Добірка наукової літератури з теми "Functional UltraSound"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Functional UltraSound".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Functional UltraSound"

1

Shatillo, Artem, Juho Koponen, Tuukka Miettinen, Anna-Mari Karkkainen, and Antti Nurmi. "Functional Ultrasound." Genetic Engineering & Biotechnology News 39, no. 4 (April 2019): 52–54. http://dx.doi.org/10.1089/gen.39.04.16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Montaldo, Gabriel, Alan Urban, and Emilie Macé. "Functional Ultrasound Neuroimaging." Annual Review of Neuroscience 45, no. 1 (July 8, 2022): 491–513. http://dx.doi.org/10.1146/annurev-neuro-111020-100706.

Повний текст джерела
Анотація:
Functional ultrasound (fUS) is a neuroimaging method that uses ultrasound to track changes in cerebral blood volume as an indirect readout of neuronal activity at high spatiotemporal resolution. fUS is capable of imaging head-fixed or freely behaving rodents and of producing volumetric images of the entire mouse brain. It has been applied to many species, including primates and humans. Now that fUS is reaching maturity, it is being adopted by the neuroscience community. However, the nature of the fUS signal and the different implementations of fUS are not necessarily accessible to nonspecialists. This review aims to introduce these ultrasound concepts to all neuroscientists. We explain the physical basis of the fUS signal and the principles of the method, present the state of the art of its hardware implementation, and give concrete examples of current applications in neuroscience. Finally, we suggest areas for improvement during the next few years.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

de Korte, Chris L., and Hendrik H. G. Hansen. "FOCUS: FUNCTIONAL IMAGING - ULTRASOUND." Artery Research 7, no. 3-4 (2013): 110. http://dx.doi.org/10.1016/j.artres.2013.10.387.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tyler, William J., Yusuf Tufail, and Sandipan Pati. "Noninvasive functional neurosurgery using ultrasound." Nature Reviews Neurology 6, no. 1 (January 2010): 13–14. http://dx.doi.org/10.1038/nrneurol.2009.211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gilja, Odd Helge. "Ultrasound in functional GI disorders." Ultrasound in Medicine & Biology 45 (2019): S14—S15. http://dx.doi.org/10.1016/j.ultrasmedbio.2019.07.458.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Martinez de Paz, Jose Maria, and Emilie Macé. "Functional ultrasound imaging: A useful tool for functional connectomics?" NeuroImage 245 (December 2021): 118722. http://dx.doi.org/10.1016/j.neuroimage.2021.118722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lin, Yan, Zhi-Yi Chen, and Feng Yang. "Ultrasound-Based Multimodal Molecular Imaging and Functional Ultrasound Contrast Agents." Current Pharmaceutical Design 19, no. 18 (April 1, 2013): 3342–51. http://dx.doi.org/10.2174/1381612811319180016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lin, Yan, Zhi-Yi Chen, and Feng Yang. "Ultrasound-Based Multimodal Molecular Imaging and Functional Ultrasound Contrast Agents." Current Pharmaceutical Design 999, no. 999 (March 1, 2013): 6–10. http://dx.doi.org/10.2174/13816128113198880008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Macé, Emilie, Gabriel Montaldo, Ivan Cohen, Michel Baulac, Mathias Fink, and Mickael Tanter. "Functional ultrasound imaging of the brain." Nature Methods 8, no. 8 (July 3, 2011): 662–64. http://dx.doi.org/10.1038/nmeth.1641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rau, Richard, Pieter Kruizinga, Frits Mastik, Markus Belau, Nico de Jong, Johannes G. Bosch, Wolfgang Scheffer, and Georg Maret. "3D functional ultrasound imaging of pigeons." NeuroImage 183 (December 2018): 469–77. http://dx.doi.org/10.1016/j.neuroimage.2018.08.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Functional UltraSound"

1

Rau, Richard [Verfasser]. "Functional Ultrasound Imaging of the Avian Brain / Richard Rau." Konstanz : Bibliothek der Universität Konstanz, 2018. http://d-nb.info/1163537047/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Imbault, Marion. "Quantitative and functional ultrafast ultrasound imaging of the human brain." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC158/document.

Повний текст джерела
Анотація:
L'objectif de cette thèse était d'explorer le potentiel de l’imagerie du cerveau humain par ultrasons. L'anatomie, le flux sanguin et la rigidité des tissus mous ont déjà été étudiés avec l'imagerie ultrasonore ultrarapide chez l'homme et validés sur plusieurs organes, tels que le sein et le foie, mais pas encore sur le cerveau adulte. La principale limitation de l'imagerie échographique transcrânienne est aujourd'hui le très fort artefact d'aberration induit par le crâne. En effet, l’os, de par sa composition ne permet pas la propagation des ultrasons comme ailleurs dans le corps humain. Dans cette thèse, nous avons utilisé l'imagerie ultrasonore ultrarapide pour l'évaluation de la rigidité des tissus mous et l'imagerie neurofonctionnelle dans le cerveau humain adulte, lors de chirurgies du cerveau afin de contourner dans un premier temps le problème des aberrations induites par le crâne. La dernière partie de cette thèse était axée sur la correction d’aberration pour l’échographie quantitative et l’imagerie ultrasonore transcrânienne. Nous avons tout d’abord fourni plusieurs preuves de l'intérêt d'utiliser l’élastographie par onde de cisaillement pendant la chirurgie du cerveau. Nous avons également présenté notre nouvelle technique d’élastographie par onde de cisaillement en 3D à l'aide d'une sonde matricielle dans le but de pouvoir dépasser les limitations du 2D et notamment être moins dépendant de l’opérateur.Dans un second volet, nous avons démontré la capacité des ultrasons ultrarapides à identifier, cartographier et différencier en profondeur les régions d'activation corticales en réponse à un stimulus, à la fois chez les patients éveillés et chez les patients anesthésiés. Nous avons démontré que l'imagerie neurofonctionnelle par ultrasons a le potentiel de devenir une modalité complète de neuroimagerie avec des avantages majeurs pour une utilisation peropératoire.Dans un troisième volet, nous avons utilisé une technique en trois étapes pour calculer précisément la vitesse du son (SSE) dans un milieu. Cette technique a été testée dans des fantômes ultrasonores et in vivo dans les foies de patients. Dans les deux cas, notre méthode a été capable de trouver la vitesse du son correspondant au milieu. Nous avons démontré que la SSE était liée à la fraction de graisse. Cette analyse a permis de conclure que la SSE était en mesure de distinguer un foie sain et d’un foie malade aussi bien avec la biopsie qu’avec l’IRM comme méthode de référence. Combiné à l'utilisation de la formule de Wood, nous avons même pu avoir accès à une fraction de graisse mesurée par ultrasons de manière non invasive. Puis nous avons combiné la correction d’aberration de phase, d'amplitude et de vitesse du son pour faire de l’imagerie transcrânienne en simulation numérique. Nous avons atteint notre objectif en obtenant des images représentant fidèlement le milieu (position latérale et profondeur) et caractérisées par une résolution et un contraste similaires à ceux obtenus avec une source ponctuelle dans le milieu
The objective of this thesis was to explore the potential of human brain ultrasound imaging. Anatomy, blood flow and soft tissue stiffness have already been studied with ultrafast ultrasound imaging in humans and validated in several organs, such as, the breast and liver but not yet on the adult brain. The main limitation of transcranial ultrasound imaging is today the very strong skull-induced aberration artefact. Indeed, the bone, due to its composition, does not allow for ultrasound propagation as elsewhere in the human body. Therefore, this thesis was focused on the development of ultrafast ultrasound imaging for the evaluation of soft tissue stiffness and neurofunctional imaging in the adult human brain, during brain surgery to bypass the problem of skull aberration, and on an aberration correction technique for transcranial ultrasound imaging.We first provided several evidence of the benefit of using shear wave elastography during brain surgery. We also presented our new technique for 3D shear wave elastography using a matrix array in order to be able to overcome the limitations of 2D imaging and in particular to reduce the operator dependence.In a second phase, we demonstrated the capability of ultrasound to identify, map and differentiate in depth cortical regions of activation in response to a stimulus, both in awake patients and in anaesthetized patients. We have demonstrated that ultrasound neurofunctional imaging has the potential to become a comprehensive modality of neuroimaging with major benefits for intraoperative use. In a third part, we developed a new sound speed estimation (SSE) technique, based on a three-step technique that estimates the sound speed accurately corresponding to the illuminated medium. This technique was tested in ultrasound phantoms and in vivo in patient’s liver. In both cases, our method was able to find the sound speed corresponding to the medium. We demonstrated that SSE was related to the fat fraction. This analysis led to the conclusion that SSE was able to distinguish a healthy liver from a diseased liver with both biopsy and MRI as gold standard. Combined with the use of the Wood’s formula, we were even able to access a fat fraction measured by non-invasive ultrasound. Finally, by combining the phase, the amplitude and the sound speed estimation, we have developed a new aberration correction algorithm to perform transcranial ultrasound imaging. By performing numerical simulations, we obtained images that faithfully represented the medium (lateral position and depth) and characterized by one resolution and one contrast similar to those obtained with a punctual source in the medium
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Brunner, Clément. "Functional ultrasound imaging (fUSi) to assess brain function in physiological and pathological conditions : application to stroke." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB123/document.

Повний текст джерела
Анотація:
Depuis le milieu du XXème siècle, les techniques d’imagerie fonctionnelles ont un rôle grandissant dans notre compréhension sur les fonctions du cerveau en conditions physiologique et pathologique. Bien que l’IRMf fasse partie des techniques les plus communément utilisées pour l’imagerie du cerveau complet lors d’études préclinique et clinique, cette modalité souffre de sa résolution spatiotemporelle et sa sensibilité pour enregistrer finement les fonctions et activités cérébrales. Récemment l’imagerie fonctionnelle par ultrason (ifUS) a subi des développements permettant d’être complémentaires à l’IRMf ainsi qu’aux autres techniques d’imagerie cérébrales classiquement employées. Contrairement aux ultrasons focalisés conventionnels, l’imagerie hémodynamique proposé par l’ifUS repose sur une illumination ultrasonore plane permettant la détection des globules rouges en mouvement et la mesure de leur vitesse dans les micro-vaisseaux cérébraux. De ce fait, l’ifUS est indirectement lié à l’activité cérébrale d’où l’importance d’une meilleure compréhension des mécanismes du couplage neuro-vasculaire liant l’activité neuronale et les variations cérébrales d’apport en sang. De plus, cette technique a le potentiel pour fournir des informations précises sur les processus de certaines pathologies à la fois sur des modèles précliniques et chez l’homme. Dans un premier temps, j’exposerais mes travaux sur les récents développements techniques permettant l’ifUS in vivo (i) en condition chronique, (ii) sur l’animal éveillé, libre de mouvement et effectuant une tache comportementale et (iii) des vaisseaux capillaires chez le rongeur et l’homme. Dans un second temps, je démontrerais que l’ifUS in vivo peut fournir des informations nouvelles sur des pathologies telles que l’accident vasculaire cérébrale
Since the middle of the 20th century, functional imaging technologies are making an increasing impact on our understanding on brain functions in both physiological and pathological conditions. Even if fMRI is nowadays one of the most used tool for whole brain imaging in pre-clinical and clinical studies, it lacks sufficient spatiotemporal resolution and sensitivity to assess fine brain function and activity. Functional ultrasound imaging (fUSi) has been recently developed and presents a potential to complement fMRI and other existing brain imaging modalities. Contrary to conventional ultrasound using focus beams, fUSi relies on hemodynamic imaging based on ultrasound plane-wave illumination to detect red blood cells movement and velocity in brain micro-vessels. Consequently, the fUSi signal is indirectly related to brain activity and it is therefore important to better understand the mechanisms of the neurovascular coupling linking neural activity and cerebral blood changes. Here again, fUSi may provide relevant information about disease processes in preclinical models but also in humans. First, I will present recent technical developments allowing in vivo fUSi (i) in chronic condition, (ii) in freely moving and behaving rats and (iii) in rodents and human brain capillaries. Second, I will demonstrate how fUSi could provide new insights in brain pathologies such as stroke
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Blomley, Martin John Kjolsen. "Ultrasound contrast agents as a tool for quantitative-functional imaging." Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417930.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gesnik, Marc. "Imagerie fonctionnelle par ultrasons de la rétine et des fonctions visuelles cérébrales." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLET011/document.

Повний текст джерела
Анотація:
Ces travaux de thèse portent sur les récents progrès de l’imagerie fonctionnelle par ultrasons et ses nouvelles applications en ophtalmologie. Dans le cadre d’un projet mêlant physique des ondes, imagerie, neurosciences et ophtalmologie, nous avons appliqué cette technologie à l’imagerie du système visuel et à l’étude préclinique de thérapies le ciblant. Au cours de ce projet, nous avons accompagné nos études précliniques de progrès constants dans notre imagerie.Un dispositif permettant l’imagerie du cerveau en 3 dimensions a été conçu. Cette imagerie a été réalisée en temps réel, ou à une fréquence ultrasonore de 30 MHz grâce au procédé d’entrelacement. Grâce à une connaissance a priori de l’architecture vasculaire cérébrale et de l’effet Doppler, il est possible de réaliser une décomposition spectrale des écoulements sanguins cérébraux selon leurs vitesses et de leurs orientations.Ceci a permis une étude des fonctions visuelles du rat et du primate non-humain. Nous avons imagé la rétine du primate en Doppler de puissance, mais sa forte mobilité en fait un organe délicat à imager en imagerie fonctionnelle. En revanche, nous avons réalisé une imagerie fonctionnelle de la rétine de rat à 30 MHz. Nous avons caractérisé en détail le système visuel cérébral de ce rongeur. Nous avons mis en évidence ses principales structures et redémontré leurs caractéristiques les plus connues, comme leur organisation rétinotopique ou leur différence de temps de réponse neurovasculaire à un stimulus. Des animaux traités par des thérapies de restauration visuelle a été imagée. La première imagerie de primates non-humains anesthésiés puis éveillés et exécutant une tâche comportementale, et la détection de variations de flux sanguins dues à des erreurs uniques ont été réalisées. Enfin, une étude préclinique aiguë et une étude chronique de traitements ayant des effets neurovasculaires ont été menées grâce au suivi du flux sanguin par nos procédés
This thesis focuses on recent improvements in the functional ultrasound imaging (fUS) technique and their applications in the field of ophthalmology. Within the framework of a synergetic project blending waves physics, medical imaging, neuroscience and ophthalmology, fUS was shown to be capable of imaging and studying the visual system of healthy and diseased animals for the purpose of preclinical studies. To tackle these issues, constant upgrades in the fUS technique had to support the preclinical studies.An experimental set-up was built to image the visual pathway in three dimensions with fUS. Using a new imaging facility, fUS was proven to be feasible in real time and at high ultrasound frequencies such as 30 MHz. Interleaved sampling had to be implemented in that case. Furthermore, the a priori knowledge of the vascular cerebral architecture and the Doppler Effect were exploited to spectrally decompose cerebral blood flux and vessels according to their velocities and orientations.Leveraging these improvements, functional ultrasound imaging of rats and non-human primates was performed. Primate retina was imaged with Power Doppler, but proved to be too mobile to be functionally imaged. However, fUS has been performed on rat retina after 30 MHz fUS imaging had been implemented. The rat visual pathway has then been characterised with fUS. Some of its known features where highlighted such as its retinotopic organisation or the time response differences between some of its structures. The same set-up has been leveraged to map the cerebral activity of animal that underwent visual restauration therapies. These tools were then used to map cerebral activity in anesthetized and awake and behaving monkeys. Unique blood volume variations due to unique mistakes were detected. These tools were finally applied to two preclinical trials on a depressive state of the brain vascular contractility. Blood volume and blood velocity changes were highlighted throughout an acute and a chronical study
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Upadhyaya, Swati. "Decreasing Error in Functional Hip Joint Center Calculation using Ultrasound Imaging." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/26125.

Повний текст джерела
Анотація:
The hip joint center (HJC) is needed for calculation of hip kinematics in various applications. In the functional method, the center is determined by moving femur with respect to acetabulum. A popular way for measuring this movement is through an optical motion capture system. This method is fast and economical for most applications where we require an instant HJC even though the reconstruction error in bone position calculation exists due to skin artifact. This error is caused by movement of markers placed on skin rather than on actual bone. Here we introduce ultrasound imaging as an additional modality to measure the change in soft tissue thickness above bone while hip is flexed. We use this information on the tissue thickness change to recalculate position of markers placed on skin to match the movement of bone. A good advantage of using ultrasound machine is its non-invasiveness. We calculated HJC using a symmetric center of rotation estimation (SCoRE) algorithm, which uses the concept of coordinate transformation on 3D marker position data. The algorithm gives the 3D position of two centers, one for each hip bone. The distance between these two centers (SCoRE residual) gives us a hint on the accuracy of the HJC calculation and has been proved to be proportional to the error with respect to actual center in previous studies. These two centers should ideally coincide as they collectively form a spherical joint. Our new algorithm for HJC calculation with tissue thickness compensation, measured using ultrasound imaging shows the error has been reduced from 9.13 mm to 4.87 mm
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Satta, Elena. "The modulation of buckwheat flour techno-functional properties by ultrasound treatment." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.

Знайти повний текст джерела
Анотація:
The buckwheat is a naturally gluten-free pseudocereal, rich in phytochemicals, phenols and functional proteins, however, the functional characteristics of its flour in baking process are not as performing as those of wheat flour. The aim of this thesis was to analyse how the functional, viscosimetric and antioxidant properties of two variety of buckwheat (Polish and Italian) flours change in response to an ultrasound (US) pre-treatment carried out on different solid:liquid ratio. For this, in the differently treated Polish buckwheat samples some functional properties (water absorption index, water solubility index, swelling power, water holding capacity, water absorption capacity, foaming capacity and stability, emulsifying activity and emulsion stability) were analysed. Moreover, the thermoviscous test, antioxidant capacity and polyphenol content were quantified. Finally, bread samples, obtained with treated and untreated Polish buckwheat flour were analysed for baking loss, specific volume, colour analysis of crust, porosity and hardness. The obtained results showed that the US pre-treatment increased the water holding capacity, improved the foam stability, but decreased the ability to form foams and emulsions as well as the viscosity of the treated flour samples. The breads formulated with US treated flours had a more uniform pore distribution in the crumb and were softer than the breads formulated with untreated flour. Moreover, US pre-treatment had no effects on surface colour and phenolic content of obtained bread. In conclusion, the application of US on buckwheat flour can be a good alternative to the use of additives in formulation in order to obtain gluten-free and nutritionally rich final products.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bloch, Susannah Helen. "Ultrasound functional analysis of breast tumours using a microbubble contrast agent." Thesis, Institute of Cancer Research (University Of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399740.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bimbard, Célian. "Accessing the encoding of sounds in the auditory cortex using functional UltraSound." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE054.

Повний текст джерела
Анотація:
Le monde extérieur regorge de sons complexes, que chaque animal doit interpréter afin de survivre. Pour ce faire, leur cerveau se doit de représenter toute la richesse de la structure acoustique de ces sons, jusque dans leurs propriétés les plus complexes. Dans cette thèse, cette question est explorée à travers un nouveau prisme, l'imagerie fonctionnelle ultrasonore (fUS). Dans un premier temps, l'imagerie fUS est utilisée pour étudier avec une haute fidélité l'organisation topographique du système auditif, ainsi que ses connexions avec d'autres aires cérébrales. Dans un deuxième temps, elle permet d'explorer des aspects fondamentaux de la façon dont le cortex auditif encode les sons naturels, ainsi que les spécificités humaines pour le traitement du langage. Enfin, elle révèle des formes topographiques mais non continues d'encodage, avec l'exemple de la localisation spatiale des sons. À travers ces trois aspects sont révélés les différents modules de traitement de l'information auditive, spatialement organisés, qui se superposent au sein d'une aire cérébrale unique
The world teems with complex sounds that animals have to interpret in order to survive. To do so, their brain must represent the richness of the sounds' acoustic structure, from simple to high-order features. Understanding how it does it, however, remains filled with challenges. In this thesis, these questions were explored through a new technical prism, namely functional UltraSound imaging (fUSi). First, fUSi was used to investigate with a high fidelity the topographical organization of the auditory system, as well as its connectivity with other brain areas. Second, it provided fundamental clues for our understanding of how natural sounds are encoded in the auditory cortex, and hints at the human particularities for speech processing. Last, it gave us access to non-continuous topographical encoding, with the example of spatial localization. Through these three aspects, we exposed the different spatially organized modules of processing that overlap within a single brain area
Стилі APA, Harvard, Vancouver, ISO та ін.
10

O'Sullivan, Jonathan James. "Applications of ultrasound for the functional modification of proteins and submicron emulsion fabrication." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/6086/.

Повний текст джерела
Анотація:
This thesis aims to advance the understanding of ultrasonic processing for the alteration of food microstructures. It considers the impact of ultrasonic processing upon protein structure and for emulsification. It was shown that ultrasound treatment of proteins reduced the hydrodynamic volume of protein aggregates by ultrasonic cavitations. Insufficient acoustic energy was provided to achieve proteolysis. Emulsions prepared with ultrasound treated milk protein isolate, pea protein isolate and bovine gelatin yielded smaller, stable emulsion droplets in comparison to their untreated counterparts. This behaviour is ascribed to more rapid adsorption of protein at the oil-water interface and improved interfacial packing, due to reduction in protein aggregate size. The droplet size of emulsions with sufficient emulsifier (> 0.5 wt. %) emulsion droplet size can be predicted from a mathematical relation between emulsion droplet size (d3,2) and energy density (Ev), an inverse power law. Droplet size predictions were unattainable at low emulsifier concentrations (≤ 0.5 wt. %) due to re-coalescence behaviour attributed to insufficiency of emulsifier and droplet collisions within the acoustic field. Continuous processing yields more efficient utilisation of acoustic energy in comparison to batch configurations due to the intense transmission of acoustic energy within the smaller processing volumes.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Functional UltraSound"

1

A, Curry Reva, and Tempkin Betty Bates, eds. Sonography: Introduction to normal structure and function. 2nd ed. St Louis: Saunders, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zheng, Yong-Ping, and Yongjin Zhou. Sonomyography: Dynamic and Functional Assessment of Muscle Using Ultrasound Imaging. Springer, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zheng, Yong-Ping, and Yongjin Zhou. Sonomyography: Dynamic and Functional Assessment of Muscle Using Ultrasound Imaging. Springer Singapore Pte. Limited, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lenzi, Andrea, and Andrea M. Isidori. Ultrasound of the Testis for the Andrologist: Morphological and Functional Atlas. Springer, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lenzi, Andrea, and Andrea M. Isidori. Ultrasound of the Testis for the Andrologist: Morphological and Functional Atlas. Springer, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gardner, Andrew, Grant L. Iverson, Paul van Donkelaar, Philip N. Ainslie, and Peter Stanwell. Magnetic Resonance Spectroscopy, Diffusion Tensor Imaging, and Transcranial Doppler Ultrasound Following Sport-Related Concussion. Edited by Ruben Echemendia and Grant L. Iverson. Oxford University Press, 2015. http://dx.doi.org/10.1093/oxfordhb/9780199896585.013.12.

Повний текст джерела
Анотація:
Sport-related concussion has been referred to as a functional rather than a structural injury with neurometabolic and microstructural alterations reported in several studies. Accordingly, conventional neuroimaging techniques, such as computed tomography (CT) and structural magnetic resonance imaging (MRI), have limited value beyond ruling out structural injury such as a contusion or hemorrhage. This chapter presents a review of three neuroimaging techniques that offer insight into the connectivity and neurometabolic consequences of concussion. A number of studies have now been published using magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI)/diffusion-weighted imaging, and transcranial Doppler ultrasound (TCD) with varying findings. The results of these studies will be presented, together with current and possible future application of these techniques within the field of sport-related concussion.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nixdorff, Uwe, Stephan Achenbach, Frank Bengel, Pompillio Faggiano, Sara Fernández, Christian Heiss, Thomas Mengden, et al. Imaging in cardiovascular prevention. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199656653.003.0006.

Повний текст джерела
Анотація:
Imaging tools in preventive cardiology can be divided into imaging modalities to assess pre-clinical and clinical atherosclerosis and functional assessments of vascular function or vascular inflammation. To calculate the likelihood of pre-clinical atherosclerosis intima-media thickness as well as coronary calcium scoring are most frequently used. However, beyond these two there are other parameters derived by ultrasound and multi-detector computed tomography as well as magnetic resonance imaging and nuclear/molecular imaging which are discussed in the chapter. Functional tests include flow-mediated dilatation, pulse wave analysis, and the ankle-brachial index. In clinical research other invasive measurements such as intravascular ultrasound/virtual histology/elastography, optical coherence tomography as well as thermography are being used. However, their value in clinical prevention still needs to be established.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bunker, Tim D. The clinical evaluation of the shoulder. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199550647.003.004001.

Повний текст джерела
Анотація:
♦ History: onset event, radiation, exacerbation, night pain, functional deficit♦ Examination: active and passive movement, impingement signs, instability tests♦ Investigation: x-rays, ultrasound, CT and MR.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lancellotti, Patrizio, and Bernard Cosyns. The Standard Transthoracic Echo Examination. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198713623.003.0002.

Повний текст джерела
Анотація:
Functional imaging by modern echocardiography offers a variety of methods to assess regional and global myocardial function beyond classic dimension, volume and ejection fraction measurements. This chapter shows how various modalities of Doppler echocardiography can be used for assessment of valves, haemodynamics, and coronary flow reserve. It also provides information on myocardial function can be extracted from echo images using a tissue Doppler or speckle tracking approach. 3Dechocardiography provides real-time 3D images of the heart in motion. Various types of examination and quantification are also shown. A brief explanation of contrast imaging is included as well as practical considerations such as administration protocols and the safety of ultrasound contrast.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cosyns, Bernard, and Bernard Paelinck. Pericardial disease. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199599639.003.0021.

Повний текст джерела
Анотація:
The ability of ultrasound to elucidate the functional and structural abnormalities of pericardial disease is powerful. Due to multimodality imaging possibilities and to its portability, echocardiography is the technique of choice for the diagnosis of pericardial disease. Although other non-invasive technologies have been developed to provide information about the pericardium, echocardiography remains the first and often only diagnostic method needed to make a definitive diagnosis and guide appropriate treatment in patients with pericardial effusion, cardiac tamponade, or constrictive pericarditis. It allows differential diagnosis with restrictive cardiomyopathy and can easily be performed for guiding pericardiocentesis.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Functional UltraSound"

1

Chandra Majhi, Kartick, Shrabani De, and Rashmi Madhuri. "Ultrasound-Responsive Nanosystems." In Functional Lipid Nanosystems in Cancer, 513–52. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003056997-21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lohmann, Hubertus, E. Bernd Ringelstein, and Stefan Knecht. "Functional Transcranial Doppler Sonography." In Handbook on Neurovascular Ultrasound, 251–60. Basel: KARGER, 2006. http://dx.doi.org/10.1159/000092437.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Michele, Del Zingaro, Rosi Paolo, Luigi Mearini, Elisabetta Nunzi, Rosi Giovanni, and Guiggi Paolo. "Functional Ultrasound: Functional Female Echo-Dynamic Study." In Atlas of Ultrasonography in Urology, Andrology, and Nephrology, 451–57. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-40782-1_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hasegawa, Junichi. "Abnormal Findings in Ultrasound Examination." In Fetal Morph Functional Diagnosis, 23–35. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8171-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Abdul-Kareem, Ahmed, Dheeraj Gandhi, Timothy R. Miller, Rao Gullapalli, and Elias R. Melhem. "Neurological Applications of Magnetic Resonance-Guided Focused Ultrasound Therapy." In Functional Neuroradiology, 1337–45. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-10909-6_57.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ahmed, Abdul-Kareem, Dheeraj Gandhi, Timothy R. Miller, Rao Gullapalli, and Elias R. Melhem. "Correction to: Neurological Applications of Magnetic Resonance-Guided Focused Ultrasound Therapy." In Functional Neuroradiology, C1. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-10909-6_67.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hildebrandt, U. "Ultrasound Anatomy of the Pelvic Floor." In Investigation of Anorectal Functional Disorders, 11–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77402-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hausken, Trygve, and Odd Helge Gilja. "Functional Ultrasound of the Gastrointestinal Tract." In Ultrasound of the Gastrointestinal Tract, 233–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/174_2012_665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Paladini, Dario, and Paolo Volpe. "Sequential Anatomy and Functional Assessment of the Heart." In Ultrasound of Congenital Fetal Anomalies, 250–71. 3rd ed. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003048268-28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vadikolias, Konstantinos, and Georgios Tsivgoulis. "Applications of Functional Transcranial Doppler (fTCD)." In Cerebrovascular Ultrasound in Stroke Prevention and Treatment, 177–86. Oxford, UK: Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9781444327373.ch9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Functional UltraSound"

1

Lambeth, Krysten, Ashwin Iyer, and Nitin Sharma. "Quantifying Functional Electrical Stimulation-Induced Fatigue via Ultrasound for Hybrid Neuroprosthesis-Based Walking." In 2024 10th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), 1617–22. IEEE, 2024. http://dx.doi.org/10.1109/biorob60516.2024.10719933.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Erol, Aybüke, Pieter Kruizinga, and Borbála Hunyadi. "Analyzing Trial-to-Trial Variability in the Mouse Visual Pathway Using Functional Ultrasound." In 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/isbi56570.2024.10635718.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kotti, Sofia-Eirini, and Borbála Hunvadi. "Extracting Hemodynamic Activity with Low-Rank Spatial Signatures in Functional Ultrasound Using Tensor Decompositions." In 2024 32nd European Signal Processing Conference (EUSIPCO), 1347–51. IEEE, 2024. http://dx.doi.org/10.23919/eusipco63174.2024.10714979.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Lihong V. "Functional photoacoustic tomography of the human brain." In Photons Plus Ultrasound: Imaging and Sensing 2022, edited by Alexander A. Oraevsky and Lihong V. Wang. SPIE, 2022. http://dx.doi.org/10.1117/12.2631529.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Koekkoek, S. K. E., S. Soloukey Tbalvandany, B. S. Generowicz, W. S. van Hoogstraten, N. L. de Oude, H. J. Boele, C. Strydis, et al. "High Frequency Functional Ultrasound in Mice." In 2018 IEEE International Ultrasonics Symposium (IUS). IEEE, 2018. http://dx.doi.org/10.1109/ultsym.2018.8579865.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Crowley, Robert J. "Ultrasound Catheter Imaging A Functional Overview." In OE/LASE '89, edited by Alan I. West. SPIE, 1989. http://dx.doi.org/10.1117/12.952183.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vienneau, Emelina, Abbie Weeks, Stephen Wilson, Victoria Morgan, and Brett Byram. "Contrast-Free Transcranial Functional Ultrasound Neuroimaging." In 2023 IEEE International Ultrasonics Symposium (IUS). IEEE, 2023. http://dx.doi.org/10.1109/ius51837.2023.10306684.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Roquette, Lucien, Matthieu Simeoni, and Paul Hurley. "A Functional Framework for Ultrasound Imaging." In 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018. http://dx.doi.org/10.1109/icip.2018.8451283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhu, Jingyi, Chao Liu, Jiangbo Chen, Yachao Zhang, and Lidai Wang. "Optical fluence-compensated functional optical-resolution photoacoustic microscopy." In Photons Plus Ultrasound: Imaging and Sensing 2021, edited by Alexander A. Oraevsky and Lihong V. Wang. SPIE, 2021. http://dx.doi.org/10.1117/12.2577491.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liang, Yizhi, Xiaoxuan Zhong, Long Jin, Lidai Wang, and Huan Liu. "Broadband fiber optic photoacoustic probe for functional brain imaging." In Photons Plus Ultrasound: Imaging and Sensing 2021, edited by Alexander A. Oraevsky and Lihong V. Wang. SPIE, 2021. http://dx.doi.org/10.1117/12.2577419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Functional UltraSound"

1

Algain, Abdulaziz H., Florin Costescu, and Karoll A. Rodelo Ceballos. Point-of-Care ultrasound evaluation of respiratory function. World Federation of Societies of Anaesthesiologists, May 2024. http://dx.doi.org/10.28923/atotw.523.

Повний текст джерела
Анотація:
This tutorial discusses POCUS indications, the physics of ultrasound, lung ultrasound anatomy, standard exam approach and protocols, terminology, and pathology profiles and explores several applications of lung ultrasonography in monitoring some conditions and its role in therapeutic interventions
Стилі APA, Harvard, Vancouver, ISO та ін.
2

LI, Peng, Junhong Ren, and Yan Li. Lung ultrasound guided therapy for heart failure: an updated meta-analyses and trial sequential analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, February 2022. http://dx.doi.org/10.37766/inplasy2022.2.0124.

Повний текст джерела
Анотація:
Review question / Objective: We aim to evaluate the effect of lung ultrasound (LU) guided therapy on the rates of adverse cardiac events (MACE) in heart failure (HF) patients. Condition being studied: Previous studies have found that B-lines assessed by lung ultrasound can be used for risk stratification in patients with HF and to predict the occurrence of adverse cardiac events. Therefore, similar to BNP, lung ultrasound has clinical value in guiding the management of patients with HF. However, the role of LU in guiding HF therapy is still controversial. Moreover, previous study's samples are too small to explain the over clinical outcomes. Besides, previous meta-analyses study did not perform meta-regression and/or subgroup analyses, or further analyze other parameters, such as heart function, quality of life and length of hospital stay.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії