/10.3390/genes13081464.
Повний текст джерелаKolstoe, Simon E., and Steve P. Wood. "Drug targets for amyloidosis." Biochemical Society Transactions 38, no. 2 (March 22, 2010): 466–70. http://dx.doi.org/10.1042/bst0380466.
Повний текст джерелаSolodovnikov, A. G., E. Yu Sorokina, and E. I. Morkovin. "Thrombopoietin Receptor Agonists: Clinical Use and Evaluation of Treatment Efficacy." Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products 10, no. 4 (December 11, 2020): 236–43. http://dx.doi.org/10.30895/1991-2919-2020-10-4-236-243.
Повний текст джерелаWang, Deyun, You Zhuo, Mike Karfunkle, Sharadrao M. Patil, Cameron J. Smith, David A. Keire, and Kang Chen. "NMR Spectroscopy for Protein Higher Order Structure Similarity Assessment in Formulated Drug Products." Molecules 26, no. 14 (July 13, 2021): 4251. http://dx.doi.org/10.3390/molecules26144251.
Повний текст джерелаKlink, Tony A., Matt Staeben, Kim Twesten, Andrew L. Kopp, Meera Kumar, Rebecca Schall Dunn, Cori A. Pinchard, Karen M. Kleman-Leyer, Martin Klumpp, and Robert G. Lowery. "Development and Validation of a Generic Fluorescent Methyltransferase Activity Assay Based on the Transcreener AMP/GMP Assay." Journal of Biomolecular Screening 17, no. 1 (September 28, 2011): 59–70. http://dx.doi.org/10.1177/1087057111421624.
Повний текст джерелаMallari, Rommel, Elissa Swearingen, Wei Liu, Arnold Ow, Stephen W. Young, and Shu-Gui Huang. "A Generic High-Throughput Screening Assay for Kinases: Protein Kinase A as an Example." Journal of Biomolecular Screening 8, no. 2 (April 2003): 198–204. http://dx.doi.org/10.1177/1087057103252306.
Повний текст джерелаUmmiti, Kumarswamy, and J. V. Shanmukha Kumar. "Determination of Amino Acid Composition of Ganirelix Acetate in an Injectable Formulation by Pre-column Derivatization with 6-Aminoquinolyl-N-hydroxysuccinimidyl Carbamate." Journal of Chromatographic Science 58, no. 8 (July 17, 2020): 687–94. http://dx.doi.org/10.1093/chromsci/bmaa030.
Повний текст джерелаДисертації з теми "Generic peptide drug"
Johansen-Leete, Jason Paul. "Discovery of Bioactive macrocyclic peptides using mRNA display with genetic reprogramming." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29467.
Повний текст джерелаSen, Gulseren Petek. "Fabrication Of Poly (dl-lactic-co-glycolic Acid) Nanoparticles And Synthetic Peptide Drug Conjugate For Anti-cancer Drug Delivery." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611405/index.pdf.
Повний текст джерелаCai, Minying. "Exploring the stereostructural requirements of peptide ligands for the melanocortin receptors and molecular mechanism study of GPCR based drugs." Diss., The University of Arizona, 2004. http://hdl.handle.net/10150/280591.
Повний текст джерелаAhlin, Gustav. "In vitro and in silico prediction of drug-drug interactions with transport proteins." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-107492.
Повний текст джерелаCalmann, Melissa A. "The Roles of DNA Mismatch Repair and Recombination in Drug Resistance: A Dissertation." eScholarship@UMMS, 2004. https://escholarship.umassmed.edu/gsbs_diss/109.
Повний текст джерелаSchroeder, Frederick Albert. "A Role for Histone Modification in the Mechanism of Action of Antidepressant and Stimulant Drugs: a Dissertation." eScholarship@UMMS, 2007. https://escholarship.umassmed.edu/gsbs_diss/370.
Повний текст джерелаStennett, Bethany Ann. "Novel Therapy for Nicotine Addiction in Alcohol Dependent Rats." UNF Digital Commons, 2013. http://digitalcommons.unf.edu/etd/465.
Повний текст джерелаD'Ercole, Annunziata. "Development and scale-up of synthetic strategies for exotic macrocyclisation to increase druggability of peptides as active pharmaceutical ingredients of industrial interest." Doctoral thesis, 2022. http://hdl.handle.net/2158/1264636.
Повний текст джерелаMukkamala, Venkata C. S. Dushyant. "NMR, crystallographic and computational investigations of peptides, proteins and bisphosphonates : new paradigms for rational drug design /." 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3337869.
Повний текст джерелаSource: Dissertation Abstracts International, Volume: 69-11, Section: B, page: 6637. Adviser: Eric Oldfield. Includes bibliographical references. Available on microfilm from Pro Quest Information and Learning.
Lima, Adriana Filipa Soares. "Genetic modification of a bacteriophage to create a multifunctional drug delivery particle." Master's thesis, 2016. http://hdl.handle.net/1822/47560.
Повний текст джерелаBreast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females worldwide, with an estimated 1.7 million new cases and 521,900 deaths in 2012. Conventional treatments, such as chemotherapy and radiotherapy, continue to be the base of cancer therapy. These types of treatments non-specifically target any dividing cells, which in the case of chemotherapy, results in an indiscriminate drug distribution and severe toxicity for patients associated to a poor distribution and penetration of the drugs. To solve this problem and improve patient’s lifestyle, it is of utmost importance the development of new targeted therapies that eventually eliminate only cancer cells. This work aimed to develop a phage-based nanoparticle that will be used as a carrier for cytotoxic drugs in order to decrease drugs concentration in situ. To achieve this goal, the M13 filamentous bacteriophage was genetically modified to display, on its surface, HIV-Tat cell-penetrating peptides, which allows the internalization of the phage particles towards breast cancer cells. Genetically modified phages were then conjugated with the doxorubicin anti-carcinogenic drug, which was expected to result in a lower, controlled and in situ cytotoxic payload. Despite M13 phage has been genetically modified with success and proved to penetrate the cells, it appears to have no enhanced cytotoxic activity when compared to the free drug effect. In the future the phages obtainded in this work should be genetically modified with a sequencence encoding for a recognition peptide to discriminate between cancerous and healthy cells, thereby creating a targeted cytotoxic particle.
O cancro da mama é o cancro mais frequentemente diagnosticado e a principal causa de morte por cancro entre as mulheres em todo o mundo, tendo sido estimados cerca de 1,7 milhões de novos casos e 521,900 mortes em 2012. Os tratamentos convencionais, como a quimioterapia e a radioterapia, continuam a ser a base terapêutica deste tipo de doença. Contudo, estes tipos de tratamentos não são específicos tendo como alvo todas as células em divisão, sendo que, no caso da quimioterapia, há uma distribuição e penetração indiscriminada de drogas altamente citotóxicas, resultando na deteriorazação física dos pacientes. Para resolver este problema e melhorar o estilo de vida do paciente, têm vindo a desenvolver-se novas terapias direcionadas, com o objectivo de eliminar apenas as células cancerosas. Este trabalho tem como objectivo desenvolver uma nanopartícula, à base de bacteriofagos, de forma a transportar drogas citotóxicas e diminuir a sua concentração in situ. Para atingir este objetivo, o bacteriofago filamentoso M13 foi geneticamente modificado, com o propósito deste exibir o péptido de internalização celular HIV-Tat à sua superfície, através da técnica de phage display. De seguida os fagos genéticamente modificados foram químicamente conjugados com um fármaco anticancerígeno, a doxorrubicina, sendo assim esperado um payload citotóxico mais baixo e controlado, no local do tumor. Apesar do fago ter sido genéticamente modificado com sucesso e ter mostrado internalizar nas células tumorais de cancro de mama, este parece não ter qualquer actividade citotóxica quando comparado com o efeito da droga livre. No futuro o fago construido neste trabalho deverá ser geneticamente modificado com a sequencia de um peptido de reconhecimento de forma a discriminar entre celulas cancerígenas e saudáveis, criando assim uma particula citotóxica direcionada.
Книги з теми "Generic peptide drug"
NATO Advanced Research Workshop on Advanced Drug Delivery Systems for Peptides and Proteins (1986 Copenhagen, Denmark). Delivery systems for peptide drugs. New York: Plenum Press, 1986.
Знайти повний текст джерелаProteins, enzymes, genes: The interplay of chemistry and biology. New Haven, CT: Yale University Press, 1999.
Знайти повний текст джерелаJun-Lin, Guan, ed. Signaling through cell adhesion molecules. Boca Raton, Fla: CRC Press, 1999.
Знайти повний текст джерелаDavis, S. S. Delivery Systems for Peptide Drugs. Springer, 2013.
Знайти повний текст джерелаTomlinson, E., Lisbeth Illum, and S. S. Davis. Delivery Systems for Peptide Drugs. Springer London, Limited, 2013.
Знайти повний текст джерелаDelivery Systems for Peptide Drugs (Nato Asi Series a, Life Sciences, Vol 125) (Nato Science Series: A:). Springer, 1987.
Знайти повний текст джерелаDhagat, Swasti, Jujjvarapu Satya Eswari, and Manisha Yadav. Computer-Aided Design of Antimicrobial Lipopeptides As Prospective Drug Candidates. Taylor & Francis Group, 2019.
Знайти повний текст джерелаDhagat, Swasti, Jujjvarapu Satya Eswari, and Manisha Yadav. Computer-Aided Design of Antimicrobial Lipopeptides As Prospective Drug Candidates. Taylor & Francis Group, 2019.
Знайти повний текст джерелаDhagat, Swasti, Jujjvarapu Satya Eswari, and Manisha Yadav. Computer-Aided Design of Antimicrobial Lipopeptides As Prospective Drug Candidates. Taylor & Francis Group, 2019.
Знайти повний текст джерелаJujjavarapu, Satya Eswari, Swasti Dhagat, and Manisha Yadav. Computer-Aided Design of Antimicrobial Lipopeptides As Prospective Drug Candidates. Taylor & Francis Group, 2021.
Знайти повний текст джерелаЧастини книг з теми "Generic peptide drug"
Furlong, Michael T. "Generic Peptide Strategies for LC-MS/MS Bioanalysis of Human Monoclonal Antibody Drugs and Drug Candidates." In Protein Analysis using Mass Spectrometry, 161–81. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119371779.ch13.
Повний текст джерелаBelda, Ignasi, Xavier Llorà, Marc Martinell, Teresa Tarragó, and Ernest Giralt. "Computer-Aided Peptide Evolution for Virtual Drug Design." In Genetic and Evolutionary Computation – GECCO 2004, 321–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24854-5_34.
Повний текст джерелаScocchi, Marco, Maura Mattiuzzo, Monica Benincasa, Nikolinka Antcheva, Alessandro Tossi, and Renato Gennaro. "Investigating the Mode of Action of Proline-Rich Antimicrobial Peptides Using a Genetic Approach: A Tool to Identify New Bacterial Targets Amenable to the Design of Novel Antibiotics." In Peptide-Based Drug Design, 161–76. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-419-3_9.
Повний текст джерелаKubiak, T. M., R. A. Martin, R. M. Hillman, J. F. Caputo, G. R. Alaniz, W. H. Claflin, D. L. Cleary, and W. M. Moseley. "N-terminally extended analogs of bgrf with a general formula [X -1,Y 0, Leu 27]bGRF(1–29)NH2 as pro-drugs and potential targets for processing by plasma dipeptidylpeptidase IV (DPP-IV)." In Peptides, 859–61. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0683-2_288.
Повний текст джерелаSharma, Mani, Jyoti Joshi, Neeraj Kumar Chouhan, Mamta N. Talati, Sandeep Vaidya, and Abhiram Kumar. "Liposome-A Comprehensive Approach for Researchers." In Molecular Pharmacology. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93256.
Повний текст джерелаLi, Jie Jack. "Reflections." In Laughing Gas, Viagra, and Lipitor. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195300994.003.0014.
Повний текст джерелаMohan, C. Gopi, and Shikhar Gupta. "QSAR Models towards Cholinesterase Inhibitors for the Treatment of Alzheimer's Disease." In Oncology, 591–636. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0549-5.ch022.
Повний текст джерелаMohan, C. Gopi, and Shikhar Gupta. "QSAR Models towards Cholinesterase Inhibitors for the Treatment of Alzheimer's Disease." In Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment, 354–99. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8136-1.ch010.
Повний текст джерелаP. Okoh, Michael, and Lukman A. Alli. "Recent Progress in Drug Repurposing Using Protein Variants and Amino Acids in Disease Phenotypes/Disorders." In Drug Repurposing - Molecular Aspects and Therapeutic Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102571.
Повний текст джерелаRachamalla, Harikrishnareddy, Anubhab Mukherjee, and Manash K. Paul. "Nanotechnology Application and Intellectual Property Right Prospects of Mammalian Cell Culture." In Cell Culture [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99146.
Повний текст джерела