Добірка наукової літератури з теми "Fractional derivatives at zero"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fractional derivatives at zero".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Fractional derivatives at zero"
Bouzeffour, Fethi. "Advancing Fractional Riesz Derivatives through Dunkl Operators." Mathematics 11, no. 19 (September 25, 2023): 4073. http://dx.doi.org/10.3390/math11194073.
Повний текст джерелаHILFER, R. "FOUNDATIONS OF FRACTIONAL DYNAMICS." Fractals 03, no. 03 (September 1995): 549–56. http://dx.doi.org/10.1142/s0218348x95000485.
Повний текст джерелаFarr, Ricky E., Sebastian Pauli, and Filip Saidak. "zero-free region for the fractional derivatives of the Riemann zeta function." New Zealand Journal of Mathematics 50 (September 4, 2020): 1–9. http://dx.doi.org/10.53733/42.
Повний текст джерелаNABER, MARK. "DISTRIBUTED ORDER FRACTIONAL SUB-DIFFUSION." Fractals 12, no. 01 (March 2004): 23–32. http://dx.doi.org/10.1142/s0218348x04002410.
Повний текст джерелаAgarwal, Ravi P., Snezhana Hristova, and Donal O’Regan. "Asymptotic Behavior of Delayed Reaction-Diffusion Neural Networks Modeled by Generalized Proportional Caputo Fractional Partial Differential Equations." Fractal and Fractional 7, no. 1 (January 11, 2023): 80. http://dx.doi.org/10.3390/fractalfract7010080.
Повний текст джерелаDiethelm, Kai, Roberto Garrappa, Andrea Giusti, and Martin Stynes. "Why fractional derivatives with nonsingular kernels should not be used." Fractional Calculus and Applied Analysis 23, no. 3 (June 25, 2020): 610–34. http://dx.doi.org/10.1515/fca-2020-0032.
Повний текст джерелаLuchko, Yuri. "General Fractional Integrals and Derivatives with the Sonine Kernels." Mathematics 9, no. 6 (March 10, 2021): 594. http://dx.doi.org/10.3390/math9060594.
Повний текст джерелаMugbil, Ahmad, and Nasser-Eddine Tatar. "Hadamard-Type Fractional Integro-Differential Problem: A Note on Some Asymptotic Behavior of Solutions." Fractal and Fractional 6, no. 5 (May 15, 2022): 267. http://dx.doi.org/10.3390/fractalfract6050267.
Повний текст джерелаProdanov, Dimiter. "Generalized Differentiability of Continuous Functions." Fractal and Fractional 4, no. 4 (December 10, 2020): 56. http://dx.doi.org/10.3390/fractalfract4040056.
Повний текст джерелаArea, I., J. Losada, and J. J. Nieto. "On Fractional Derivatives and Primitives of Periodic Functions." Abstract and Applied Analysis 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/392598.
Повний текст джерелаДисертації з теми "Fractional derivatives at zero"
Wang, Zhibo. "Estimations non-asymptotiques et robustes basées sur des fonctions modulatrices pour les systèmes d'ordre fractionnaire." Electronic Thesis or Diss., Bourges, INSA Centre Val de Loire, 2023. http://www.theses.fr/2023ISAB0003.
Повний текст джерелаThis thesis develops the modulating functions method for non-asymptotic and robust estimations for fractional-order nonlinear systems, fractional-order linear systems with accelerations as output, and fractional-order time-delay systems. The designed estimators are provided in terms of algebraic integral formulas, which ensure non-asymptotic convergence. As an essential feature of the designed estimation algorithms, noisy output measurements are only involved in integral terms, which endows the estimators with robustness against corrupting noises. First, for fractional-order nonlinear systems which are partially unknown, fractional derivative estimation of the pseudo-state is addressed via the modulating functions method. Thanks to the additive index law of fractional derivatives, the estimation is decomposed into the fractional derivatives estimation of the output and the fractional initial values estimation. Meanwhile, the unknown part is fitted via an innovative sliding window strategy. Second, for fractional-order linear systems with accelerations as output, fractional integral estimation of the acceleration is firstly considered for fractional-order mechanical vibration systems, where only noisy acceleration measurements are available. Based on the existing numerical approaches addressing the proper fractional integrals of accelerations, our attention is primarily restricted to estimating the unknown initial values using the modulating functions method. On this basis, the result is further generalized to more general fractional-order linear systems. In particular, the behaviour of fractional derivatives at zero is studied for absolutely continuous functions, which is quite different from that of integer order. Third, for fractional-order time-delay systems, pseudo-state estimation is studied by designing a fractional-order auxiliary modulating dynamical system, which provides a more general framework for generating the required modulating functions. With the introduction of the delay operator and the bicausal generalized change of coordinates, the pseudo-state estimation of the considered system can be reduced to that of the corresponding observer normal form. In contrast to the previous work, the presented scheme enables direct estimation for the pseudo-state rather than estimating the fractional derivatives of the output and a bunch of fractional initial values. In addition, the efficiency and robustness of the proposed estimators are verified by numerical simulations in this thesis. Finally, a summary of this work and an insight into future work were drawn
Katugampola, Don Udita Nalin. "ON GENERALIZED FRACTIONAL INTEGRALS AND DERIVATIVES." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/dissertations/387.
Повний текст джерелаSchiavone, S. E. "Distributional theories for multidimensional fractional integrals and derivatives." Thesis, University of Strathclyde, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382492.
Повний текст джерелаTraytak, Sergey D., and Tatyana V. Traytak. "Method of fractional derivatives in time-dependent diffusion." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-193646.
Повний текст джерелаTraytak, Sergey D., and Tatyana V. Traytak. "Method of fractional derivatives in time-dependent diffusion." Diffusion fundamentals 6 (2007) 38, S. 1-2, 2007. https://ul.qucosa.de/id/qucosa%3A14215.
Повний текст джерелаMunkhammar, Joakim. "Riemann-Liouville Fractional Derivatives and the Taylor-Riemann Series." Thesis, Uppsala University, Department of Mathematics, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-121418.
Повний текст джерелаHaveroth, Thais Clara da Costa. "On the use of fractional derivatives for modeling nonlinear viscoelasticity." Universidade do Estado de Santa Catarina, 2015. http://tede.udesc.br/handle/handle/2069.
Повний текст джерелаCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Dentre a vasta gama de polímeros estruturais atualmente disponíveis no mercado, este trabalho está particularmente voltado ao estudo do polietileno de alta densidade. Embora este material já tenha sido investigado por diversos autores, seu típico comportamento viscoelástico não-linear apresenta dificuldades na modelagem. Visando uma nova contribuição, este trabalho propõe a descrição de tal comportamento utilizando uma abordagem baseada em derivadas fracionários. Esta formulação produz equações constitutivas fracionais que resultam em boas propriedades de ajuste de curvas com menos parâmetros a serem identificados que nos métodos tradicionais. Neste sentido, os resultados experimentais de fluência para o polietileno de alta densidade, avaliados em diferentes níveis de tensão, são ajustados por este esquema. Para estimar a deformação à níveis de tensão que não tenham sido medidos experimentalmente, o princípio da equivalência tensão-tempo é utilizado e os resultados são comparados com aqueles apresentados por uma interpolação linear dos parâmetros. Além disso, o princípio da superposição modificado é aplicado para predizer a comportamento de materiais sujeitos a níveis de tensão que mudam abruptamente ao longo do tempo. Embora a abordagem fracionária simplifique o problema de otimização inversa subjacente, é observado um grande aumento no esforço computacional. Assim, alguns algoritmos que objetivam economia computacional, são estudados. Conclui-se que, quando acurária é necessária ou quando um modelo de séries Prony requer um número muito grande de parâmetros, a abordagem fracionária pode ser uma opção interessante.
Among the wide range of structural polymers currently available in the market, this work is concerned particularly with high density polyethylene. The typical nonlinear viscoelastic behavior presented by this material is not trivial to model, and has already been investigated by many authors in the past. Aiming at a further contribution, this work proposes modeling this material behavior using an approach based on fractional derivatives. This formulation produces fractional constitutive equations that result in good curve-fitting properties with less parameters to be identified when compared to traditional methods. In this regard, experimental creep results of high density polyethylene evaluated at different stress levels are fitted by this scheme. To estimate creep at stress levels that have not been measured experimentally, the time-stress equivalence principle is used and the results are compared with those presented by a linear interpolation of the parameters. Furthermore, the modified superposition principle is applied to predict the strain for materials subject to stress levels which change abruptly from time to time. Some comparative results are presented showing that the fractional approach proposed in this work leads to better results in relation to traditional formulations described in the literature. Although the fractional approach simplifies the underlying inverse optimization problem, a major increase in computational effort is observed. Hence, some algorithms that show computational cost reduction, are studied. It is concluded that when high accuracy is mandatory or when a Prony series model requires a very large number of parameters, the fractional approach may be an interesting option.
Shi, Chen Yang. "High order compact schemes for fractional differential equations with mixed derivatives." Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691348.
Повний текст джерелаAtkins, Zoe. "Almost sharp fronts : limit equations for a two-dimensional model with fractional derivatives." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/55759/.
Повний текст джерелаJarrah, Bilal. "Fractional Order and Inverse Problem Solutions for Plate Temperature Control." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40551.
Повний текст джерелаКниги з теми "Fractional derivatives at zero"
Uchaikin, Vladimir V. Fractional Derivatives for Physicists and Engineers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33911-0.
Повний текст джерелаGómez, José Francisco, Lizeth Torres, and Ricardo Fabricio Escobar, eds. Fractional Derivatives with Mittag-Leffler Kernel. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11662-0.
Повний текст джерелаA, Kilbas A., and Marichev O. I, eds. Fractional integrals and derivatives: Theory and applications. Switzerland: Gordon and Breach Science Publishers, 1993.
Знайти повний текст джерелаWang, JinRong, Shengda Liu, and Michal Fečkan. Iterative Learning Control for Equations with Fractional Derivatives and Impulses. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8244-5.
Повний текст джерелаBrychkov, I︠U︡ A. Handbook of special functions: Derivatives, integrals, series, and other formulas. Boca Raton: CRC Press, 2008.
Знайти повний текст джерелаBrychkov, I︠U︡ A. Handbook of special functions: Derivatives, integrals, series and other formulas. Boca Raton: CRC Press, 2008.
Знайти повний текст джерелаZero-sum game: The rise of the worlds largest derivatives exchange. Hoboken, New Jersey: Wiley, 2010.
Знайти повний текст джерелаYang, Xiao-Jun. General Fractional Derivatives. Taylor & Francis Group, 2019.
Знайти повний текст джерелаJin, Bangti. Fractional Differential Equations: An Approach Via Fractional Derivatives. Springer International Publishing AG, 2022.
Знайти повний текст джерелаJin, Bangti. Fractional Differential Equations: An Approach Via Fractional Derivatives. Springer International Publishing AG, 2021.
Знайти повний текст джерелаЧастини книг з теми "Fractional derivatives at zero"
Capelas de Oliveira, Edmundo. "Fractional Derivatives." In Studies in Systems, Decision and Control, 169–222. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20524-9_5.
Повний текст джерелаZhao, Xuan, and Zhi-Zhong Sun. "Time-fractional derivatives." In Numerical Methods, edited by George Em Karniadakis, 23–48. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110571684-002.
Повний текст джерелаYang, Xiao-Jun. "Introduction." In General Fractional Derivatives, 1–37. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429284083-1.
Повний текст джерелаYang, Xiao-Jun. "Fractional Derivatives of Constant Order and Applications." In General Fractional Derivatives, 39–142. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429284083-2.
Повний текст джерелаYang, Xiao-Jun. "General Fractional Derivatives of Constant Order and Applications." In General Fractional Derivatives, 145–234. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429284083-3.
Повний текст джерелаYang, Xiao-Jun. "Fractional Derivatives of Variable Order and Applications." In General Fractional Derivatives, 235–66. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429284083-4.
Повний текст джерелаYang, Xiao-Jun. "Fractional Derivatives of Variable Order with Respect to Another Function and Applications." In General Fractional Derivatives, 267–88. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429284083-5.
Повний текст джерелаUchaikin, Vladimir V. "Fractional Differentiation." In Fractional Derivatives for Physicists and Engineers, 199–255. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33911-0_4.
Повний текст джерелаOrtigueira, Manuel Duarte. "The Causal Fractional Derivatives." In Fractional Calculus for Scientists and Engineers, 5–41. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0747-4_2.
Повний текст джерелаOrtigueira, Manuel Duarte. "Two-Sided Fractional Derivatives." In Fractional Calculus for Scientists and Engineers, 101–21. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0747-4_5.
Повний текст джерелаТези доповідей конференцій з теми "Fractional derivatives at zero"
Agrawal, Om P. "An Analytical Scheme for Stochastic Dynamic Systems Containing Fractional Derivatives." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8238.
Повний текст джерелаFukunaga, Masataka, and Nobuyuki Shimizu. "Initial Condition Problems of Fractional Viscoelastic Equations." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48394.
Повний текст джерелаYu, Ziquan, Youmin Zhang, Yaohong Qu, and Zhewen Xing. "Adaptive Fractional-Order Fault-Tolerant Tracking Control for UAV Based on High-Gain Observer." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67479.
Повний текст джерелаAgrawal, Om P. "Stochastic Analysis of a Fractionally Damped Beam." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21365.
Повний текст джерелаLiu, Yaqing, Liancun Zheng, Xinxin Zhang, and Fenglei Zong. "The MHD Flows for a Heated Generalized Oldroyd-B Fluid With Fractional Derivative." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22278.
Повний текст джерелаJin, Yongshun, YangQuan Chen, Chunyang Wang, and Ying Luo. "Fractional Order Proportional Derivative (FOPD) and FO[PD] Controller Design for Networked Position Servo Systems." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87662.
Повний текст джерелаTaub, Gordon N., Hyungoo Lee, S. Balachandar, and S. A. Sherif. "A Numerical Study of Swirling Buoyant Laminar Jets at Low Reynolds Numbers." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-13082.
Повний текст джерелаAndersen, Pål Østebø. "Extended Fractional Flow Theory for Steady State Relative Permeability Experiments With Capillary End Effects – Transient Solutions and Time Scales." In 2022 SPWLA 63rd Annual Symposium. Society of Petrophysicists and Well Log Analysts, 2022. http://dx.doi.org/10.30632/spwla-2022-0031.
Повний текст джерелаMaamri, N., and J. C. Trigeassou. "Integration of Fractional Differential Equations without Fractional Derivatives." In 2021 9th International Conference on Systems and Control (ICSC). IEEE, 2021. http://dx.doi.org/10.1109/icsc50472.2021.9666533.
Повний текст джерелаPooseh, Shakoor, Helena Sofia Rodrigues, Delfim F. M. Torres, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Fractional Derivatives in Dengue Epidemics." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636838.
Повний текст джерела