Добірка наукової літератури з теми "Gaseous"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Gaseous".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Gaseous"

1

PEIMBERT, M. "Gaseous Nebulae: Physics of Thermal Gaseous Nebulae." Science 229, no. 4714 (August 16, 1985): 644. http://dx.doi.org/10.1126/science.229.4714.644.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gonchar, N., and M. Morkin. "A SENSITIVITY EVALUATION OF GAS-LIFT PROBE INCLUDED INTO CLADDING FAILURE DETECTION SYSTEM BY THE MODEL OF GASEOUS FISSION PRODUCT SOLUTION/DEGASSING INTO LEAD COOLANT." PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS 2021, no. 1 (March 26, 2021): 135–44. http://dx.doi.org/10.55176/2414-1038-2021-1-135-144.

Повний текст джерела
Анотація:
Gas-lift probe is an element of cladding failure detection system of perspective lead cooled reactor. Its function is local measurement of gaseous fission product activity in the coolant and the most defected fuel assembly localization. In the coolant leaving the defected fuel assembly the specific activity of gaseous fission products is higher than the average one in the primary circuit. In the barbotage channel of gas-lift probe gaseous fission products diffuse through the bubble interface surface into the volume of the bubbles. The bubbles deliver gaseous fission product to interface surface in the separation volume. The gas enriched with radioactive gaseous fission product goes to measurement volume of the probe. The more significant the damage and the closer the defective fuel assembly is located to the probe input, the more gaseous fission product activity will be registered. The paper presents a model of gaseous activity transfer from cladding defect to probe measuring volume. The gaseous activity transfer is described on the basis of the inert gases dissolution/degassing processes in lead. The gas-lift probe sensitivity was estimated as the ratio of the entry velocity of gaseous activity into the measurement volume to the exit one into the coolant through fuel assemblies cladding defects. A gas-lift probe sensitivity for exposed fuel surface calculated as an example. Gaseous fission products with significant gamma radiation are considered. The calculation results are presented in the article.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Likal'ter, Alexander A. "Gaseous metals." Uspekhi Fizicheskih Nauk 162, no. 7 (1992): 119. http://dx.doi.org/10.3367/ufnr.0162.199207c.0119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Likal'ter, Alexander A. "Gaseous metals." Soviet Physics Uspekhi 35, no. 7 (July 31, 1992): 591–605. http://dx.doi.org/10.1070/pu1992v035n07abeh002249.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

van der Graaf, H. "Gaseous detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 628, no. 1 (February 2011): 27–30. http://dx.doi.org/10.1016/j.nima.2010.06.280.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sugimoto, Daiichiro. "Gaseous Models." Symposium - International Astronomical Union 113 (1985): 207–18. http://dx.doi.org/10.1017/s0074180900147394.

Повний текст джерела
Анотація:
We can understand physics of self-gravitating system in terms of gaseous models in so far that their global natures and effects of self-gravity are concerned. Here summarized what are known in idealized gaseous models. They include gravothermal collapse/expansion in linear and non-linear regimes, and post-collapse evolution with gravothermal oscillation. Also discussed are their relations with discrete system and with treatment in statistical mechanics.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ruskin, Keith J. "Gaseous Anomaly." Anesthesiology 88, no. 6 (June 1, 1998): 1696. http://dx.doi.org/10.1097/00000542-199806000-00055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hao-Hui, Tang, Guo Jun-Jun, Wang Xiao-Lian, and Xu Zi-Zong. "A new gaseous detector — micro mesh gaseous structure." Chinese Physics C 33, no. 9 (August 25, 2009): 777–80. http://dx.doi.org/10.1088/1674-1137/33/9/013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Blecha, Tomas, Vaclav Smitka, Michal Bodnar, and Jiri Stulik. "Simultaneous Detection of NH3 and NO2 by Modified Impedance Spectroscopy in Sensors Based on Carbon Nanotubes." Energies 15, no. 3 (January 25, 2022): 855. http://dx.doi.org/10.3390/en15030855.

Повний текст джерела
Анотація:
There are many gaseous substances that need to be monitored for possible damage to health or the environment. This requires many sensors. The solution to reducing the number of sensors is to use one sensor to detect several gaseous substances simultaneously. Efforts to simplify sensor systems thus lead to the use of a sensor with a suitable sensitive layer and to finding a suitable method of detecting individual gaseous substances within one sensor. The aim is to find a suitable method to detect various gaseous substances acting on the sensor. For this purpose, modified impedance spectroscopy in the high-frequency range is applied, where the scattering parameters of the sensor based on carbon nanotubes are measured under the action of NO2 and NH3 gases. For this method of detection of gaseous substances, a suitable sensor platform structure was designed to enable the measurement of the electrical properties of the sensor in the GHz range. Based on the obtained results, it is possible to use one sensor to detect different types of gaseous substances.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mautz, Karl E., Michael L. Parsons, and Carleton B. Moore. "Application of a Gas Sampling Introduction System for Inductively Coupled Plasma Spectroscopy and Analyses of Various Plasma Gases." Applied Spectroscopy 41, no. 2 (February 1987): 219–26. http://dx.doi.org/10.1366/000370287774987001.

Повний текст джерела
Анотація:
An inductively coupled plasma spectrometer was modified for gaseous sample introduction. The system uses a gas proportioner utilizing rotameters to achieve sample gas concentrations and mixing with the sample argon gas. Modifications of instruments were performed to enhance stability and compatability of gaseous sample introduction. Instrument performance was characterized for optimization of spectral signals produced from plasma gases. Spectral analyses of gaseous samples including CF4, SF6, O2, N2, air, and mixtures of CF4-O2 and CF4-O2/N2 were performed. Identification of plasma gas and plasma-induced byproducts, both atomic and molecular, were determined.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Gaseous"

1

Combs, Roger J. "Gaseous diffusion in liquids." Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/76484.

Повний текст джерела
Анотація:
Diffusivity of nonreactive gases in liquids provides a means of interpreting structure in the liquid state. Structural models of the liquid state include Hildebrand's condensed gas model and Eyring's pseudo-lattice model. The former model predicts a linear dependence of diffusivity with temperature while the latter model predicts linear dependence of log(D) versus 1/T. The limited temperature dependent diffusivity data to date with a typical precision of ± 5% do not permit distinguishing which temperature dependence is more linear. However, the present investigation shows that diffusivities of one gas solute in two nonpolar liquids indirectly supports a linear diffusivity temperature dependence by a Graham's law like relation. At a fixed temperature this relation equates relative diffusivities to the square root of the inverse molecular weights of the respective liquids. Diffusion of gases into nonpolar liquids have previously been measured by two techniques: (1) a pseudo-steady state technique developed by Hildebrand with diffusion through multiple capillaries and (2) a method by Walkley with diffusion through an open tube. Each of these methods requires prior knowledge of solubility of the gas in the liquid. An apparatus is constructed which combines these methods into a single experiment. Simultaneous solution of the two equations which describe the combined experiment yields both the solubility and diffusion coefficient. Diffusivities and solubilities of nitrogen, argon and oxygen into liquids of carbon tetrachloride and benzene as well as oxygen into water have been studied. The results compare favorably with the Literature. The diffusion cell for this technique consists of a capillary disk, which is flooded with liquid. Gas is admitted into the space over the open solvent. With temperature and pressure constant, volume uptake of the gas in the solvent is monitored. Time-volume uptake data is evaluated by the two diffusion equations. Although the experiment is conceptually easy, a small gas volume change over a prolonged period of time poses problems in data collection and experiment control. The data collection and control is simplified by dedicating a Microcomputer Interfaced Data Acquisition System (MIDAS) to the experiment.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Noble, Anthony James. "Pion transfer in gaseous hydrogen." Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/26016.

Повний текст джерела
Анотація:
The experiment consisted of stopping negative pions in a high pressure gas target to measure the transfer rate π-p → π-d in mixtures of H2, D2 and HD gas. The gamma rays from the decay of the π ⁰ in π -p → n + π ⁰ were detected in coincidence using two large sodium iodide crystals. The probability that a pion be transferred to a deuteron from a pionic hydrogen complex was described in terms of a phenomenological model parameterized by B and ∧. Fits to the data yielded B = 0.77 ±0.14 and ∧ = 0.21 ±0.04. These values implied that the hydrogen capture ratio in an equal mix of H2 and D2 was F(H₂D₂) = 0.45 ±0.01. The capture ratio for HD was measured to be F(HD) = 0.355 ±0.021. The ratio F(H₂D₂)/F(HD) indicated that there was likely to be internal transfer in the breakup of π-HD favouring the π-d complex at about a 60% level.
Science, Faculty of
Physics and Astronomy, Department of
Graduate
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hunter, Ian Norman. "The viscosity of gaseous mixtures." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253386.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

McKenna, Fiona Christine. "Spectroscopic studies of gaseous nebulae." Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263493.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kirk, Martin. "Reactions of gaseous borane intermediates." Thesis, University of Leeds, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305836.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Clarke, Elizabeth Diane. "Probabilistic models of gaseous dispersion." Thesis, University of Sheffield, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387651.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bremer, Malcolm Neal. "The gaseous environment of quasars." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.281988.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ho, Minh Tuan. "Kinetic modeling of the transient flows of the single gases and gaseous mixtures." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4741/document.

Повний текст джерела
Анотація:
Un gaz à l'intérieur d’un microsystème ou d’un milieu poreux est dans un état hors équilibre, car le libre parcours moyen des molécules est comparable à la dimension caractéristique du milieu. Ce même état degaz, appelé raréfié, se retrouve en haute altitude ou dans un équipement de vide à basse pression. Ces gaz raréfiés suivent des types d’écoulements qui peuvent être décrits par des modèles cinétiques dérivés de l'équation de Boltzmann. Dans ce travail nous présentons les principaux modèles et leurs mises en oeuvre numériquepour la simulation des écoulements de gaz raréfiés. Parmi les modèles utilisés nous présentons les deux modèles complets de l'équation de Boltzmann, le modèle de Shakhov(S-model) pour un gaz monoatomique et le modèle de McCormack pour un mélange de gaz toujours monoatomiques. La méthode des vitesses discrètes est utilisée pour la discrétisation numérique dans l'espace des vitesses moléculaires et le schéma de type TVD est mis en œuvre dans l'espace physique. L’aspect original de ce travail se situe sur les régimes transitoires et, en particuliersur les comportements non-stationnaires des transferts de chaleur et de masse. Cependant, pour certaines configurations nous considérons uniquement les conditions stationnaires des écoulements et un schéma implicite est développé afin de réduire le coût de calcul. En utilisant ces approches numériques, nous présentons les résultats pour plusieurs types d’écoulements non-stationnaires, de gaz raréfiés monoatomiqueset de mélanges binaires de gaz monoatomiques
A gas inside the microsystems or the porous media is in its non-equilibrium state, due to the fact that the molecular mean free path is comparable to the characteristic dimension of the media. The same state of a gas, called rarefied, is found at high altitude or in the vacuum equipment working at low pressure. All these types of flow can be described by the kinetic models derived from the Boltzmann equation. This thesis presents the development of the numerical tools for the modeling and simulations of the rarefied gas flows. The two models of the full Boltzmann equation, the Shakhov model (S-model) for the single gas and the McCormack model for the gas mixture, are considered. The discrete velocity method is used to the numerical discretization in the molecular velocity space and the TVD-like scheme is implemented in the physical space. The main aspect of this work is centered around the transient properties of the gas flows and, especially, on the transient heat and mass transfer behaviors. However, for some configurations only steady-state solutions are considered and the implicit scheme is developed to reduce the computational cost. Using the proposed numerical approach several types of the transient rarefied single gas flows as well as the binary mixture of the monoatomic gases are studied
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gal-Ed, Reuven. "Pulsating catalytic combustion of gaseous fuels." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/15649.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Moss, Diane Patricia. "Gaseous ammonia exchange in wheat crops." Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271216.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Gaseous"

1

Nettleton, Michael A. Gaseous Detonations. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3149-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Angelo, Joseph A. Gaseous matter. New York, NY: Facts on File, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

International Symposium on Gaseous Dielectrics. (6th 1990 Knoxville, Tenn.). Gaseous dielectrics VI. New York, N.Y: Plenum Press, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

1937-, Christophorou L. G., and James David R. 1948-, eds. Gaseous dielectrics VII. New York: Plenum, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

G, Christophorou L., and Olthoff James Kenneth 1958-, eds. Gaseous dielectrics IX. New York: London, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Christophorou, Loucas G. Gaseous Dielectrics VIII. Boston, MA: Springer US, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Christophorou, Loucas G. Gaseous Dielectrics IX. Boston, MA: Springer US, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Abbrescia, Marcello, Vladimir Peskov, and Paulo Fonte. Resistive Gaseous Detectors. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527698691.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Christophorou, Loucas G., and James K. Olthoff, eds. Gaseous Dielectrics IX. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0583-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Christophorou, Loucas G., and David R. James, eds. Gaseous Dielectrics VII. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1295-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Gaseous"

1

Clavin, Paul. "Gaseous Detonations." In Coherent Structures in Complex Systems, 182–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44698-2_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gillott, Cedric. "Gaseous Exchange." In Entomology, 449–65. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-4380-8_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Titov, Maxim. "Gaseous Detectors." In Handbook of Particle Detection and Imaging, 239–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-13271-1_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dusseau, Jean-Yves, Patrick Duroselle, and Jean Freney. "Gaseous Sterilization." In Russell, Hugo & Ayliffe's, 306–32. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118425831.ch15c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hilke, H. J., and W. Riegler. "Gaseous Detectors." In Particle Physics Reference Library, 91–136. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35318-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lengrand, Jean-Claude, and Tatiana T. Elizarova. "Gaseous Microflows." In Microfluidics, 25–87. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118599839.ch2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gesser, H. D. "Gaseous Fuels." In Applied Chemistry: A Textbook for Engineers and Technologists, 93–113. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0531-0_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sugimoto, Daiichiro. "Gaseous Models." In Dynamics of Star Clusters, 207–18. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5335-2_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hilke, H. J. "Gaseous Detectors." In Detectors for Particles and Radiation. Part 1: Principles and Methods, 72–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-03606-4_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hanby, Victor Ian. "Gaseous Fuels." In Combustion and Pollution Control in Heating Systems, 78–88. London: Springer London, 1994. http://dx.doi.org/10.1007/978-1-4471-2071-1_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Gaseous"

1

FRANCKE, TOM, and VLADIMIR PESKOV. "MICROPATTERN GASEOUS DETECTORS." In Proceedings of the 42nd Workshop of the INFN ELOISATRON Project. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702951_0012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Va’vra, J. "Gaseous wire detectors." In Instrumentation in elementary particle physics. AIP, 1998. http://dx.doi.org/10.1063/1.55070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hessel, Randy P., Neerav Abani, Salvador M. Aceves, and Daniel L. Flowers. "Gaseous Fuel Injection Modeling Using a Gaseous Sphere Injection Methodology." In Powertrain & Fluid Systems Conference and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. http://dx.doi.org/10.4271/2006-01-3265.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kolbe, M., and Q. A. Baker. "Gaseous Explosions in Pipes." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71220.

Повний текст джерела
Анотація:
Gaseous explosions occurring in industrial piping and process systems have been recorded and documented since the early days of industrialization. Despite the efforts put forth by the academic and scientific communities in understanding these phenomena, these explosions are still occurring in industry. Often times, operating companies that suffered the explosions were unaware of the possibilities of explosion in their piping systems and as a result, installed control and safety systems were not adequate. The mitigation of gaseous explosions in pipes requires a basic understanding of combustion and detonation theory. These events are not confined to chemical and petroleum refining facilities; potentially, they can occur in any system where a flammable mixture can form in pipes. Gaseous explosions arise from the formation of a fuel and oxidizer mixture. Although many systems are known to carry both a fuel and an inert gas to dilute or suppress combustion, the flammability limits of this mixture are often a point of uncertainty. However, it must be understood that there are several factors that can lead a flammable mixture to a strong deflagration or potentially even a detonation. The following paper will discuss the basics of gaseous pipe explosions by defining the chemical and physical limits of both deflagrations and detonations. Examples of industrial accidents involving unique gaseous pipe explosions are provided in the paper as well as recommendations for prevention and mitigation of gaseous pipe explosions.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Holtkämper, Thorsten. "Real-time gaseous phenomena." In the 2nd international conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/602330.602335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Graur, I. A. "Gaseous Flows in Microchannels." In RAREFIED GAS DYNAMICS: 24th International Symposium on Rarefied Gas Dynamics. AIP, 2005. http://dx.doi.org/10.1063/1.1941626.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chupp, T. E., R. A. Loveman, M. E. Wagshul, A. M. Bernstein, W. Fong, A. K. Thompson, D. Tieger, et al. "Polarized gaseous 3He targets." In International symposium on high−energy spin physics. AIP, 1989. http://dx.doi.org/10.1063/1.38356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Park, Sang Il, and Myoung Jun Kim. "Vortex fluid for gaseous phenomena." In the 2005 ACM SIGGRAPH/Eurographics symposium. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1073368.1073406.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Young, Colin G. "Electronic Gaseous Fuel Carburetion System." In 4th International Pacific Conference on Automotive Engineering. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987. http://dx.doi.org/10.4271/871293.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jones, J., A. Over, and G. Funk. "Microgravity gaseous combustion flight hardware." In 2001 Conference and Exhibit on International Space Station Utilization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-5046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Gaseous"

1

Kurita, C. H. Gaseous Nitrogen Heat Exchanger. Office of Scientific and Technical Information (OSTI), August 1988. http://dx.doi.org/10.2172/1031178.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Okoh, J. M., J. Pinion, and S. Thiensatit. Gaseous phase coal surface modification. Office of Scientific and Technical Information (OSTI), May 1992. http://dx.doi.org/10.2172/5129161.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Russell, R. G., and M. G. Otey. Arsenic removal from gaseous streams. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/5136273.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Skone, Timothy J. Gaseous Diffusion Enrichment Facility, Decommissioning. Office of Scientific and Technical Information (OSTI), November 2010. http://dx.doi.org/10.2172/1509065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Skone, Timothy J. Gaseous Diffusion Uranium Enrichment, Operations. Office of Scientific and Technical Information (OSTI), November 2010. http://dx.doi.org/10.2172/1509066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hohorst, F. A. Generation of gaseous tritium standards. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10187803.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Turk, B. S., T. Merkel, A. Lopez-Ortiz, R. P. Gupta, J. W. Portzer, G. N. Krishnan, B. D. Freeman, and G. K. Fleming. NOVEL TECHNOLOGIES FOR GASEOUS CONTAMINANTS CONTROL. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/793531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

B. S. Turk, R. P. Gupta, S. Gangwal, L. G. Toy, J. R. Albritton, G. Henningsen, P. Presler-Jur, and J. Trembly. NOVEL TECHNOLOGIES FOR GASEOUS CONTAMINANTS CONTROL. Office of Scientific and Technical Information (OSTI), April 2008. http://dx.doi.org/10.2172/1027121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pinion, J., and J. Okoh. Gaseous phase surface modification of coal. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6677992.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bliss, Mary. Gaseous Sulfate Solubility in Glass: Experimental Method. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1113600.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії