Добірка наукової літератури з теми "GENE DELIVERY APPLICATIONS"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "GENE DELIVERY APPLICATIONS".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "GENE DELIVERY APPLICATIONS"
Huang, Rih-Yang, Zhuo-Hao Liu, Wei-Han Weng, and Chien-Wen Chang. "Magnetic nanocomplexes for gene delivery applications." Journal of Materials Chemistry B 9, no. 21 (2021): 4267–86. http://dx.doi.org/10.1039/d0tb02713h.
Повний текст джерелаChen, Chih-Kuang, Ping-Kuan Huang, Wing-Cheung Law, Chia-Hui Chu, Nai-Tzu Chen, and Leu-Wei Lo. "Biodegradable Polymers for Gene-Delivery Applications." International Journal of Nanomedicine Volume 15 (March 2020): 2131–50. http://dx.doi.org/10.2147/ijn.s222419.
Повний текст джерелаKatz, M. G., A. S. Fargnoli, L. A. Pritchette, and C. R. Bridges. "Gene delivery technologies for cardiac applications." Gene Therapy 19, no. 6 (March 15, 2012): 659–69. http://dx.doi.org/10.1038/gt.2012.11.
Повний текст джерелаMakkonen, Kaisa-Emilia, Kari Airenne, and Seppo Ylä-Herttulala. "Baculovirus-mediated Gene Delivery and RNAi Applications." Viruses 7, no. 4 (April 22, 2015): 2099–125. http://dx.doi.org/10.3390/v7042099.
Повний текст джерелаSuda, Takeshi, and Dexi Liu. "Hydrodynamic Gene Delivery: Its Principles and Applications." Molecular Therapy 15, no. 12 (December 2007): 2063–69. http://dx.doi.org/10.1038/sj.mt.6300314.
Повний текст джерелаYin, Feng, Bobo Gu, Yining Lin, Nishtha Panwar, Swee Chuan Tjin, Junle Qu, Shu Ping Lau, and Ken-Tye Yong. "Functionalized 2D nanomaterials for gene delivery applications." Coordination Chemistry Reviews 347 (September 2017): 77–97. http://dx.doi.org/10.1016/j.ccr.2017.06.024.
Повний текст джерелаRabiee, Navid, Shokooh Ahmadvand, Sepideh Ahmadi, Yousef Fatahi, Rassoul Dinarvand, Mojtaba Bagherzadeh, Mohammad Rabiee, Mohammadreza Tahriri, Lobat Tayebi, and Michael R. Hamblin. "Carbosilane dendrimers: Drug and gene delivery applications." Journal of Drug Delivery Science and Technology 59 (October 2020): 101879. http://dx.doi.org/10.1016/j.jddst.2020.101879.
Повний текст джерелаWich, Peter R., and Jean M. J. Fréchet. "Degradable Dextran Particles for Gene Delivery Applications." Australian Journal of Chemistry 65, no. 1 (2012): 15. http://dx.doi.org/10.1071/ch11370.
Повний текст джерелаKafshdooz, Taiebeh, Leila Kafshdooz, Abolfazl Akbarzadeh, Younes Hanifehpour, and Sang Woo Joo. "Applications of nanoparticle systems in gene delivery and gene therapy." Artificial Cells, Nanomedicine, and Biotechnology 44, no. 2 (November 3, 2014): 581–87. http://dx.doi.org/10.3109/21691401.2014.971805.
Повний текст джерелаContin, Mario, Cybele Garcia, Cecilia Dobrecky, Silvia Lucangioli, and Norma D’Accorso. "Advances in drug delivery, gene delivery and therapeutic agents based on dendritic materials." Future Medicinal Chemistry 11, no. 14 (July 2019): 1791–810. http://dx.doi.org/10.4155/fmc-2018-0452.
Повний текст джерелаДисертації з теми "GENE DELIVERY APPLICATIONS"
Twaites, Beverley Ruth. "Polymer-biopolymer interactions : applications in gene delivery." Thesis, University of Portsmouth, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402281.
Повний текст джерелаShaw, Paul Andrew. "Improving gene delivery for gene therapy and DNA vaccination applications." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614094.
Повний текст джерелаCifuentes, Rius Anna. "Tailoring Carbon Nanotubes Properties for Gene Delivery Applications." Doctoral thesis, Universitat Ramon Llull, 2013. http://hdl.handle.net/10803/127706.
Повний текст джерелаLa terapia génica se está convirtiendo en una técnica innovadora para curar enfermedades mediante la inserción de genes dentro de las células y órganos de un individuo. El reto recae en la liberación eficiente y segura de un acido nucleico terapéutico a los órganos objectivo. De todos los vectores sintéticos desarrollados recientemente, los nanotubos de carbono son una elección interesante que ya ha demostrado prometer considerablemente como sistema de liberación gracias a su proporción anchura-altura y su capacidad de traspasar la membrana celular. El problema que surge es su limitada solubilización i la agregación espontanea in vivo. Con el objetivo de desarrollar nuevos diseños basados en nanotubos de carbono para la formación de complejos capaces te transfectar ADN a las células, con un buen registro de biocompatibilidad y viabilidad celular, se han desarrollado diferentes estrategias. En primer lugar, se ha optimizado la funcionalización covalente de los nanotubos por medio de técnicas de plasma. Este tipo de modificación permite conseguir tanto superficies altamente reactivas capaces de unir ADN a traves de una molécula enlazante, como cargadas positivamente que permiten el envoltorio del acido nucleico por interacción electrostática. En segundo lugar, se han evaluado la dispersión de nanotubos de medidas diferentes por mediado de un agente estabilizante que incluye un surfactante un polímero amfifílico y proteínas. Esta naturaleza química de la superficie del nanotubo, junto con otras propiedades físicas como su longitud o diámetro, tiene un efecto directo en la dispersibilidad, citotoxicidad y biodistribución de estos sitemas. El uso de proteínas para funcionalizar nanopartículas es alentador ya que forma la corona de proteínas en su superficie. Dichos compuestos muestran una elevada capacidad de cargar ADN y permiten la regulación de su liberación mediante la manipulación de la composición de la corona.
Gene therapy has become an increasing innovative technique to treat disease by the insertion of genes into individual’s cells and tissues. The challenge is to efficiently and safely deliver the therapeutic nucleic acid into the target cells and organs. Among the synthetic vectors recently developed, carbon nanotubes are an interesting choice as they have already demonstrated considerable promise as delivery systems due to their high aspect ratio and their capacity to translocate the cell membrane. The problem that arises is their limited solubilization and spontaneous aggregation in vivo. Aiming to engineer new carbon nanotube-based designs for the formation of complexes able to transfect DNA/RNA to cells with a good track of biocompatibility and cell viability, different strategies have been developed. Firstly, the covalent functionalization of carbon nanotubes by plasma techniques has been optimized. This type of modification allows to either achieving highly reactive surfaces able to covalently bind DNA towards a chemical linker or a positively charged nanotube surface enabling the wrapping of the nucleic acid by electrostatic interaction. Secondly, the dispersion of the differently-sized carbon nanotubes by means of a stabilizing agent including a surfactant, an amphiphilic polymer and proteins has been assessed. The chemical nature of the modifying moieties on the carbon nanotube, alongside to other physical properties such as length or diameter, has a direct effect on the dispersibility, cytotoxicity and biodistribution of these systems. The use of proteins in the nanoparticle functionalization is encouraging due to the formation of the protein corona on its surface. Such complex exhibits high DNA load capacities and allows a tunable payload release by manipulating the corona composition
Uthe, Peter Benjamin Ashby Valerie. "The development of polycationic materials for gene delivery applications." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2010. http://dc.lib.unc.edu/u?/etd,2917.
Повний текст джерелаTitle from electronic title page (viewed Jun. 23, 2010). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry." Discipline: Chemistry; Department/School: Chemistry.
TURCHIANO, GIANDOMENICO. "Defining an innovative and safe non-viral gene delivery system: perspective analysis for gene therapy applications." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/43579.
Повний текст джерелаLaManna, Caroline Marie. "Synthesis, characterization, and evaluation of photo-active amphiphiles for gene delivery applications." Thesis, Boston University, 2013. https://hdl.handle.net/2144/12803.
Повний текст джерелаGene therapy has the potential to alter the landscape of medical therapeutic techniques by offering a means of introducing or knocking out genes to treat a number of diseases. Both viral and nonviral vectors are currently being utilized in gene therapy clinical trials. To overcome the obstacles in the cellular uptake and transfection pathways which impede nonviral gene delivery, novel lipids, polymers, and dendrimers are being engineered. Cationic lipid vectors have been widely characterized as gene delivery tools as they electrostatically interact with the anionic nucleic acid backbone to form a supramolecular structure (lipoplex). This complex allows the nucleic acid to be protected from enzymatic degradation during transport and interacts with the cell membrane to facilitate internalization by endocytosis. A limitation of current systems is a lack of mechanism for release of the nucleic acid, which is an integral step toward transcription and translation. The use of a charge-reversal or charge-switching amphiphile has been previously described by which the amphiphile initially has a net positive charge and is rendered negatively charged upon enzymatic removal of a terminal ester group. In order to further improve the transfection efficacy of cationic lipids and to impart an externally controlled release mechanism, we have developed a library of novel photo-active chargereversal lipids which can be triggered by ultraviolet (UV) light. In this work, we describe the synthesis and characterization of photo-active lipids for binding and releasing deoxyribonucleic acid (DNA) and evaluate the cellular uptake kinetics and transfection efficiency in vitro. The binding, release, and cellular uptake behaviors of lipoplexes were found to be dependent on lipid composition and resulting supramolecular structures. The transfection efficiency of the photo-active lipoplexes was further affected by variables associated with cellular incubation and UV exposure. Continued development of controlled release gene delivery vectors, including photoactive lipids, will enhance the understanding and utility of gene therapy by providing spatiotemporal control of the process.
Narayanasamy, Kaarjel Kauslya. "Preparation and evaluation of polymer coated magnetic nanoparticles for applications in gene delivery." Thesis, Keele University, 2018. http://eprints.keele.ac.uk/5002/.
Повний текст джерелаNelson, Ashley M. "Design of Functional Polyesters for Electronic and Biological Applications." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/74914.
Повний текст джерелаPh. D.
Allen, Michael H. Jr. "Imidazole-Containing Polymerized Ionic Liquids for Emerging Applications: From Gene Delivery to Thermoplastic Elastomers." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/49593.
Повний текст джерелаPh. D.
Perouzel, Eric. "Synthesis formulation and applications of new stabilisation agents for liposome based gene delivery system." Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271482.
Повний текст джерелаКниги з теми "GENE DELIVERY APPLICATIONS"
M, Amiji Mansoor, ed. Polymeric gene delivery: Principles and applications. Boca Raton, Fla: CRC Press, 2005.
Знайти повний текст джерелаTwaites, Beverley Ruth. Polymer-biopolymer interactions: Applications in gene delivery. Portsmouth: University of Portsmouth, School of Pharmacy and Biomedical Sciences, 2004.
Знайти повний текст джерелаD, Lasic D., and Papahadjopoulos Demetrios, eds. Medical applications of liposomes. Amsterdam: Elsevier, 1998.
Знайти повний текст джерелаBremner, K. Helen. Application of nuclear localization sequences to non-viral gene delivery systems. Birmingham: University of Birmingham, 2002.
Знайти повний текст джерелаCarlisle, Robert. The application of adenovirus transduction mechanisms to enhance the activity of synthetic gene delivery systems. Birmingham: University of Birmingham, 2002.
Знайти повний текст джерелаZimmer, Vanessa. Gene Delivery: Methods and Applications. Nova Science Publishers, Incorporated, 2019.
Знайти повний текст джерелаGene Delivery: Methods and Applications. Nova Science Publishers, Incorporated, 2019.
Знайти повний текст джерелаAmiji, Mansoor M. Polymeric Gene Delivery: Principles and Applications. CRC, 2004.
Знайти повний текст джерелаAmiji, Mansoor M. Polymeric Gene Delivery: Principles and Applications. Taylor & Francis Group, 2004.
Знайти повний текст джерелаAmiji, Mansoor M. Polymeric Gene Delivery: Principles and Applications. Taylor & Francis Group, 2004.
Знайти повний текст джерелаЧастини книг з теми "GENE DELIVERY APPLICATIONS"
Amponsah, Seth Kwabena, Ismaila Adams, and Kwasi Agyei Bugyei. "Clinical Applications of siRNA." In Gene Delivery Systems, 65–76. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186069-4.
Повний текст джерелаTrimal, Kavita, and Kalpana Joshi. "COVID-19 Vaccine Development and Applications." In Gene Delivery Systems, 197–221. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186069-12.
Повний текст джерелаBarua, Sonia, and Yashwant Pathak. "siRNA Delivery for Therapeutic Applications Using Nanoparticles." In Gene Delivery Systems, 103–13. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186083-8.
Повний текст джерелаFaldu, Khushboo, Sakshi Gurbani, and Jigna Shah. "Clinical Applications of Gene Therapy for Immuno-Deficiencies." In Gene Delivery Systems, 195–206. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186083-14.
Повний текст джерелаPandey, Prachi, Jayvadan Patel, and Samarth Kumar. "CRISPER Gene Therapy Recent Trends and Clinical Applications." In Gene Delivery Systems, 179–94. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186083-13.
Повний текст джерелаPatel, Kshama, Preetam Dasika, and Yashwant V. Pathak. "The Current State of Non-Viral Vector–Based mRNA Medicine Using Various Nanotechnology Applications." In Gene Delivery Systems, 89–103. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186069-6.
Повний текст джерелаSanthakumaran, Latha M., Alex Chen, C. K. S. Pillai, Thresia Thomas, Huixin He, and T. J. Thomas. "Nanotechnology in Nonviral Gene Delivery." In Nanofabrication Towards Biomedical Applications, 251–87. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603476.ch10.
Повний текст джерелаHalley, Patrick D., Christopher R. Lucas, Nikša Roki, Nicholas J. Vantangoli, Kurtis P. Chenoweth, and Carlos E. Castro. "DNA Origami Nanodevices for Therapeutic Delivery Applications." In Biotechnologies for Gene Therapy, 161–94. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93333-3_8.
Повний текст джерелаŠebestík, Jaroslav, Milan Reiniš, and Jan Ježek. "Dendrimers in Gene Delivery." In Biomedical Applications of Peptide-, Glyco- and Glycopeptide Dendrimers, and Analogous Dendrimeric Structures, 141–47. Vienna: Springer Vienna, 2012. http://dx.doi.org/10.1007/978-3-7091-1206-9_14.
Повний текст джерелаDev Jayant, Rahul, Abhijeet Joshi, Ajeet Kaushik, Sneham Tiwari, Rashmi Chaudhari, Rohit Srivastava, and Madhavan Nair. "Chapter 8. Nanogels for Gene Delivery." In Nanogels for Biomedical Applications, 128–42. Cambridge: Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781788010481-00128.
Повний текст джерелаТези доповідей конференцій з теми "GENE DELIVERY APPLICATIONS"
Dandia, Hiren, Snehal Valvi, Rahul Thorat, Arvind Ingle, Abhijit De, Shubhada Chiplunkar, and Prakriti Tayalia. "Scaffold Based Gene Delivery for Immunotherapeutic Applications." In National Research Scholars' Meet 2021 - Abstracts. Thieme Medical and Scientific Publishers Pvt. Ltd., 2022. http://dx.doi.org/10.1055/s-0042-1755513.
Повний текст джерелаFlick, Eva, Wenzhong Li, Jonas Norpoth, Christian Jooss, Gustav Steinhoff, and Hans H. Gatzen. "Characterization of a Magnetic Microactuator for Manipulating Nanoparticles in Gene Delivery Applications." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13025.
Повний текст джерелаOlton, Dana, Dong Hyun Lee, Charles Sfeir, and Prashant N. Kumta. "Novel Nanostructured Calcium Phosphate Based Delivery Systems for Non-Viral Gene Delivery." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176286.
Повний текст джерелаWeibing Lu, Hilal Gul, Peng Xu, Woon T. Ang, James Xing, Jian Zhang, and Jie Chen. "A novel gene delivery system using magnetic nanodarts." In 2009 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA) Formerly known as LSSA and. IEEE, 2009. http://dx.doi.org/10.1109/lissa.2009.4906738.
Повний текст джерелаJones, Frank R., Elizabeth S. Gabitzsch, and Joseph P. Balint. "The Ad5 [E1-, E2b-]-based vector: a new and versatile gene delivery platform." In SPIE Sensing Technology + Applications, edited by Šárka O. Southern. SPIE, 2015. http://dx.doi.org/10.1117/12.2183244.
Повний текст джерелаWong, Peter, Michael A. Choi, Hilal Gul-Uludag, Woon T. Ang, Peng Xu, James Xing, and Jie Chen. "Ultrasound-mediated gene delivery into hard-to-transfect KG-1 cells." In 2011 IEEE/NIH 5th Life Science Systems and Applications Workshop (LiSSA). IEEE, 2011. http://dx.doi.org/10.1109/lissa.2011.5754179.
Повний текст джерелаSerša, Gregor. "CLINICAL APPLICATIONS OF ELECTROCHEMOTHERAPY." In Symposium with International Participation HEART AND … Akademija nauka i umjetnosti Bosne i Hercegovine, 2019. http://dx.doi.org/10.5644/pi2019.181.01.
Повний текст джерелаBrown, Paige K., Ammar T. Qureshi, Daniel J. Hayes, and W. Todd Monroe. "Targeted Gene Silencing With Light and a Silver Nanoparticle Antisense Delivery System." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53647.
Повний текст джерелаVlaskou, Dialechti, Pallab Pradhan, Christian Bergemann, Alexander L. Klibanov, Karin Hensel, Georg Schmitz, Christian Plank, et al. "Magnetic Microbubbles: Magnetically Targeted and Ultrasound-Triggered Vectors for Gene Delivery in Vitro." In 8TH INTERNATIONAL CONFERENCE ON THE SCIENTIFIC AND CLINICAL APPLICATIONS OF MAGNETIC CARRIERS. AIP, 2010. http://dx.doi.org/10.1063/1.3530059.
Повний текст джерелаDelyagina, Evgenya, Wenzhong Li, Anna Schade, Anna-L. Kuhlo, Nan Ma, Gustav Steinhoff, Urs Häfeli, Wolfgang Schütt, and Maciej Zborowski. "Low Molecular Weight Polyethyleneimine Conjugated to Magnetic Nanoparticles as a Vector for Gene Delivery." In 8TH INTERNATIONAL CONFERENCE ON THE SCIENTIFIC AND CLINICAL APPLICATIONS OF MAGNETIC CARRIERS. AIP, 2010. http://dx.doi.org/10.1063/1.3530058.
Повний текст джерелаЗвіти організацій з теми "GENE DELIVERY APPLICATIONS"
Radu, Daniela Rodica. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/837277.
Повний текст джерелаHackett, Kevin, Shlomo Rottem, David L. Williamson, and Meir Klein. Spiroplasmas as Biological Control Agents of Insect Pests. United States Department of Agriculture, July 1995. http://dx.doi.org/10.32747/1995.7613017.bard.
Повний текст джерела