Добірка наукової літератури з теми "Forming simulations"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Forming simulations".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Forming simulations"

1

Myllykoski, P. "Using forming simulations to improve mechanical simulation accuracy." Journal of Materials Processing Technology 177, no. 1-3 (July 2006): 422–25. http://dx.doi.org/10.1016/j.jmatprotec.2006.04.096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sherek, Paul A., Louis G. Hector, John R. Bradley, Paul E. Krajewski, and Eric M. Taleff. "Simulation and Experiments for Hot Forming of Rectangular Pans in Fine-Grained Aluminum Alloy AA5083." Key Engineering Materials 433 (March 2010): 185–95. http://dx.doi.org/10.4028/www.scientific.net/kem.433.185.

Повний текст джерела
Анотація:
Accurate numerical simulation capability is critical to the development and implementation of hot forming technologies. Numerical simulations were developed for gas-pressure forming of commercial, fine-grained aluminum-magnesium (AA5083) material into deep pan shapes at 450°C. These simulations utilize a material constitutive model recently developed for fine-grained AA5083 materials as a user-defined routine in commercial Finite Element Method (FEM) software. Results from simulations are compared against data from gas-pressure forming experiments, which used the same forming conditions and die geometries. Specifically, local sheet thinning and radius of curvature in edges and corners are compared between simulation and experiment. Numerical simulations are in good agreement with experiments for local sheet thinning of up to 50%. For locations where sheet thinning exceeds 50%, simulations predict less thinning and larger formed radii than observed in experiments. It is likely that cavitation, which is not accounted for in simulations, plays a significant role in causing a decrease in simulation prediction accuracy for thinning values greater than 50%. This study demonstrates a simulation capability that is potentially of significant practical use for predicting the hot gas-pressure forming of fine-grained AA5083 material.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Abspoel, M., M. E. Scholting, and M. Lansbergen. "Thermomechanical forming and crash simulations." IOP Conference Series: Materials Science and Engineering 651 (November 25, 2019): 012044. http://dx.doi.org/10.1088/1757-899x/651/1/012044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhou, Tian Feng, Ji Wang Yan, and Tsunemoto Kuriyagawa. "Comparing Microgroove Array Forming with Micropyramid Array Forming in the Glass Molding Press." Key Engineering Materials 447-448 (September 2010): 361–65. http://dx.doi.org/10.4028/www.scientific.net/kem.447-448.361.

Повний текст джерела
Анотація:
This paper presents a glass molding press (GMP) method to fabricate microgroove array and micropyramid array on the glass plate by replicating the shape of the mold to the glass surface. The differences between microgroove forming and micropyramid forming were investigated by experiments and finite element method (FEM) simulations. Microgroove arrays and micropyramid arrays were generated on the flat glass plate in the GMP process by using an electroless-plated Nickel Phosphorus (Ni-P) mold, on which the microstructures are fabricated by micro cutting. Furthermore, FEM simulations were used to trace the stress distribution and the strain distribution during the glass deformation, which illustrates the glass material flow in the microgrooves and the micropyramids on the mold during pressing. By comparing the processes between microgroove forming and micropyramid forming, the differences between them observed in the experiments were explained by the simulation results. Finally, some techniques to improve the forming accuracy were proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dubovská, Rozmarína, and Jozef Majerik. "Modeling and Virtual Simulation of Hard Surface Milling and Forming Process Using Advanced CAE Systems." Advanced Materials Research 941-944 (June 2014): 2321–31. http://dx.doi.org/10.4028/www.scientific.net/amr.941-944.2321.

Повний текст джерела
Анотація:
This paper presents the influence of modeling and simulation techniques for hard milling and forming. The aim of these simulations is the ability to optimize the manufacturing technologies even before the real production of its own tools, because their manufacturing process is very difficult in terms of production time, materials and other costs. The simulated results visualize roughing and finishing process of milling and generate tool-paths in CATIA V5. Simulation results of forming realized in PAM-Stamp 2G using a 3D model of the punch and the blank confirm the suitability of the proposed design of the forming tool. Finally, hard milling and forming simulations in CAE systems CATIA V5 and PAM-Stamp 2G were performed in order to determine and evaluation of suitability of the proposed shapes of the forming tool.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Taylor, L., J. Cao, A. P. Karafillis, and M. C. Boyce. "Numerical simulations of sheet-metal forming." Journal of Materials Processing Technology 50, no. 1-4 (March 1995): 168–79. http://dx.doi.org/10.1016/0924-0136(94)01378-e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Governato, F., B. Willman, L. Mayer, A. Brooks, G. Stinson, O. Valenzuela, J. Wadsley, and T. Quinn. "Forming disc galaxies in CDM simulations." Monthly Notices of the Royal Astronomical Society 374, no. 4 (February 1, 2007): 1479–94. http://dx.doi.org/10.1111/j.1365-2966.2006.11266.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Paunoiu, V., P. Cekan, E. Gavan, and D. Nicoara. "Numerical Simulations in Reconfigurable Multipoint Forming." International Journal of Material Forming 1, S1 (March 30, 2008): 181–84. http://dx.doi.org/10.1007/s12289-008-0021-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wróbel, Ireneusz, and Damian Firganek. "Simulations of hot forming processes of variable thicknesses workpieces." Mechanik 90, no. 11 (November 13, 2017): 991–93. http://dx.doi.org/10.17814/mechanik.2017.11.159.

Повний текст джерела
Анотація:
Methodology of production process analysis – by means of hot forming – using workpieces of variable thickness, was presented. Finite element simulations were performed using specialized software for the typical car body element – the longitudinal longeron. The simulation results were presented and discussed as well as conclusions and recommendations were formulated.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Giraud-Moreau, Laurence, Jie Zhang, Abel Cherouat, and Houman Borouchaki. "Process Enhancement for Single Point Incremental Forming through a Remeshing Strategy." Advanced Materials Research 682 (April 2013): 135–41. http://dx.doi.org/10.4028/www.scientific.net/amr.682.135.

Повний текст джерела
Анотація:
Simulations of Single Point Incremental Forming generally require a very high computation time because the tool path is long and small elements are required everywhere on the sheet. In this paper, a remeshing method based on refinement and coarsening strategies is used with abaqus/explicit to reduce the computational time. The simulation of a semi-spherical cup with a fine mesh is considered as a reference simulation. The remeshing method allows reducing the number of elements and therefore the CPU time during the simulations. A good prediction is observed with the remeshing method.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Forming simulations"

1

Lindberg, Filip. "Sheet Metal Forming Simulations with FEM." Thesis, Umeå universitet, Institutionen för fysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-51527.

Повний текст джерела
Анотація:
The design of new forming tools get more problemtic as the geometries get more complicated and the materials less formable. The idea with this project is to evaluate if an implementation of a simulation software in the designing process, to simulate the forming process before actually building the tools, could help Duroc Tooling avoid expensive mistakes. To evaluate this, the commercial FEM simulation software LS-DYNA was used in a complicated project, where the design of the forming tools for forming a girder was considered. The main objective was to avoid cracking and severe wrinkling which may result in the forming process. With help of simulations a stable forming process which did not yield cracks or severe wrinkling, was eventually found. The girder was almost impossible to form without cracking, but the breakthrough came when we tried to simulate a preforming step which solved the problem. Without a simulation software this would never have been tested since it would be to risky and expensive to try an idea which could turn out to be of no use. The simulations also showed that the springback - shape deformation occuring after pressing - was large and hard to predict without simulations. Therefore, the tools were also finally springback compensated. We concluded that simulations are very effective to quickly test new ideas which may be necessary when designing the tools for forming complicated parts. Simulation also provided detailed quantitative information about the expected cracks, wrinkles, and weaknesses of the resulting pieces. Even though there is cost associated with simulations, it is obvious from this project that a simulation software is a must if Duroc Tooling wants to be a leading company in sheet metal forming tools, and stand ready for the higher demands on the products in the future.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Adams, Donat Jozsef. "Ab initio simulations of Earth forming minerals /." kostenfrei, 2007. http://e-collection.ethbib.ethz.ch/view/eth:30017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Thije, René Hermanus Willem ten. "Finite element simulations of laminated composite forming processes." Enschede : University of Twente [Host], 2007. http://doc.utwente.nl/57908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bentsrud, Herman. "Friction and material modelling in Sheet Metal Forming Simulations." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-19686.

Повний текст джерела
Анотація:
In today’s car manufacturing industry, sheet metal forming is a important process that takes preparation, which is time consuming and complex when new processes are made. When new metal grades and alloys are provided to the industry, tests are conducted to determine it’s behaviour and strengths. This gives the data for complex material models that can approximate the metal behaviour in an accurate way in a simulation environment. One of the unknown factors from tests is the friction coefficient on the sheet metal. The software Triboform is able to provide an adaptable friction coefficient model that depends on multiple simulation and user input conditions. The problems that occur when acquiring data for the material model is that testing is time consuming and the friction model has to be adjusted to give accurate results. At Volvo Cars there are two material models used with their different advantages, BBC 2005 and Vegter 2017.The purpose with this work is to compare the two material models using the Triboform friction models implemented to see if any combination provides accurate simulation results and then create recommendations for which model is best suited for different cases. Some side studies is also done with an older Vegter model, a strain rate sensitive BBC 2005 model and a Triboform model on all simulation parts.The purpose is achieved by implementing the Triboform model in Autoform and run a simulation of a Limiting Dome Height (LDH) test with both material models and compare the results with experimental data for several different materials. The data that is directly compared from the LDH test is the major and minor strain from two perpendicular sections at four different stages and also the force from the punch tool. The material models will be evaluated by how it manages to mimic the strain behaviour of the metals and how it estimates the punch force.The results point towards an improvement of the accuracy for most of the metals tested and BBC 2005 is the better model if there’s available biaxial data from tests, Vegter 2017 is decent if there’s not. However Vegter 2017 is not a good option for aluminum alloys simulations when the punch force is compared. Side study also shows that Vegter 2017 is bit of a downgrade when it comes to strain values, compared to the old Vegter.The work, in summary shows a dynamic friction model can improve the accuracy for strain predictions in the simulation process. If there’s biaxial yield data available for the metal or if it’s an aluminum alloy, BBC 2005 is the superior choice, but if only tensile tests are available for metals, Vegter 2017 is a decent choice for some cases.
I dagens bilindustri är plåtmetalformning en viktig process som kräver förberedelser som är tidskonsumerande och komplex när nya processer tillkommer. När nya metallslag kommer in till industrin, så utförs tester för att avgöra dess egenskaper och styrka. Denna testdata används till materialmodeller som kan approximera metallens beteende på ett noggrant sätt i en simuleringsmiljö. Den okända faktorn från dessa test är friktionskoefficienten på plåten. Programvaran Triboform är kapabel att göra en dynamisk friktionsmodel som beror på användar- och simuleringsdata. Problemen som uppstår vid framtagning av data är att det är tidskonsumerande och flera simuleringar måste göras för att bestämma friktionen. Volvo Cars använder sig av två modeller med olika fördelar, BBC 2005 och Vegter 2017.Syftet med detta arbete är att jämföra de två materialmodellerna med Triboform modeller implementerat för att se om de påverkar noggrannheten i simuleringar och sedan förse rekommendationer för vilken modell passar bäst för olika fall. Några sidojobb i studien som görs är en jämförelse med gamla Vegter modellen, ett test med en modell som är känslig för töjningshastighet och test med att implementera Triboform modellen på alla pressverktyg.Detta utförs med att implementera Triboform modellerna i Autoform och köra en simulering på ett LDH-test med båda materialmodeller och jämföra resultaten med experimentell data för flera olika metaller. Data som skall jämföras från LDH-testet är första och andra huvudtöjningen i två vinkelräta sektioner i fyra processsteg och stämpelkraften genom hela processen. Modellerna kommer evalueras genom hur de lyckas imitera töjningens beteende och hur den estimerar stämpelkraften.Resultaten pekar mot en förbättring när Triboform är implementerat i simuleringar för de flesta metaller som ingår i testen och BBC 2005 är den model som föredras om det finns tillgänglig biaxiel spänning data från tester, Vegter 2017 är en duglig modell om dessa data inte finns. Vegter 2017 är dock inte ett bra alternativ när det kommer till jämförelse av töjning och stämpelkraften för aluminium. Sidojobb med gamla Vegter visar att den nya Vegter 2017 inte är en direkt förbättring med hänsyn till noggrannheter av krafter och töjningar.Arbetet visar att en dynamisk friktionsmodel kan förbättra prediktering av töjningar i simuleringar. Om det finns biaxiel data för metallen eller om det gäller att simulera aluminium är BBC 2005 det bättre altermativet, om det endast finns dragprovsdata för metallen så är Vegter 2017 duglig för vissa fall.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pilthammar, Johan. "Elastic Press and Die Deformations in Sheet Metal Forming Simulations." Licentiate thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-15481.

Повний текст джерела
Анотація:
Never before has the car industry been as challenging, interesting, and demanding as it is today. New and advanced techniques are being continuously introduced, which has led to increasing competition in an almost ever-expanding car market. As the pace and complexity heightens in the car market, manufacturing processes must advance at an equal speed. An important manufacturing process within the automotive industry, and the focus of this thesis, is sheet metal forming (SMF). Sheet metal forming is used to create door panels, structural beams, and trunk lids, among other parts, by forming sheets of metal in press lines with stamping dies. The SMF process has been simulated for the past couple of decades with finite element (FE) simulations, whereby one can predict factors such as shape, strains, thickness, springback, risk of failure, and wrinkles. A factor that most SMF simulations do not currently include is the die and press elasticity. This factor is handled manually during the die tryout phase, which is often long and expensive. The importance of accurately representing press and die elasticity in SMF simulations is the focus of this research project. The research objective is to achieve virtual tryout and improved production support through SMF simulations that consider elastic die and press deformations. Loading a die with production forces and including the deformations in SMF simulations achieves a reliable result. It is impossible to achieve accurate simulation results without including the die deformations. This thesis also describes numerical methods for optimizing and compensating tool surfaces against press and die deformations. In order for these compensations to be valid, it is imperative to accurately represent dies and presses. A method of measuring and inverse modeling the elasticity of a press table has been developed and is based on digital image correlation (DIC) measurements and structural optimization with FE software. Optimization, structural analysis, and SMF simulations together with experimental measurements have immense potential to improve simulation results and significantly reduce the lead time of stamping dies. Last but not least, improved production support and die design are other areas that can benefit from these tools.
Aldrig tidigare har bilindustrin varit så utmanande, intressant och spännande som idag. Ny och avancerad teknik introduceras i en allt snabbare takt vilket leder till ständigt ökande konkurrens på en, nästan ständigt, ökande bilmarknad. Den ständigt ökande komplexiteten ställer även krav på tillverkningsprocesserna. En viktig process, som denna licentiatuppsats fokuserar på, är pressning av plåt. Tillverkningstekniken används för att forma plåtar till dörrpaneler, strukturbalkar, motorhuvar, etc. Plåtar formas med hjälp av pressverktyg monterade i plåtformningspressar. Plåtformningsprocessen simuleras sedan ett par decennium tillbaka med Finita Element (FE) simuleringar. Man kan på så sätt prediktera form, töjningar, tjocklek, återfjädring, rynkor, risk för försträckning och sprickor m.m. En faktor som för tillfället inte inkluderas i näst intill alla plåtformningssimuleringar är elastiska press- och verktygsdeformationer. Detta hanteras istället manuellt under, den oftast långa och dyra, inprovningsfasen. Detta projekt har visat på vikten av att representera press och verktygsdeformationer i plåtformningssimuleringar. Detta demonstreras genom en analys av ett verkligt pressverktyg som belastas med produktionskrafter. Det är inte möjligt att uppnå bra simuleringsresultat utan att inkludera verktygsdeformationer i simuleringsmodellen. Uppsatsen beskriver även numeriska metoder för att optimera och kompensera verktygsytor mot press och verktygsdeformationer. För att dessa kompenseringar ska stämma är det viktigt att man representerar både verktyg och press på ett korrekt sätt. Förslag på en metod för att mäta och inversmodellera pressdeformationer har utvecklats, metoden är baserad på mätningar med DIC-systemet ARAMIS och optimering i FE-mjukvaror. Optimering, strukturanalys, och plåtformningsanalys tillsammans med experimentella mätningar har en stor potential att förbättra plåtformningssimuleringar samt reducera ledtiden för pressverktyg. Sist men inte minst, andra positiva effekter är en enklare och smidigare konstruktionsprocess och förbättrad produktionssupport.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Allesson, Sara. "Sheet Metal Forming Simulations with Elastic Dies: Emphasis on Computational Cost." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-18236.

Повний текст джерела
Анотація:
The car industry produces many of their car parts by using sheet metal forming, where one of the most time-consuming phases is the development and manufacturing of new forming tools. As of today, when a new tool is to be evaluated in terms of usability, a forming simulation is conducted to predict possible failures before manufacturing. The assumption is then that the tools are rigid, and the only deformable part is the sheet metal itself. This is however not the case, since the tools also deform during the forming process. A previous research, which is the basis of this thesis, included a model with only elastic tools and showed results of high accuracy in comparison to using a rigid setup. However, this simulation is not optimal to implement for a daily based usage, since it requires high computational power and has a long simulation time.  The aim and scope for this thesis is to evaluate how a sheet metal forming simulation with elastic tool consideration can be reduced in terms of computational cost, by using the software LS-DYNA. A small deviation of the forming result is acceptable and the aim is to run the simulation with a 50-75 % reduction of time on fewer cores than the approximate 14 hours and 800 CPUs that the simulation requires today. The first step was to alter the geometry of the tools and evaluate the impact on the deformations of the blank. The elastic solid parts that only has small deformations are deleted and replaced by rigid surfaces, making the model partly elastic. Later, different decomposition methods are studied to determine what kind that makes the simulation run faster. At last, a scaling analysis is conducted to determine the range of computational power that is to be used to run the simulations as efficient as possible, and what part of the simulation that is affecting the simulation time the most. The correlation of major strain deviation between a fully elastic model and a partly elastic model showed results of high accuracy, as well as comparison with production measurements of a formed blank. The computational time is reduced by over 90 % when using approximately 65 % of the initial computational power. If the simulations are run with even less number of cores, 10 % of the initial number of CPUs, the simulation time is reduced by over 70 %. The conclusion of this work is that it is possible to run a partly elastic sheet metal forming simulation much more efficient than using a fully elastic model, without reliability problems of the forming results. This by reducing the number of elements, evaluate the decomposition method and by conducting a scaling analysis to evaluate the efficiency of computational power.
Bilindustrin producerar många av sina bildelar genom att tillämpa plåtformning, där en av de mest tidskrävande faserna är utveckling och tillverkning av nya formningsverktyg. Idag, när ett nytt verktyg ska utvärderas med avseende på användbarhet, genomförs en formningssimulering för att förutsäga eventuella fel innan tillverkning. Antagandet är då att verktygen är stela och den enda deformerbara delen är själva plåten. Det är dock inte så, eftersom verktygen också deformeras under formningsprocessen. Tidigare forskning, som ligger till grund för detta examensarbete, inkluderade en modell med endast elastiska verktyg och visade resultat med hög noggrannhet i jämförelse med att använda stela verktyg. Simuleringen med elastiska verktyg är emellertid inte optimal att implementera för daglig användning, eftersom den kräver hög beräkningskraft och har en lång simuleringstid. Syftet och omfattningen av detta examensarbete är att utvärdera hur en plåtformningssimulering med elastiska verktyg kan minskas med avseende på beräkningskostnaden, genom att använda programvaran LS-DYNA. En liten avvikelse från formningsresultatet är acceptabelt, och målet är att köra simuleringen med en 50-75 % minskning av tiden på färre kärnor än ungefär 14 timmar och 800 processorer som simuleringen kräver idag. Det första steget är att ändra verktygets geometri och utvärdera inverkan på deformationerna av plåten. De elastiska solida verktygsdelarna som endast har små deformationer raderas och ersätts av stela ytor, vilket gör modellen delvis elastisk. Senare studeras olika dekompositionsmetoder för att avgöra vilka som gör simuleringen snabbare. Till sist utförs en skalningsanalys för att bestämma antalet processorer som ska användas för att köra simuleringen så effektivt som möjligt. Korrelationen av huvudtöjningarna mellan en helt elastisk modell och en delvis elastisk modell visade resultat av hög noggrannhet, såväl som jämförelse med produktionsmätningar av en format plåt. Beräkningstiden minskar med över 90 % när man använder ungefär 65 % av den ursprungliga beräkningskraften. Om simuleringarna körs med färre antal kärnor, cirka 10 % av ursprungligt antal CPUer, minskar simuleringstiden med 70 %.  Slutsatsen av detta arbete är att det är möjligt att köra en delvis elastisk plåtformningssimulering mycket effektivare än att använda en helt elastisk modell, utan att de resulterar i pålitlighetsproblem. Detta genom att minska antalet element, utvärdera dekompositionsmetoden och genom att genomföra en skalningsanalys för att utvärdera effektiviteten av beräkningskraften.
Reduced Lead Time through Advanced Die Structure Analysis - Swedish innovation agency Vinnova
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kulasegaram, S. "Development of particle based meshless method with applications in metal forming simulations." Thesis, Swansea University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.637828.

Повний текст джерела
Анотація:
Finite element formulations dealing with geometric and material non-linearities have been well developed and a significant amount of work has been accomplished for the numerical simulation of metal forming processes. Nevertheless, standard finite element approaches can be sometimes ineffective in handling bulk material deformation owing to severe mesh distortion or mesh entanglement. In the past, some finite element methods such as the Arbitrary Lagrangian Eulerian (ALE) method have been introduced to allow continuous remeshing during computation. Though rather effective in handling large deformation and keeping track of moving boundaries, these methods required extensive computational effort. In this thesis an attempt is made to address the aforementioned problems by using particle based Lagrangian techniques in the numerical simulation of large deformation metal forming processes. For this purpose a particle method called Corrected Smooth Particle Hydrodynamics (CSPH) is considered in the present work. CSPH method is developed from Smooth Particle Hydrodynamics (SPH) techniques which originated twenty years ago. Like most of the particle methods the CSPH also requires no explicit mesh for the computation and therefore avoids mesh direction difficulties in large deformation analysis. In addition, CSPH can achieve similar order of accuracy as any other modern mesh-less methods while retaining the simplicity of the original SPH technique. The simplicity and robustness of SPH method are demonstrated in the first few chapters of this thesis. As a first step of the present research, the SPH method is studied for evaluating its consistency, accuracy and other characteristics. As a consequence of these analyses various correction procedures are introduced in the original SPH method to enhance its performance. The resulting method is referred to here as the Corrected SPH technique. The CSPH is then used to formulate the viscoplastic forming problems with the aid of flow formulation technique.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gittins, D. "Hydrodynamical simulations of interstellar gas : from star-forming clouds to spiral arms." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599430.

Повний текст джерела
Анотація:
This thesis presents numerical investigations of interstellar gas under various conditions. Discrete, pressure-bounded gas ‘cloudlets’ are modelled with Smoothed Particle Hydrodynamics (SPH) which is shown to reproduce accurately their properties and the outcomes of collisions between them. A simple model of a molecular cloud is investigated, consisting of a spherical ensemble of such cloudlets. This model dissipates its kinetic energy on a timescale controlled by the collision timescale. Distributed star formation does not result, and hierarchical mergers of cloudlets do not play a significant part, due to the high Mach number of collisions. A model gravitational potential for a spiral galaxy is introduced, and the interaction of large groups of cloudlets with this potential is investigated. Density and velocity structure are induced by the passage through a spiral arm. Comparisons to observed molecular clouds fail to reproduce the correct size-linewidth relation. The response of a uniform gaseous galactic disc to the spiral potential is investigated using two-dimensional SPH, a two-dimensional Eulerian code and a semi-analytical approach. Good agreement in the predicted location of spiral shocks is seen between all methods. Instability of spiral arms in open spirals is found, and possible formation mechanism of spur-like structure are discussed. The location of spiral shocks relative to the peaks of the stellar surface density is proposed as a new way to constrain the corotation radius in spiral galaxies. The potential form an N-body simulation of a galaxy is introduced and the response of the gaseous disc shows complex and rapidly changing structure. Observational implications for spatial galaxies are suggested.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hambrecht, Jochen Dieter. "Elastic-plastic return algorithms for sheet metal forming simulations and springback analysis /." The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487847761309225.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abrass, Ahmad [Verfasser]. "Simulations of Roll Forming Processes on the Basis of Steady State Properties / Ahmad Abrass." Aachen : Shaker, 2014. http://d-nb.info/1058315773/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Forming simulations"

1

R, Boër C., ed. Process modelling of metal forming and thermomechanical treatment. Berlin: Springer-Verlag, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

United States. Environmental Protection Agency. Office of Transportation and Air Quality. Assessment and Standards Division. Weekday and weekend day temporal allocation of activity in the draft NONROAD2004 model. 2nd ed. [Washington, D.C.]: U.S. Environmental Protection Agency, Office of Transportation and Air Quality, Assessment and Standards Division, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lange, Kurt, ed. Simulation of Metal Forming Processes by the Finite Element Method (SIMOP-I). Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82810-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Menezes, Miguel Angelo. Strain limit theories, anisotropy in sheet metal forming and simulation of pressing processes. Birmingham: University of Birmingham, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fu, Ming Wang. Design and Development of Metal-Forming Processes and Products Aided by Finite Element Simulation. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46464-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Huetink, Jantje. On the simulation of thermo-mechanical forming processes: A mixed Eulerian-Lagrangian finite element method. Twente, The Netherlands: Twente University of Technology, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lugt, Jacob van der. A finite element method for the simulation of thermo-mechanical contact problems in forming processes. [s.l.]: [s.n.], 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Euromech Colloquium (233rd 1988 Sophia Antipolis, France). Modelling of metal forming processes: Proceedings of the Euromech 233 Colloquium, Sophia Antipolis, France, August 29-31, 1988. Dordrecht: Kluwer Academic Publishers, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hu, Ping. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming: Analysis, Simulation and Engineering Applications. London: Springer London, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

International Symposium on Physical Simulation (1990 Harbin, China). Physical simulation of welding, hot forming, continuous casting and heat treatment: Proceedings of the International Symposium on Physical Simulation : Harbin, China, August 25-28, 1990. Beijing: International Academic Publishers, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Forming simulations"

1

Hedicke-Claus, Yorck, Mareile Kriwall, Jan Langner, Malte Stonis, and Bernd-Arno Behrens. "Validation of Automatically Generated Forging Sequences by Using FE Simulations." In Forming the Future, 2867–81. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75381-8_238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Diaz-Infante, David, Advaith Narayanan, Adam Groseclose, and Taylan Altan. "FE Simulations of Piercing and Trimming of AL and AHSS Alloys." In Forming the Future, 2925–38. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75381-8_243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Noguchi, Masafumi, and Shiro Ishibashi. "Numerical Simulations of Star Formation Bursts Induced by the Galaxy-Galaxy Interaction." In Star Forming Regions, 650–53. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4782-5_199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liu, Wei, Tao Cheng, Zhenghua Meng, Jiaqi Li, and Shangyu Huang. "Numerical Simulation and Experimental Validation of Electromagnetic-Impacted Micro-forming Processes of Aluminum Alloy Thin Sheet." In Lecture Notes in Mechanical Engineering, 347–56. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-58006-2_27.

Повний текст джерела
Анотація:
AbstractElectromagnetic forming is a kind of high-speed forming technology for improving the formability of aluminum alloy sheets; however, the inherent non-uniform electromagnetic forces always restrict its application into the micro-forming field. Electromagnetic-impacted micro-forming processes were adopted by using flexible mediums for force transmission. The processes of electromagnetic-impacted rubber micro-forming, electromagnetic-impacted micro-hydroforming, and electromagnetic-impacted pneumatic micro-forming were compared to inspect the influences of flexible mediums. The effects of discharge voltages on the electromagnetic-impacted micro-forming processes of an AA5052-O aluminum alloy thin sheet were investigated by the numerical simulation of electromagnetic and mechanical coupled fields. The numerical simulations were validated via comparisons with the experimental results; these showed that the forming accuracy and thickness uniformity of micro-channels were the greatest by the electromagnetic-impacted micro-hydroforming process.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hazrat Ali, Md, and Anuar Abilgaziyev. "Fused Deposition Modeling Based 3D Printing: Design, Ideas, Simulations." In Materials Forming, Machining and Tribology, 23–42. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68024-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nasulea, D., and G. Oancea. "Simulations and Experiments in Single Point Incremental Forming Process." In Materials Forming, Machining and Tribology, 41–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69472-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Salmon, Philip S., and Anita Zeidler. "The Atomic-Scale Structure of Network Glass-Forming Materials." In Molecular Dynamics Simulations of Disordered Materials, 1–31. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15675-0_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Saeed, Muhammad S., Jakob M. J. Gugliuzza, Michael Liebl, Boris Eisenbart, Racim Radjef, Peter Middendorf, and Matthias Kreimeyer. "Parameter Study and Optimization of Forming Simulations for Tape-Based Fiber Layups." In Advances in Automotive Production Technology – Towards Software-Defined Manufacturing and Resilient Supply Chains, 266–81. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27933-1_25.

Повний текст джерела
Анотація:
AbstractThis work presents a model of a parametrized fiber-reinforced tapes layup for simulations of stamp forming. BETA CAE Systems’ ANSA v22.1.0 produced the forming model. The initial configurations of the forming process are simulated using LS-DYNA R12 from the Livermore Software Technology Corporation (LSTC) on the High-Performance Computing Center Stuttgart (HLRS). A doubledome geometry was used as a use case in the presented study. An optimal solution is found by predicting and analyzing the forming defects, both quantitatively and qualitatively. Typical defects induced by the forming process include wrinkles, bridging, waviness, misalignment of tapes, instabilities due to tape overlaps and gaps, etc. Adjustments to the forming process are made by varying model parameters such as stacking sequence, fiber angle, material properties, tape orientation, or the position of ultrasonic thermal bonds between tapes. In addition, process parameters such as tool velocity, temperature, and gripping force were considered. Different algorithms for the sample creation of the designed experiments are examined, and the influence of various parameters on the final part is discussed. The limitations and requirements of the employed software are examined for additional studies. Furthermore, the machine learning-based neural network algorithms discussed, such as particle swarm optimization (PSO), gradient-based optimization (GBO), response surface method (RSM), and genetic algorithms (GA), may be used in future research to determine an ideal tape arrangement for various geometries based on nodal locations and the parameters as mentioned above.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Stone, James M., Michael L. Norman, and Dimitri Mihalas. "MHD Simulations of Mass Outflows from Star Forming Regions." In Galactic and Intergalactic Magnetic Fields, 351–52. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0569-6_111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kleinermann, J. P., J. P. Ponthot, and M. Hogge. "Parameter Identification for Inverse Problems in Metal Forming Simulations." In IUTAM Symposium on Field Analyses for Determination of Material Parameters — Experimental and Numerical Aspects, 81–99. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0109-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Forming simulations"

1

BRANDS, D. "In-plane deformation measurements for validation of composite forming simulations." In Material Forming. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902479-32.

Повний текст джерела
Анотація:
Abstract. Validation of composites forming simulations is essential to improve simulation predictions. Detailed validation requires reliable and well-controlled forming processes with precise methods for comparison to simulation results. This study presents some preliminary results from press forming experiments with cross-ply laminates shaped over a dome geometry. The material studied is a unidirectional carbon-fiber reinforced thermoplastic composite. The forming experiments were combined with a deformation measurement technique based on photogrammetry to measure the in-plane deformation on the surface of the laminate after forming. The obtained full-field deformation measurements allow for a direct and quantitative comparison with simulations. The accuracy and precision of the methodology are discussed in detail. The combination of a versatile forming experiment and a detailed analysis method as presented in this article could enable a more precise validation of composite forming simulations.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

FEHLEMANN, Niklas. "Fatigue resistance of deep drawn parts: A scale bridging simulative study using representative volume elements and crystal plasticity simulations." In Material Forming. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903131-235.

Повний текст джерела
Анотація:
Abstract. The mechanical properties of formed components are determined by the interaction between the microstructure and the load path of the forming process. To investigate and understand these effects, micromechanical simulation concepts can be used, such as statistically Representative Volume Elements (sRVE) coupled with crystal plasticity simulations. This study presents a concept that uses sRVE simulations to quantify the influence of three different deep drawing load paths on the fatigue resistance of DP800 steel. The first step is a scale-bridging simulation approach that employs macroscopic simulations of the deep drawing process to extract the boundary conditions for the sRVE simulations with Damask. Subsequent cyclic loading is then simulated. 50 sRVE are computed for each load path to estimate fatigue resistance based on a Fatigue Indicator Parameter. The results indicate that fatigue resistance increases with increasing deformation-induced strain hardening. Additionally, a positive correlation between the martensitic ligament structures and fatigue resistance was observed.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

POLTL, Dominik. "Eigenstrain method in simulations of laser peen forming of curved surfaces." In Material Forming. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903131-259.

Повний текст джерела
Анотація:
Abstract. The eigenstrain ansatz allows for the efficient simulation of large-scale applications of Laser Peen Forming (LPF) while being subject to geometric constraints. A setup to investigate the viability of the method for non-uniform curvature is proposed. A small-scale laser processing is simulated on cylinder shells of given curvature. Eigenstrains are determined in representative cells and mapped onto a second cylinder shell with different curvature to simulate a large-scale processing operation. The eigenstrains result in changes in local curvature. This is repeated for four curvatures. The resulting data is used to investigate the dependence of the induced curvature change on the origin geometry of the eigenstrains. A determined regression relation provides insight into the feasibility of the eigenstrain ansatz beyond its constrains.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

GHORBANI-MENGHARI, Hossein. "Optimizing powder compaction for enhanced relative density: Insights from multi-particle finite element simulations and genetic algorithm." In Material Forming. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903131-281.

Повний текст джерела
Анотація:
Abstract. In this study, multi-particle finite element simulations in powder compaction were performed to analyze the effects of the size of the representative volume element (RVE), the number of elements per particle, and particle size distribution. Simulation parameters were calibrated to accurately predict the relative density of compacts derived from two types of powders. The influence of RVE size across four mixtures was examined to obtain its relationship with relative density. The impacts of particle size distribution and element number per particle were studied. The results indicate a decline in relative density with increased element size. Moreover, a genetic algorithm is employed to determine the optimum mixture composition yielding the highest relative density at 1400 MPa.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

DE MICHELI, Pascal. "Full field Continuous dynamic recrystallization simulations considering precipitates evolutions with DIGIMU®." In Material Forming. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903131-257.

Повний текст джерела
Анотація:
Abstract. Full field simulations have proven to be an efficient tool for grain size prediction in industrial processes, with wider ranges of validity and more comprehensive results than other approaches. DIGIMU® is a level-set based solution able to simulate grain growth, Smith-Zener pinning, discontinuous dynamic, post-dynamic, and static recrystallization, and very recently Continuous Dynamic Recrystallization (CDRX). The goal of this work is to explore the capabilities of DIGIMU® to CDRX with evolving second phase particles. First, a new formalism has been implemented to describe particles boundaries with a level-set function. It is then possible to apply growth or dissolution velocities to the boundaries, and to make new particles appear. Secondly, the orientation has been defined in each grain, and the grain boundary energy can then be computed from the intergranular disorientation with Read-Shockley model. A boundary migration solver which considers heterogeneous grain boundary energy is used, which enables the simulation of structure and substructure evolutions. The Gourdet-Montheillet CDRX model is adapted from a mean field to a full field framework, and the corresponding parameters for Zircaloy-4 are identified. Thanks to all those developments, DIGIMU® can simulate full field CDRX in high stacking fault energy materials, coupled with precipitates evolution. Several examples will be presented, some of them compared to experimental results.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

GAMBARDELLA, A. "Automated programming for the robotic layup process." In Material Forming. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902479-40.

Повний текст джерела
Анотація:
Abstract. Rolling simulation, especially for groove rolling, is heavily dominated by use of finite element methods, but simulating a full pass sequence often takes several hours. Simpler models offer high-speed simulation within seconds at the expense of resolution and accuracy. In mechanical engineering, Monte-Carlo approaches are well known for analysis of fabrication tolerances in component assembly. By usage of fast simulation cores, this technique becomes available for analysis of process variations in groove rolling, since computational costs are crucial due to the need of hundreds or thousands of simulation runs. Rolling process variations can be classified in two groups: first, variations of the input material, such as actual dimensions, temperature and microstructure state; second variations occurring during processing, such as transport times, environment temperature and tool wear. The regarded process was the operation of the experimental semi-continuous rolling plant at the Institute of Metal Forming (IMF). Simulations were carried out by use of the open source rolling framework PyRolL, developed at IMF. The main part of process parameters was considered as constant, but some were described as a statistical distribution. For each simulation run a set of actual sample values of the distributed parameters was drawn using a random number generator. Selected result values were described by use of statistical methods to analyze the variational behavior of the process in behalf of the two variation classes.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

WEINER, M. "Estimation of rolling process variation by usage of a Monte-Carlo method." In Material Forming. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902479-170.

Повний текст джерела
Анотація:
Abstract. Rolling simulation, especially for groove rolling, is heavily dominated by use of finite element methods, but simulating a full pass sequence often takes several hours. Simpler models offer high-speed simulation within seconds at the expense of resolution and accuracy. In mechanical engineering, Monte-Carlo approaches are well known for analysis of fabrication tolerances in component assembly. By usage of fast simulation cores, this technique becomes available for analysis of process variations in groove rolling, since computational costs are crucial due to the need of hundreds or thousands of simulation runs. Rolling process variations can be classified in two groups: first, variations of the input material, such as actual dimensions, temperature and microstructure state; second variations occurring during processing, such as transport times, environment temperature and tool wear. The regarded process was the operation of the experimental semi-continuous rolling plant at the Institute of Metal Forming (IMF). Simulations were carried out by use of the open source rolling framework PyRolL, developed at IMF. The main part of process parameters was considered as constant, but some were described as a statistical distribution. For each simulation run a set of actual sample values of the distributed parameters was drawn using a random number generator. Selected result values were described by use of statistical methods to analyze the variational behavior of the process in behalf of the two variation classes.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

DINÇER, M. S. "Evolution of microstructure during hot incremental disk rolling of a nickel-based super-alloy." In Material Forming. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902479-72.

Повний текст джерела
Анотація:
Abstract. In the aerospace industry, the turbine disk plays a crucial role. Controlling the average grain size during the hot forming of nickel-based superalloys such as Inconel 718 is critical for turbine disk production. Recrystallization is primarily responsible for evolution of microstructure during a hot forming process. In the current study, Finite Element Method (FEM) is employed to assess grain size evolution during an incremental disk rolling process. FEM simulations are used to obtain temperature, strain and strain rate distributions. Then, utilizing these deformation distributions, recrystallization and consequent average grain size distributions are calculated using Johnson-Mehl-Avrami-Kolmogorov (JMAK) equations. Simulations are conducted for different spindle rates of the workpiece. This process is sensitive to the temperature and meta-dynamic recrystallization. Results show that temperature increases with the spindle rate due to the inelastic heat generation. Also a higher grain size variation through thickness is obtained for the simulation with lower spindle rate since meta-dynamic recrystallization fraction is higher.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

FADDOULD, Josephine. "Investigations on the temperature and strain rate dependent behavior of a reinforced thermoplastic: application in hot incremental forming." In Material Forming. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903131-248.

Повний текст джерела
Анотація:
Abstract. This study focuses on characterizing the thermo-viscoplastic behavior of a glass fiber reinforced polypropylene through an advanced characterization technique. Based on a preliminary work addressing a mechanical characterization from conventional uniaxial tests, the proposed rheological model is calibrated using the database of in-plane equi-biaxial tensile tests on a dedicated cruciform specimen geometry from room temperature up to 140°C. The Finite Element Model Update (FEMU) method is employed for parameter calibration. A comparative analysis with the model calibrated from prior uniaxial tests is conducted through finite element simulations of a forming process. This investigation includes a parametric study to objectively assess the impact of the behavior law on forming force and final profile. This parametric study has direct implications for the simulation of an original forming process. The ability to identify the differences in forming outcomes based on different behavior laws enhances the predictive accuracy of the simulations. This ensures that the chosen behavior law aligns closely with the real behavior of the material during forming.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

ANDRADE-CAMPOS, A. "VForm-xSteels: virtual materials database." In Material Forming. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903131-198.

Повний текст джерела
Анотація:
Abstract. Nowadays, most of the product designs rely on the aid of simulation software, particularly Finite Element Analysis (FEA) programs. However, an accurate simulation requires a proper virtual/numerical material behavior reproduction, meaning a precise material characterization through constitutive models and their parameters. To numerically characterize a material, particularly a metal, (i) experimental tests, (ii) model selection and (iii) inverse procedures are required. All these three tasks can be expensive and time-consuming. Therefore, product development engineers resort to materials databases to obtain the virtual materials, i.e. the constitutive models and their parameters adequate for the desired material. However, the information provided by the materials databases does not include experimental data nor provide information on the testing procedures. Due to this absence, users cannot verify the information nor its accuracy on the material database. Moreover, data related to material constitutive models, required for accurate simulations seems to be absent [1]. This work presents the development of a new material database that revises the previous problem. This database has the focus on virtual materials and their importance in product simulation and design. The presented VForm-xSteels material database includes (a) mechanical models and their implementation in FEA software, (b) experimental data and (c) the parameters identified for each material, and (d) indications concerning the quality of the material behavior reproduction associated with each model/parameters set. This database can be enlarged by the contributions of all users and present the following benefits for the engineering community: (i) increasing the precision and reliability of numerical FEA simulations by providing accurate input data, filling then a gap of the FEA market and answering to the request of the FEA users; (ii) reducing the development lead-time of metallic parts and the development of robust technological solutions with highly improved quality, consequently decreasing cost and time in the overall development process.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Forming simulations"

1

Shephard, Mark S. Automated Finite Element Modeling Procedures for Metal Forming Simulations. Fort Belvoir, VA: Defense Technical Information Center, March 1999. http://dx.doi.org/10.21236/ada380170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Weare, John H. First Principles Simulations fo the Supercritical Behavior of Ore Forming Fluids. Office of Scientific and Technical Information (OSTI), April 2013. http://dx.doi.org/10.2172/1074367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Haberman, K. S., J. G. Bennett, and M. S. Piltch. Numerical simulation of industrial superplastic forming. Final report. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/435313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Modlo, Yevhenii O., та Serhiy O. Semerikov. Xcos on Web як перспективний засіб навчання моделювання технічних об’єктів бакалаврів електромеханіки. [б. в.], серпень 2018. http://dx.doi.org/10.31812/0564/2454.

Повний текст джерела
Анотація:
Research goals: to identify the perspective learning simulation tool for Bachelors of Electromechanics. Research objectives: to prove the feasibility of using the simulation system Xcos on Web as a tool of forming of future Bachelors of Electromechanics competence in modeling of technical objects. Research object: the use of imitative simulation systems to learning the Bachelors of Electromechanics. Research subject: the use Xcos on Web in learning modeling of technical objects the Bachelors of Electromechanics. Research methods used: the analysis of existing software usage experience. Research results. The imitative simulation system Xcos on Web is a promising cloud-based learning tool for Bachelor’s of Electromechanics modeling of technical objects. The main conclusions and recommendations: 1. The use of simulation systems, such as Scilab Xcos, is a necessary part of Bachelor of Electromechanics professional training. 2. Cloud-based learning environment built on the integrative usage of mobile Internet devices promotes the forming of Bachelor’s of Electromechanics professional competencies. 3. Implementation the full Scilab Xcos functionality at Xcos on Web creates conditions for transition in Bachelor’s of Electromechanics learning the simulation of technical objects to the use of mobile Internet devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zacharia, T., G. A. Aramayo, S. Simunovic, G. M. Ludtka, M. Khaleel, K. I. Johnson, M. T. Smith, G. L. Van Arsdale, and C. A. Lavender. Simulation for analysis and control of superplastic forming. Final report. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/419270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sammelmann, Gary S. Simulation, Beam-forming, and Visualization of Bistatic Synthetic Aperture Sonar. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada542054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Raboin, P. J. ,. LLNL. Integration of adaptive process control with computational simulation for spin-forming. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/657365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Best, Elly P., Gregory A. Kiker, and William A. Boyd. A Simulation Model on the Competition for Light of Meadow-forming and Canopy-forming Aquatic Macrophytes at High and Low Nutrient Availability. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada428026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tome, Carlos. Polycrystal modeling: a mechanism-based tool for simulating plastic forming of complex metals. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1367815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lavrentieva, Olena O., Ihor O. Arkhypov, Olexander I. Kuchma, and Aleksandr D. Uchitel. Use of simulators together with virtual and augmented reality in the system of welders’ vocational training: past, present, and future. [б. в.], February 2020. http://dx.doi.org/10.31812/123456789/3748.

Повний текст джерела
Анотація:
The article discusses the theory and methods of simulation training, its significance in the context of training specialists for areas where the lack of primary qualification is critical. The most widespread hardware and software solutions for the organization welders' simulation training that use VR- and AR- technologies have been analyzed. A review of the technological infrastructure and software tools for the virtual teaching-and-production laboratory of electric welding has been made on the example of the achievements of Fronius, MIMBUS, Seabery. The features of creating a virtual simulation of the welding process using modern equipment based on studies of the behavioral reactions of the welder have been shown. It is found the simulators allow not only training, but also one can build neuro-fuzzy logic and design automated and robotized welding systems. The functioning peculiarities of welding's simulators with AR have been revealed. It is shown they make it possible to ensure the forming basic qualities of a future specialist, such as concentration, accuracy and agility. The psychological and technical aspects of the coaching programs for the training and retraining of qualified welders have been illustrated. The conclusions about the significant advantages of VR- and AR-technologies in comparison with traditional ones have been made. Possible directions of the development of simulation training for welders have been revealed. Among them the AR-technologies have been presented as such that gaining wide popularity as allow to realize the idea of mass training in basic professional skills.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії