Добірка наукової літератури з теми "Food-water nexu"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Food-water nexu".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Food-water nexu"

1

Loeb, Barry L. "Water-Energy-Food Nexus." Ozone: Science & Engineering 38, no. 3 (April 8, 2016): 173–74. http://dx.doi.org/10.1080/01919512.2016.1166029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Krampe, Jörg, and Norbert Kreuzinger. "Water-Energy-Food-Nexus." Österreichische Wasser- und Abfallwirtschaft 68, no. 3-4 (March 15, 2016): 84–85. http://dx.doi.org/10.1007/s00506-016-0300-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gil, Juliana. "Dietary carbon–water–food nexus." Nature Food 3, no. 3 (March 2022): 187. http://dx.doi.org/10.1038/s43016-022-00485-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Keairns, D. L., R. C. Darton, and A. Irabien. "The Energy-Water-Food Nexus." Annual Review of Chemical and Biomolecular Engineering 7, no. 1 (June 7, 2016): 239–62. http://dx.doi.org/10.1146/annurev-chembioeng-080615-033539.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kurian, Mathew. "The water-energy-food nexus." Environmental Science & Policy 68 (February 2017): 97–106. http://dx.doi.org/10.1016/j.envsci.2016.11.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Y. ‐H Percival. "Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy–food–water nexus." Energy Science & Engineering 1, no. 1 (April 2013): 27–41. http://dx.doi.org/10.1002/ese3.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

D'Odorico, Paolo, Kyle Frankel Davis, Lorenzo Rosa, Joel A. Carr, Davide Chiarelli, Jampel Dell'Angelo, Jessica Gephart, et al. "The Global Food-Energy-Water Nexus." Reviews of Geophysics 56, no. 3 (July 24, 2018): 456–531. http://dx.doi.org/10.1029/2017rg000591.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bacenetti, Jacopo. "Editorial overview: Water–energy–food nexus." Current Opinion in Environmental Science & Health 13 (February 2020): A1—A4. http://dx.doi.org/10.1016/j.coesh.2020.04.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Scott, Marian. "Water Energy Food: WEFWEBs, EPSRC, Nexus." Impact 2018, no. 6 (August 21, 2018): 51–53. http://dx.doi.org/10.21820/23987073.2018.6.51.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Siaw, Mathew Nana Kyei, Elizabeth Ayaw Oduro-Koranteng, and Yaw Obeng Okofo Dartey. "Food-energy-water nexus: Food waste recycling system for energy." Energy Nexus 5 (March 2022): 100053. http://dx.doi.org/10.1016/j.nexus.2022.100053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Food-water nexu"

1

Toboso, Chavero Susana. "Integrating the food, energy and water nexus on urban rooftops." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/673965.

Повний текст джерела
Анотація:
Les estratègies urbanes sostenibles s’estan estenent per tot el món amb l’objectiu comú de millorar els hàbitats on viu la major part de la població. Aquestes estratègies impliquen molts camps diferents i són clau per transformar les ciutats en llocs més sans, justos i ecològics. Les ciutats es basen en un sistema d’economia lineal, i tres dels recursos essencials en les zones urbanes són els aliments, l’energia i l’aigua (FEW). Per això, les ciutats han de trobar solucions circulars, tancant cercles d’energia i materials, i evitant la generació de residus i emissions. Una d’aquestes solucions circulars és l’ús de cobertes infrautilitzades per implementar la producció d’hortalisses, energia o la recollida d’aigua de pluja, és a dir, les cobertes mosaic. Per tant, aquesta tesi avalua els impactes ambientals i socioeconòmics, així com els beneficis de la implementació de la producció d’aliments, les infraestructures d’energia renovable i la recollida d’aigua de pluja, en les cobertes per tal d’aconseguir ciutats autosuficients. Utilitzem un conjunt de metodologies de diferents camps, avaluant les cobertes mosaic des d’una perspectiva ambiental, social i econòmica, i utilitzant diferents enfocaments com el metabolisme urbà, el cicle de vida i la participació pública. Primerament, proposem una guia completa per a implantar amb precisió aquests sistemes en les cobertes urbanes, des dels aspectes tècnics fins als indicadors ambientals, socials i econòmics. Posteriorment, per avaluar les cobertes mosaic, ho apliquem a diferents escales i en diferents zones urbanes. Els dos primers estudis es basen en polígons d’habitatges i el tercer en un municipi amb tres formes urbanes característiques. Avaluem el metabolisme de FEW d’aquestes zones urbanes, concloent que els polígons d’habitatge presenten les taxes més baixes de metabolisme d’electricitat (0,75-0,82 MJ/hora), hortalisses i aigua. En canvi, les zones d’habitatges unifamiliars mostren els índexs més alts en les taxes metabòliques d’hortalisses i electricitat. Pel que fa als diferents indicadors de sostenibilitat, trobem una quota rellevant d’autosuficiència en el subministrament d’hortalisses, 17-115% a través de la implantació de cultius a l’aire lliure o hivernacles, i també en la producció d’energia amb percentatges del 7-71% a través de panells solars. En el cas de l’autosuficiència hídrica, el percentatge és elevat, 66-227%, per al reg dels cultius, però per a usos específics, com fer la bugada i la cisterna del vàter, els percentatges són baixos, 18-38% per a un sol ús. En termes d’indicadors ambientals, els escenaris amb més cobertes que implementen panells fotovoltaics presenten un elevat estalvi de CO2, però simultàniament un elevat impacte ambiental en la seva fase de construcció (98 kg CO2 eq/m2/any). Els indicadors socioeconòmics il·lustren que aquests nous sistemes podrien cobrir entre el 9-71% i el 7-18% de la pobresa energètica i d’aigua, respectivament. Pel que fa als estalvis monetaris, les llars podrien estalviar entre 335-1801 euros/any depenent de l’escenari implementat. Per involucrar les parts interessades en el disseny de futurs escenaris, avaluem la percepció pública d’aquestes estratègies a través de processos participatius i enquestes, revelant que la majoria dels residents prefereixen implementar panells fotovoltaics en les seves cobertes (65-77%). No obstant això, per a la implantació de l’agricultura urbana, el percentatge disposat a acceptar és menor, un 7% en un dels municipis, i en el segon la proporció augmenta fins al 20-21%. Tenint en compte els resultats d’aquesta tesi, les futures línies d’investigació que es proposen són la posada en marxa de diferents projectes pilot en diferents formes urbanes, amb l’objectiu de supervisar i provar les cobertes mosaic, i la inclusió de totes les parts interessades en el disseny d’estratègies urbanes efectives per a la mitigació del canvi climàtic.
Las estrategias urbanas sostenibles se están extendiendo por todo el mundo con el objetivo común de mejorar los hábitats donde vive la mayoría la población. Estas estrategias abarcan muchos campos diferentes y son clave para transformar las ciudades en lugares más sanos, justos y ecológicos. Las ciudades suelen basarse en un sistema de economía lineal, y tres de los recursos esenciales en las zonas urbanas son los alimentos, la energía y el agua (FEW). Por ello, las ciudades deben encontrar soluciones circulares, cerrando círculos de energía y materiales, y evitando la generación de residuos y emisiones. Una de estas soluciones circulares es el uso de cubiertas infrautilizadas para implementar la producción de hortalizas, energía o la recolección de agua de lluvia, es decir, las cubiertas mosaico. Para ello, esta tesis evalúa los impactos ambientales y socioeconómicos, así como los beneficios de la implementación de la producción de alimentos, las infraestructuras de energía renovable y la recolección de agua de lluvia, en las cubiertas con el fin de lograr ciudades autosuficientes. Utilizamos un conjunto de metodologías de diferentes campos, evaluando las cubiertas mosaico desde una perspectiva ambiental, social y económica, y utilizando diferentes enfoques. Primeramente, proponemos una guía completa para implantar con precisión estos sistemas en las cubiertas, desde los aspectos técnicos hasta los indicadores ambientales, sociales y económicos. Posteriormente, lo aplicamos a diferentes escalas y zonas urbanas. Los dos primeros estudios se basan en polígonos de viviendas y el tercero en un municipio con tres formas urbanas características. Evaluamos el metabolismo de FEW de estas zonas urbanas, concluyendo que los polígonos de vivienda presentan las tasas más bajas de metabolismo de electricidad (0,75-0,82 MJ/hora), hortalizas y agua. Por el contrario, las zonas de viviendas unifamiliares muestran los índices más altos en las tasas metabólicas de hortalizas y electricidad. Respecto a los diferentes indicadores de sostenibilidad, encontramos una cuota relevante de autosuficiencia en el suministro de hortalizas, 17-115% a través de la implantación de cultivos al aire libre o invernaderos, y también en la producción de energía con porcentajes del 7-71% a través de paneles solares. En el caso de la autosuficiencia hídrica, el porcentaje es elevado, 66-227%, para el riego de los cultivos, pero para usos específicos, como el lavado de la ropa y las cisternas, los porcentajes son bajos, 18-38% para un solo uso. En cuanto a los indicadores ambientales, los escenarios con más cubiertas que implementan paneles fotovoltaicos presentan un elevado ahorro de CO2, pero simultáneamente un elevado impacto ambiental en su fase de construcción (98 kg CO2 eq/m2/año). Los indicadores socioeconómicos ilustran que estos nuevos sistemas podrían cubrir entre el 9-71% y el 7-18% de la pobreza energética y de agua, respectivamente. En cuanto a los ahorros monetarios, los hogares podrían ahorrar entre 335-1801 euros/año dependiendo del escenario implementado. Para involucrar a las partes interesadas en el diseño de futuros escenarios, evaluamos la percepción pública de estas estrategias a través de procesos participativos y encuestas, revelando que la mayoría de los residentes prefieren implementar paneles fotovoltaicos en sus cubiertas (65-77%). Sin embargo, para la implantación de la agricultura urbana, el porcentaje dispuesto a aceptar es menor, un 7% en uno de los municipios, y en el segundo la proporción aumenta hasta el 20-21%. Teniendo en cuenta los resultados de esta tesis, las futuras líneas de investigación que se proponen son la puesta en marcha de diferentes proyectos piloto en distintas formas urbanas, con el objetivo de supervisar y probar las cubiertas mosaico, y la inclusión de todas las partes interesadas en el diseño de estrategias urbanas efectivas para la mitigación del cambio climático.
Sustainable urban strategies are worldwide spreading with the common goal of improving the habitats where most population lives, i.e., cities. These strategies cover many different fields and are key to transforming cities into healthier, fairer, and greener sites. Cities are often based on a linear economy system, and three of the most essential resources required in urban areas are food, energy and water (FEW). Hence, cities must find circular solutions, closing loops of energy and materials, and avoiding the generation of waste and emissions. Therefore, one of these circular solutions is the use of underutilized rooftops to implement the production of vegetables, energy or rainwater harvesting, i.e., the Roof Mosaic approach named by authors. To this end, this dissertation aims to assess the environmental and socio-economic impacts, and the benefits of the implementation of food production, renewable energy infrastructures and rainwater harvesting, on available rooftops for the purpose of self-sufficient cities. We use a set of different methodologies from different fields, assessing the Roof Mosaic from an environmental, social and economic perspective, and using different approaches such as urban metabolism, life cycle and public participation. We first propose a complete guideline to the accurate implementation of these systems on urban roofs, from the technical aspects to environmental, social and economic indicators. Subsequently, to assess the Roof Mosaic, we apply it at different scales and different urban areas. The two first studies are based on housing estates, and the third is based on a municipality with three characteristic urban forms. We evaluate the FEW metabolism of these urban areas, concluding that housing estates have the lowest electricity (0.75-0.82 MJ/hour), vegetable and water metabolic rates. In contrast, the single-family housing areas display the highest rates in vegetable and electricity metabolic rates. Regarding the different sustainability indicators, we find a relevant share of self-sufficiency in vegetable supply, from 17 to 115% through the implementation of open-air farming or greenhouses on roofs, and also in energy production with percentages of 7-71% through solar panels. In the case of water self-sufficiency, the percentage is high 66-227% for the irrigation of crops, but for specific uses, such as flushing and laundry the percentages are low, from 18-38% for single use, or laundry or flushing. In terms of environmental indicators, scenarios with more rooftops implementing photovoltaic panels depict high CO2 savings but simultaneously high environmental impacts in their construction phase (98 kg CO2 eq/m2/year). Socio-economic indicators illustrate that these new FEW systems could cover between 9-71% and 7-18% of energy and water poverty, respectively. Concerning monetary savings, households could save between 335-1801 ?/year depending on the scenario implemented. To engage stakeholders in the design of future scenarios, we evaluate the public perception of these strategies through participatory processes and surveys, revealing that most residents prefer to implement photovoltaic panels on their rooftops (65-77%). However, for the implementation of urban rooftop farming, the percentage willing to accept is lower. In one of the municipalities only 7%, and in the second one the proportion augments to 20-21%. Therefore, there is a necessity for policies aimed at the use of rooftops for other systems than photovoltaic panels such as open-air farming, rooftop greenhouses or green roofs. Considering the findings of this dissertation, future research lines proposed are setting up different pilot projects in different urban forms and types of residents, aiming to monitor and test the Roof Mosaic and the inclusion of all stakeholders in the design of urban strategies to match their preferences and needs with effective climate change solutions in cities.
Universitat Autònoma de Barcelona. Programa de Doctorat en Ciència i Tecnologia Ambientals
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lohani, Pratik. "De-Isolate: The Water-Food-Shelter Nexus." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/98848.

Повний текст джерела
Анотація:
Climate change is a natural cyclical phenomenon and throughout our planet's existence there have been sustained periods of heating and cooling. These periods are often referred to as "ice ages" and "interglacials" respectively. Scientists attributed warms oceans and carbon dioxide released from the oceans as the reason for global warming in the past. However, human activities of the recent past, mainly the burning of fossil fuel has seen an amplification of global temperature at a scale never seen before. This unprecedented change in our environment, as per scientists will have adverse side effects and have a long-term impact in our world. The most likely effects of climate change will be; heatwave, drought, glacier melts, sea level rise, erratic precipitation and erosions depending on a particular geographical location. The socio-economic impact of climate change could be a severe one too. Heat and drought could have major impact on agriculture, food and forests. United Nations data released in 2016 suggests that by the year 2050, more than 50 percent of the world's population will face a dearth of fresh water sources. It is also predicted that water scarcity will most likely result in diseases, unemployment and poverty. Energy use is also likely to increase with the greater need for air conditioning in the summer and heating in the winters. In cases where a region can't cope with these consequences, mass migration in search of better conditions is also likely. Physical and economic infrastructure will be tested by severe weather, flooding, wildfires and other phenomena. Data published by the United Nations in 2014 estimated that more than 50% of the world's total population lives in the urban areas and soon that number is likely to increase to 60%. In conjunction with climate change, this will mean more strain on already stretched resources in urban ecosystems. Also, with data suggesting that many people will migrate due to unemployment and poverty because of climate change, it is highly likely urban regions will have to accommodate that population too. The intertwined nexus of freshwater shortage, food, water and energy security is an issue we are already grappling with today, which is likely to be exacerbated in the future. These issues cannot be reviewed and analyzed as separate phenomena, but rather as a single intertwined phenomenon. The solution of the problem, hence, should be treated as the same.
Master of Architecture
This thesis, initially, investigates the phenomenon of climate change, and the likely challenges that it might pose in the future. Sustained periods of heating and cooling is a natural cyclical process, but human activities of the recent past has amplified global warning. This, according to scientists, will impact earth in the long run, and will have climatological and socio economic consequences. Water scarcity, droughts, sea level rise, mass migration are identified as problems that could intensify in the future. At various regions across the world, we are already facing these issues at different scales. This thesis, hence identifies the most pertinent future challenges and simulates those with existing societal challenges. The aim of the thesis is to provide an integrated and holistic plan to address the issues at hand with a view that the approach would also adapt to and mitigate issues in the future. Natural cycles and resources are used as a model to develop a mechanism to create a built environment for a small, self sustaining community. The proposed design is a prototype for a particular climatic scheme, but could be altered to fit other climatic criteria. The scheme through, research, addresses contemporary societal needs and tries to provide a solution contingencies of climate change.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hussien, Wa'el Abdul-Bari. "Multi-scale investigation of water-energy-food nexus." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/28299.

Повний текст джерела
Анотація:
Water, energy and food (WEF) are among essentials to meet the basic human needs and ensure economic and social development. Globally, the demand for WEF rapidly increases while billions of people are still lacking access to these needs. The main drivers behind increased demand for WEF are population growth, urbanization, economic growth and climate change. It may also be driven by changes in demography, technological developments and diet preferences. To achieve a sustainable supply and effectively manage the demand for WEF, complex interactions between WEF (nexus) need to be understood. Traditionally, WEF have been studied and managed separately with a minimal focus on their interactions. The primary objective of this study is to investigate WEF nexus at different scales. A bottom-up approach has been employed to develop a system-dynamics based model to capture the interactions between WEF at end-use level at a household scale. Additionally, a city scale model has been developed to quantify WEF implications for agricultural, commercial and industrial sectors. The household level model is then integrated with the city scale model to estimate WEF demand and the generated organic waste and wastewater quantities. The integrated model investigates the impact of several variables on WEF: human bahaviour, diet, household income, family size, seasonal variability, population size, GDP, crop type and land-use for agriculture. The integrated model is based on a detailed survey of 407 households conducted to investigate WEF over winter and summer season for the city of Duhok, Iraq. The city is chosen as a case study due to the rapid population growth, considerable urbanization, changes in land-use pattern and shifting climate trends toward longer summer duration. These put an additional pressure on WEF demand in the city. The collected data of WEF and household characteristics (demographic and socio-economic) have been intensively analysed to provide a better understanding for the factors influencing WEF consumption. The surveyed data was used to develop statistical regression models for estimating demand as a function of household characteristics using stepwise-multiple-linear and evolutionary polynomial regression techniques. The integrated WEF model was subjected to sensitivity analysis and uncertainty assessment. A comparison of the model simulation results were made with the historical data. The model results show a good agreement with the historical data. The WEF model is then applied to assess the risk and resilience of WEF systems under the impact of seasonal climate variability (i.e., increase/decrease in the number of summer days). In order to decrease the risk of not meeting per capita demand for WEF and increase the resilience of system for providing per capita demand for WEF, a number of demand management strategies have been investigated in water and energy systems under the impact of seasonal variability. The results show that using recycled greywater for non-potable application in Duhok water system is the most efficient strategy but it increases the energy demand. Additionally, anaerobic digestion of food waste and wastewater sludge for energy recovery can increase the resilience of Duhok energy system. Finally, the impact, of Global Scenario Group (GSG) scenarios (Market Forces, Fortress World, Great Transition and Policy Reform) on the WEF consumption and resulting implications, has been investigated using the WEF model. The results suggest that the Fortress World scenario (an authoritarian response to the threat of breakdown) has the highest impact on WEF consumption. In the Great Transition scenario, WEF consumption would be the lowest. The model results suggest that the food-related water consumption is the highest in the Policy Reform scenario.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sainz, Gabriel. "The Zambezi River Basin: Water Resources Management : Energy-Food-Water nexus approach." Thesis, Stockholms universitet, Institutionen för naturgeografi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-159566.

Повний текст джерела
Анотація:
The energy-food-water nexus is of fundamental significance in the goal towards sustainable development. The Zambezi River Basin, situated in southern Africa, currently offers vast water resources for social and economic development for the eight riparian countries that constitute the watershed. Hydropower generation and agriculture are the main water users in the watershed with great potential of expansion, plus urban water supply materialise the largest consumers of this resource. Climate and social changes are pressuring natural resources availability which might show severe alterations due to enhances in the variability of precipitation patterns. This study thus examines the present water resources in the transboundary basin and executes low and high case future climate change incited scenarios in order to estimate the possible availability of water for the period 2060-2099 by performing water balances. Along with projections of water accessibility, approximations on water demands from the main consumer sectors are performed. Results show an annual positive balance for both projected scenarios due to an increase in precipitation during the wet season. They also present a severe increase in overall temperature for the region contributing to a strong increase in evapotranspiration. Projections further inform of an acute increase in water demand for irrigation and urban supply, nevertheless, evaporation from hydropower storage reservoirs continues to exceed water with drawals in volume. Acknowledging the uncertainty contained in this report allows a broader offer of recommendations to be considered when planning for future developments with a sustainable approach. Improvement of hydrological collection systems in the Zambezi basin is indispensable to accomplish a deeper and cohesive understanding of the watershed waterresources. Cooperation and knowledge communication between riparian countries seems to be the right beginning towards social and economic sustainable development for the Zambezi River Basin.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Barbarà, Mir Laia. "The water-energy-food nexus to tackle climate change in Morocco." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/670228.

Повний текст джерела
Анотація:
The water, energy and food nexus is a theoretical approach to better understand and systematically examine the interactions between the natural environment and human activities, and to work towards a more organized management and use of natural resources across sectors and scales (FAO, 2014). It looks at the way a group of people -regionally, nationally, and locally- utilize resources and analyzes how they can be more efficiently managed. In implementing the WEF Nexus, there are ripple effects through the 17 Sustainable Development Goals (SDGs). In fact, several governments have already incorporated the WEF Nexus as part of their governmental policy in order to promote a more sustainable future. The WEF Nexus has four objectives: to help eradicate food insecurity, hunger, and malnutrition; make fisheries, forestry, and agriculture more productive and sustainable; help eliminate rural poverty; and enable efficient and sustainable food systems (FAO, 2019). In order to fully understand the challenges, trends, and opportunities presented by the WEF Nexus, this research covers what it is and where it comes from by studying the interlinks and trade-offs among these three resources; and suggests best practices to relieve the pressures that threaten resource availability and better manage them. However, problems arise in the implementation of those goals. For example, the rising number of climate migrants indicates that there are still problem areas in achieving the Nexus to its fullest potential. This Thesis also analyzes the current status of the WEF Nexus in these areas and provides policy recommendations for the particular case of Morocco. Within the MENA region, Morocco is probably the most vulnerable country to climate change: desertification, sea-level rise, groundwater salinization, climate migration as well as sudden flooding and storms affect the life of people in all parts of the country. Such a unique and fragile situation motivated the choice of the country as the case study for this research work. A WEF approach to managing a country’s resources is a great first step towards achieving the targets of the 2030 Agenda. The WEF Nexus is a catalyzing force for development: it underpins equality and democracy whilst setting the foundation to achieve the Sustainable Development Goals. Protecting the world’s most vital resources, without which human life is impossible, is the Nexus first priority.
El nexe aigua, energia i aliments (a partir d'ara: "WEF Nexus", de les seves sigles en anglès), és un enfocament teòric que permet comprendre millor i examinar sistemàticament les interaccions entre el medi natural i les activitats humanes, per tal d'aconseguir una gestió i un ús més racionalitzat dels recursos naturals (FAO, 2014). El WEF Nexus analitza de quina manera un grup de persones utilitzen els recursos -regionalment, nacionalment i localment- a la vegada que analitza com es podrien gestionar de manera més eficient. La implementació del WEF Nexus, té efectes en tots els 17 objectius de desenvolupament sostenible (ODS). De fet, diversos governs ja han incorporat el WEF Nexus en la seva política governamental per tal de promoure un futur més sostenible. El WEF Nexus té quatre objectius: ajudar a erradicar la inseguretat alimentària, la fam i la desnutrició; contribuir a que la pesca, la silvicultura i l’agricultura siguin més productives i sostenibles; ajudar a eliminar la pobresa rural; i promoure sistemes alimentaris eficients i sostenibles (FAO, 2019). Per tal de comprendre els reptes, les tendències i les oportunitats que presenta el WEF Nexus, aquesta investigació comença definint què és i d’on prové per després suggerir bones pràctiques per alleujar les pressions que amenacen la disponibilitat de recursos i gestionar-les millor. No obstant, quan s'implementen aquests objectius encara sorgeixen problemes com exemplifica el creixent nombre de migrants climàtics, que posa de relleu que encara hi ha marge de millora per assolir el màxim potencial del Nexus. Aquesta Tesi també analitza l'estat actual del WEF Nexus i proposa un paquet de polítiques públiques pel cas concret del Marroc. Dins de la regió MENA, el Marroc és probablement el país més vulnerable al canvi climàtic: la desertització, l’augment del nivell del mar, la salinització de les aigües subterrànies, la migració climàtica, així com les inundacions sobtades i les tempestes, afecten la vida de les persones de totes les parts del país. Una situació tan única i tan fràgil ha motivat l’elecció del país com a cas d’estudi per aquesta Tesi. Gestionar els recursos d’un país amb un enfocament del WEF Nexus, és un gran primer pas per assolir els objectius de l’Agenda 2030. El WEF Nexus és una força catalitzadora per al desenvolupament: sustenta la igualtat i la democràcia alhora que estableix les bases per assolir els objectius de desenvolupament sostenible. La prioritat del WEF Nexus és la protecció dels recursos vitals, sense els quals la vida humana és impossible.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Evans, John Parker. "Autoregenerative Laccase Cathodes: Fungi at the Food, Water, and Energy Nexus." Thesis, The University of Arizona, 2016. http://hdl.handle.net/10150/612407.

Повний текст джерела
Анотація:
Today’s most pressing problems would greatly benefit from an integrated production method for food, water, and energy. Biological fuel cells can offer such a production method, but current designs cannot be scaled to meet global demand. The ability of five different fungal strains to secrete laccase was evaluated under optimized culture conditions using three inducers. A specialized electrode was developed to increase the loading of laccase on the cathode. Trametes versicolor was then immobilized at the modified cathode and shown to secrete electrochemically active laccase. This hybrid design combines the power density of an enzymatic catalyst with the robustness of a microbial catalyst by facilitating biological renewal of the enzymatic catalyst laccase.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kebede, Abiy S. "The food-water-land-ecosystems nexus in Europe : an integrated assessment." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/397355/.

Повний текст джерела
Анотація:
Climate and socio-economic change impacts interact in complex ways. These are likely to cross traditional sectoral and regional boundaries with cascading indirect and potentially far reaching repercussions. This is particularly important for the food-water-land-ecosystems (FWLE) nexus. A holistic understanding of these interactions is central for devising appropriate adaptation strategies. This thesis presents a systematic methodological framework that provides new insights into understanding key sensitivities and uncertainties of these possible cross-sectoral impacts for informing future adaptation policies. The research is based on: (1) appraisal of integrated assessment models (IAMs), and (2) investigation of the direct and indirect implications of a wide range of climate and socio-economic scenarios taking into account important cross-sectoral linkages and interactions between six key European land- and water-based sectors/sub-systems (agriculture, biodiversity, coasts, forests, urban, and water). This is achieved through (1) a review of existing integrated approaches and tools, and (2) assessment and extensive application of one European IAM – the CLIMSAVE* Integrated Assessment Platform (IAP). The IAP application uses a combined approach drawing on a systematic: (i) Sensitivity analysis based on a One-Driver-at-a-Time (ODAT) approach, (ii) Scenario and uncertainty analysis based on Multiple-Drivers-at-a-Time (MDAT) approach, and (iii) Robustness Assessment of Adaptation Policies (RAAP). The key outputs include: (i) new quantitative insights into the complex interactions of the FWLE nexus and associated synergies, conflicts and trade-offs in Europe, (ii) identifying key sensitivities and uncertainties of the potential cross-sectoral impacts and adaptation policies under various scenarios of future changes in climate as well as social, technological, economic, environmental, and policy governance settings, (iii) development of a new nexus-based conceptual framework for a long-term, multi- and cross-sectoral adaptation planning, and (iv) identification of potential areas of improvement of the IAP to inform development of the next generation of IAMs to assess the FWLE nexus. The ODAT analysis demonstrates that while a large number of drivers (20 out of 25) affect most sectors/sub-systems either directly or indirectly, eight drivers are key parameters at the European scale, with important cross-sectoral implications (i.e., ‘strong’ and ‘non-linear’ impacts on more than one sector/sub-system). These include: four climatic (temperature, summer and winter precipitation, and CO2 concentration) and four socio-economic (population, GDP, food imports, and agricultural yields) factors. Considering a wide range of scenario combinations of these drivers (taking into account the ‘full’ and ‘plausible sample’ scenario ranges), the MDAT analysis demonstrates that: (i) food production is likely to be the main driver of Europe’s future landscape change dynamics (even without climate change), (ii) agriculture and land use allocation in general is often driven by complex interactions between various sectors/sub-systems, (iii) there are no clear trends/patterns in future food production under most climate scenarios, (iv) agricultural changes have significant cascading effects on other sectors/sub-systems such as forestry, biodiversity, and water and (v) there are consistent trends for biodiversity, water and flood impacts with regional variations. The results also demonstrate that the combined effects of socio-economic and climatic factors are not always additive, highlighting the complexity of understanding impacts across sectors/sub-systems and regions. As a result, adaptation policy choices are complicated and difficult, even without climate change. A better understanding of the critical trade-offs across sectors/sub-systems and regions under various adaptation options is required. Such systematic analysis provides important insights for decision-makers to devise robust adaptation policies that maximise benefits and minimise unintended consequences across sectors/sub-systems and scales. *CLIMSAVE (Climate change integrated assessment methodology for cross-sectoral adaptation and vulnerability in Europe) is an FP7 project (2010–2013) funded by the European Commission. The CLIMSAVE IAP is an interactive exploratory web-based integrated landscape change assessment model that allows stakeholders to investigate climate and socio-economic change impacts, adaptation and vulnerabilities for six key sectors/sub-systems (agriculture, biodiversity, coasts, forests, urban areas and water resources) (Harrison et al. 2013; 2015a).
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Al-Ansari, Tareq. "The development of the energy, water and food nexus systems model." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/33377.

Повний текст джерела
Анотація:
The sustainability of natural resources is vital in the light of a rapid population growth and the associated ever increasing demand for services and products. Critical to this growth is the question of energy, water and food (EWF) security. The systems representing the three resources are intrinsically interdependent in what is known as the EWF Nexus. As such, there is a need to develop assessment tools that adequately quantify the inter-dependencies between EWF systems and the surrounding environment in order to identify and evaluate the trade-offs and synergies between them. Existing assessment methodologies do not explicitly identify and quantify the inter-linkages between EWF resources throughout product systems. As a result, decision making regarding the allocation of resources towards the development of a product or service, and the subsequent impact on resource sustainability and environmental degradation, is obscured. Furthermore, earlier approaches translate product system inputs into outputs through the use of generic databases. As such, analysis of product systems operating within varying spatial and temporal scales is hindered. The EWF Nexus tool is a culmination of well-established theories related to system engineering such as Industrial Ecology and LCA. With emphasis on the inter-linkages between EWF resources, the EWF Nexus tool quantifies material flow and energy consumption at component unit process level. The tool is distinguished from previous assessment tools in that it aggregates product systems in terms of the constituting processes identified as sub-systems. Representing complex systems in this manner offers advantages to conventional gate to gate representation. For instance, consideration of process variability and dependencies alleviates flexibility limitations associated with generic databases. Furthermore, with the inter-linkages between EWF resources adequately represented in sub-system design, the respective consumption of resources can be accurately accounted for in product systems. Considering the flexibility and modularity embedded within the EWF Nexus tool, the identification of environmental pressures can be computed for product systems operating within varying spatial settings utilising different technology options and in multiple configurations. The objective of this thesis is to present the details and function of the EWF Nexus environmental assessment tool, and illustrate its implementation through a specific food security scenario in Qatar. The EWF Nexus tool aggregates a proposed food system into its agriculture, water and energy components represented by sub-systems and is used to evaluate the different pathways for which a hypothetical 40 % food self-sufficiency target in Qatar can be achieved. As part of the LCA, sub-system LCI models representing the EWF systems have been developed. The food nexus element includes sub-system LCI models for the production of fertilizers and agricultural activities such as the application of fertilizers and the raising of livestock. The water nexus element includes sub-system LCI models for two desalination processes; Multi-Stage Flash (MSF) and Reverse Osmosis (RO) for the production of fresh water. The energy nexus element includes sub-system LCI models for power generation from two sources; a combined cycle gas turbine plant (CCGT) and renewable energy from solar Photovoltaics (PV). Furthermore, a sub-system for a biomass integrated gasification combined cycle (BIGCC) is integrated to recycle solid waste into useful forms of energy to be re-used within the EWF Nexus. Finally, a sub-system representing carbon capture (CC) technology is integrated to capture and recycle CO2 from both the CCGT and the BIGCC. The integration of CC with the BIGCC transforms the carbon neutral BIGCC process to a negative GHG emission technology with carbon capture and storage (BECCS). For the different scenarios and sub-system configurations considered, the results indicate that the largest global warming potential (GWP) originates from the non-energy related emissions within the food sub-systems. Within this category, emissions from the enteric fermentation processes present in livestock species represent the overwhelming majority of the GWP. Emissions from the power generation are reduced as power from PV technology is integrated as a substitute for the CCGT. The GWP is further reduced by 45 % as the BIGCC is integrated to supplement PV's. The complete roll out of PV and the BECCS (BIGCC +CC) to power the water and food sub-systems can almost completely balance the GWP from the non-energy related emissions by reducing the total GWP by 98 %, attributed to a theoretical achievable maximum negative emission of 1.15x109 kg CO2/year. In the same scenario, the PV land footprint required calculated is a maximum of 660 ha accompanied by a 127 % decrease in natural gas consumption (27 % credit).
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rahman, Md Mizanur <1980&gt. "Legal Ontology for Nexus: Water, Energy and Food in EU Regulations." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7261/1/RAHMAN_MD_MIZANUR_tesi.pdf.

Повний текст джерела
Анотація:
The objectives of the thesis are – (a) to identify the problems in water-energy-food nexus from ICT and Law point of view and to propose theoretically a legal knowledge framework for water-energy-food nexus in order to reduce those problems technologically, (b) to construct and implement legal ontology for nexus extracted from EU water, energy and food Regulations in OWL 2 language, which is a part of the grater work of implementing legal knowledge framework for water-energy-food nexus proposed through the compilation of objective (a). Considering these objectives, this thesis presents total five chapters. First chapter investigates current start of art of nexus in order to identify (1) major knowledge gaps in the nexus and (2) ontological existence of the nexus in the EU regulations, particularly in the legal definitions accommodated in EU Regulations and Directives associated with nexus domains. It also rationalizes the need for legal ontology for nexus. Second chapter evaluates existing perspectives and methodologies available for constructing legal ontology. The purpose of such evaluation was to select correct perspective and methodology for constructing legal ontology for nexus. It, at the end, justifies the need for developing new methodology for constructing the legal ontology for nexus. Third chapter explains the methodology used for engineering legal definitional knowledge extracted from the selected EU regulations in order to construct the legal ontology for nexus. Fourth chapter explains in detail the legal ontology for nexus while fifth chapter evaluates legal ontology for nexus. In addition, conclusion of the thesis shares critical issues faced throughout this doctoral thesis work. Furthermore, annexes contain a list of all formulas of restrictions implemented in legal ontology for nexus and links of all modules of legal ontology for nexus. LODE documentation of the legal ontology for nexus is available at http://codexml.cirsfid.unibo.it/post-doctoralresearchers/mizanur-rahman/.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rahman, Md Mizanur <1980&gt. "Legal Ontology for Nexus: Water, Energy and Food in EU Regulations." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7261/.

Повний текст джерела
Анотація:
The objectives of the thesis are – (a) to identify the problems in water-energy-food nexus from ICT and Law point of view and to propose theoretically a legal knowledge framework for water-energy-food nexus in order to reduce those problems technologically, (b) to construct and implement legal ontology for nexus extracted from EU water, energy and food Regulations in OWL 2 language, which is a part of the grater work of implementing legal knowledge framework for water-energy-food nexus proposed through the compilation of objective (a). Considering these objectives, this thesis presents total five chapters. First chapter investigates current start of art of nexus in order to identify (1) major knowledge gaps in the nexus and (2) ontological existence of the nexus in the EU regulations, particularly in the legal definitions accommodated in EU Regulations and Directives associated with nexus domains. It also rationalizes the need for legal ontology for nexus. Second chapter evaluates existing perspectives and methodologies available for constructing legal ontology. The purpose of such evaluation was to select correct perspective and methodology for constructing legal ontology for nexus. It, at the end, justifies the need for developing new methodology for constructing the legal ontology for nexus. Third chapter explains the methodology used for engineering legal definitional knowledge extracted from the selected EU regulations in order to construct the legal ontology for nexus. Fourth chapter explains in detail the legal ontology for nexus while fifth chapter evaluates legal ontology for nexus. In addition, conclusion of the thesis shares critical issues faced throughout this doctoral thesis work. Furthermore, annexes contain a list of all formulas of restrictions implemented in legal ontology for nexus and links of all modules of legal ontology for nexus. LODE documentation of the legal ontology for nexus is available at http://codexml.cirsfid.unibo.it/post-doctoralresearchers/mizanur-rahman/.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Food-water nexu"

1

Salam, P. Abdul, Sangam Shrestha, Vishnu Prasad Pandey, and Anil Kumar Anal, eds. Water-Energy-Food Nexus. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Muthu, Subramanian Senthilkannan, ed. The Water–Energy–Food Nexus. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0239-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ray, Chittaranjan, Sekhar Muddu, and Sudhirendar Sharma, eds. Food, Energy, and Water Nexus. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85728-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Endo, Aiko, and Tomohiro Oh, eds. The Water-Energy-Food Nexus. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7383-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mujtaba, I., R. Srinivasan, and N. Elbashir. The Water–Food–Energy Nexus. 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487–2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153209.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Saundry, Peter, and Benjamin L. Ruddell, eds. The Food-Energy-Water Nexus. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-29914-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dodds, Felix. The Water, Food, Energy and Climate Nexus. London ; New York : Routledge, 2016. | Series: Earthscan: Routledge, 2016. http://dx.doi.org/10.4324/9781315640716.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Colucci, Angela, Marcello Magoni, and Scira Menoni, eds. Peri-Urban Areas and Food-Energy-Water Nexus. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-41022-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Asadi, Somayeh, and Behnam Mohammadi-Ivatloo, eds. Food-Energy-Water Nexus Resilience and Sustainable Development. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40052-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Water security: The water-food-energy-climate nexus : the World Economic Forum water initiative. Washington, D.C: Island Press, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Food-water nexu"

1

Storey, Donovan, Lorenzo Santucci, and Banashri Sinha. "Urban Nexus." In Water-Energy-Food Nexus, 43–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.ch5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pradhanang, Soni M. "Water-Energy-Food Nexus." In Water-Energy-Food Nexus, 141–49. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.ch13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shinde, Victor R. "Water-Energy-Food Nexus." In Water-Energy-Food Nexus, 67–76. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.ch7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Noureldeen Mohamed, Nader. "Water Energy Food Nexus." In SpringerBriefs in Climate Studies, 47–59. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38010-6_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Benson, David, Animesh K. Gain, Josselin Rouillard, and Carlo Giupponi. "Governing for the Nexus." In Water-Energy-Food Nexus, 77–88. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.ch8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Andrews-Speed, Philip, and Sufang Zhang. "The Water-Energy-Food Nexus." In China as a Global Clean Energy Champion, 215–43. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3492-4_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Verma, Meera. "Food, Water and Energy Nexus." In SpringerBriefs in Food, Health, and Nutrition, 11–21. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16781-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Salam, P. Abdul, Vishnu Prasad Pandey, Sangam Shrestha, and Anil Kumar Anal. "The Need for the Nexus Approach." In Water-Energy-Food Nexus, 1–10. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.ch1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Al-Saidi, Mohammad, Nadir Ahmed Elagib, Lars Ribbe, Tatjana Schellenberg, Emma Roach, and Deniz Oezhan. "Water-Energy-Food Security Nexus in the Eastern Nile Basin." In Water-Energy-Food Nexus, 103–16. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.ch10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mohanty, Parimita, and Satwik Patnaik. "Energy-Centric Operationalizing of the Nexus in Rural Areas." In Water-Energy-Food Nexus, 117–26. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119243175.ch11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Food-water nexu"

1

De Laurentiis, Valeria, Dexter Hunt, and Christopher Rogers. "Food Security Challenges: Influences of an Energy/Water/Food Nexus." In The 4th World Sustainability Forum. Basel, Switzerland: MDPI, 2014. http://dx.doi.org/10.3390/wsf-4-g003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wong, Kaufui V., and Sarmad Chaudhry. "Climate Change Aggravates the Energy-Water-Food Nexus." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36502.

Повний текст джерела
Анотація:
There are regions in the world experiencing the energy-food-water nexus problems. These regions tend to have high population density, economy that depends on agriculture and climates with lower annual rainfall that may have been adversely affected by climate change. A case in point is the river basin of the Indus. The Indus River is a large and important river running through four countries in East Asia and South Asia: China, India, Afghanistan, and Pakistan. The region is highly dependent on water for both food and energy. The interlinkage of these three components is the cause for the energy-water-food nexus. The difficulty in effectively managing the use of these resources is their very interdependence. For instance, water availability and policies may influence food production, which is governed by agricultural policies, which will further affect energy production from both water and biofuel sources, which will in turn require the usage of water. The situation is further complicated when climate change is taken into account. On the surface, an increase in temperatures would be devastating during the dry season for a region that uses up to 70% of the total land for agriculture. There are predictions that crop production in the region would decrease; the Threedegreeswarmer organization estimated that crop production in the region could decrease by up to 30% come 2050. Unfortunately, the suspected effects of climate change are more than just changes in temperature, precipitation, monsoon patterns, and drought frequencies. A huge concern is the accelerating melting of glaciers in the Himalayas. Some models predict that a global increase in temperature of just 1°C can decrease glacial volume by 50%. The loss of meltwaters from the Himalayan glaciers during the dry season will be crippling for the Indus River and Valley. In a region where up to 90% of accessible water is used for agriculture, there will be an increased strain on food supply. This will further deteriorate the current situation in the region, where almost half of the world’s hungry and undernourished people reside. While the use of hydropower to generate electricity is already many times lower than the potential use, future scarcity of water will limit the potential ability of hydropower to supply energy to people who already experience less than 50% access to electricity. In the current work, suggestions have been put forward to save the increased glacier melt for current and future use where necessary, improve electricity generation efficiency, use sea water for Rankine power cycle cooling and combined cycle cooling, and increase use desalination for drinking water. Energy conservation practices should also be practiced. All of these suggestions must be considered to address the rising issues in the energy-water-food nexus.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Karanisa, Theodora, Imen Saadaoui, Helmi Hamdi, Noora Fetais, and Sami Sayadi. "Food, Energy and Water Management Innovation in Doha: A Design-led Nexus Approach." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0045.

Повний текст джерела
Анотація:
Urban communities are affected by population growth, urbanization and climate change, thus being vulnerable to food, energy and water demand. According to the United Nations, the world’s population is expected to increase by 2 billion people in the next 30 years and 68% of them are projected to live in urban areas by then. At the same time, 1/3 of the food produced in the world for human consumption every year gets lost or wasted and still, 795 million people worldwide are malnourished. A sustainable Food, Energy, Water and Waste Nexus is urgent. The Moveable Nexus Project is aiming to give a solution to the FEW Nexus through urban design methods and agricultural practices by practicing the design method, the evaluation effect and the participation. The design method will be practiced through design charrettes and international workshops and the evaluation will be realized by a Food, Energy & Water consumption environmental footprint calculator. Finally, the participation phase will engage the stakeholders and the community at the Doha Living Lab. The Doha Living Lab will quantify the urban FEWW-fluxes through urban agriculture and will try to achieve sustainability in terms of food production, new crops and new production technology, water management, organic waste management, reuse and recycle. The Living Lab will also assess the needs of the community and the involved stakeholders, by engaging them in every process thus enhancing resilience among people and agri-food systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sarker, Tonmoy, Kelly Kibler, and Debra Reinhart. "Concept Mapping of Food Waste Management Alternatives within the Food-Energy-Water Nexus." In World Environmental and Water Resources Congress 2016. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784479865.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Karanisa, Theodora, Ahmed Ouammi, Helmi Hamdi, Imen Saadaoui, Noora Fetais, and Sami Sayadi. "A Design-led FEWW Nexus Approach for Qatar University." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0011.

Повний текст джерела
Анотація:
Demographic explosion, climate change, urbanization, change of life quality, and food demand have put extra pressure on Food, Energy, Water, and Waste (FEWW) resources.A special focus has been placed on university campuses as they are representative urban communities with a substantial need for food, energy, and water and they generate waste. Furthermore, universities can be models for the community as they can apply and disseminate new ideas. The case study of the Qatar University via the Doha Living Lab (DLL) generates ideas and gives solutions to the FEWW Nexus through urban agriculture practices adopted to the climatic conditions of Qatar. The DLL follows the M-NEX Design method consisting of three steps: Design Development, Design Evaluation, and Implementation by engaging stakeholders and the local community. The areas of the DLL increase food production on the campus while minimizing the use of energy and water, enhance biodiversity as well as soil quality by valorizing food waste. The carbon footprint of DLL is reduced by 2% when the same quantity of food is produced locally than imported. This applies when 75% of the energy needs come from renewable sources, 75% of the needed animal feed comes from bio waste, and finally, when novel greenhouse technologies are utilized with low energy consumption. According to the research results, the FEWW Nexus and food production on campus can be sustainable in terms of low carbon footprint with minimal resource use, use of renewable energy sources, and food waste valorization.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Elshorbagy, Amin, and Lina Wu. "WEFNAF: Water-Energy-Food Nexus Assessment Framework for Multi-centric Water Resource Management." In Proceedings of the 39th IAHR World Congress From Snow to Sea. Spain: International Association for Hydro-Environment Engineering and Research (IAHR), 2022. http://dx.doi.org/10.3850/iahr-39wc2521711920221213.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Han, Mooyoung, and Soyoung Baek. "Water-Energy-Food Nexus of Concave Green-Roof in SNU." In 8th Conference of the International Forum on Urbanism (IFoU). Basel, Switzerland: MDPI, 2015. http://dx.doi.org/10.3390/ifou-e014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Okola, Isaac. "Input-Output Multiobjective Optimization Approach for Food-Energy-Water Nexus." In 19th International Conference on Informatics in Control, Automation and Robotics. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0011271500003271.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Xiao, Yi, Keith W. Hipel, and Liping Fang. "A System of Systems Framework for the Water-Energy-Food Nexus." In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2019. http://dx.doi.org/10.1109/smc.2019.8913946.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Elshorbagy, Amin. "Water-Energy-Food Nexus: Rethinking the Integrated Resources Management and Modeling." In The 5th International Conference of Recent Trends in Environmental Science and Engineering (RTESE'21). Avestia Publishing, 2021. http://dx.doi.org/10.11159/rtese21.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Food-water nexu"

1

Reinhard, Stijn, Jan Verhagen, Wouter Wolters, and Ruerd Ruben. Water-food-energy nexus : A quick scan. Wageningen: Wageningen Economic Research, 2017. http://dx.doi.org/10.18174/424551.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mohtar, Rabi H., Amjad T. Assi, and Bassel Daher. Bridging the Water and Food Gap: The Role of the Water-Energy-Food Nexus. Edited by Hiroshan Hettiarachchi. United Nations University Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES), 2015. http://dx.doi.org/10.53325/gekw1660.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Daw, Jennifer A., and Sherry R. Stout. Building Island Resilience through the Energy, Water, Food Nexus. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1569216.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mubita, Tania, Wilfred Appelman, Han Soethoudt, and Melanie Kok. Resource and water recovery solutions for Singapore’s water, waste, energy, and food nexus. Part II, Food waste valorization. Wageningen: Wageningen Food & Biobased Research, 2021. http://dx.doi.org/10.18174/554531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sood, A., A. Nicol, and I. Arulingam. Unpacking the water-energy-environment-food nexus: working across systems. International Water Management Institute (IWMI), 2019. http://dx.doi.org/10.5337/2019.210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Baker, Justin S., George Van Houtven, Yongxia Cai, Fekadu Moreda, Chris Wade, Candise Henry, Jennifer Hoponick Redmon, and A. J. Kondash. A Hydro-Economic Methodology for the Food-Energy-Water Nexus: Valuation and Optimization of Water Resources. RTI Press, May 2021. http://dx.doi.org/10.3768/rtipress.2021.mr.0044.2105.

Повний текст джерела
Анотація:
Growing global water stress caused by the combined effects of growing populations, increasing economic development, and climate change elevates the importance of managing and allocating water resources in ways that are economically efficient and that account for interdependencies between food production, energy generation, and water networks—often referred to as the “food-energy-water (FEW) nexus.” To support these objectives, this report outlines a replicable hydro-economic methodology for assessing the value of water resources in alternative uses across the FEW nexus–including for agriculture, energy production, and human consumption—and maximizing the benefits of these resources through optimization analysis. The report’s goal is to define the core elements of an integrated systems-based modeling approach that is generalizable, flexible, and geographically portable for a range of FEW nexus applications. The report includes a detailed conceptual framework for assessing the economic value of water across the FEW nexus and a modeling framework that explicitly represents the connections and feedbacks between hydrologic systems (e.g., river and stream networks) and economic systems (e.g., food and energy production). The modeling components are described with examples from existing studies and applications. The report concludes with a discussion of current limitations and potential extensions of the hydro-economic methodology.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Srivastava, Shilpi, Jeremy Allouche, Roz Price, and Tina Nelis. Bringing WASH into the Water–Energy–Food Nexus in Humanitarian Settings. Institute of Development Studies (IDS), February 2022. http://dx.doi.org/10.19088/ids.2022.006.

Повний текст джерела
Анотація:
This paper examines the water–energy–food (WEF) nexus in a humanitarian context, with a specific focus on water, sanitation and hygiene (WASH). It highlights the complex and non-linear interactions that WASH has with other areas of the WEF nexus. In doing so, it blends the social dimensions (access, safety, consumption, and use) with the WEF resource dimensions (availability and resource sustainability), including a further emphasis on sanitation as a key, but often ignored, element of the WEF nexus. Drawing on the case of the Rohingya refugee camps in Bangladesh, we examine how household-level access to WASH shapes and is shaped by use, access, and availability of energy and food, and finally their effects on host–refugee interactions. We find that there are implicit and explicit links between WASH and WEF. Moreover, any small intervention in any of the WEF areas has positive knock-on effects on the other resources, especially in enhancing resource access and use. We conclude that bottom-up perspectives on these interlinkages with active participation from both host and refugee households are required to understand the implicit and explicit connections across WASH and the WEF nexus in humanitarian contexts. We also argue that sanitation is a key element of the WEF nexus and should not be ignored within the predominant resource-centric framing of the WEF.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hameed, Maysoun. From Drought to Food-Energy-Water-Security Nexus: An Assessment of Food Insecurity in the Middle East. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hermelink, Marleen, and Huib Hengsdijk. Water, Energy, and Food Nexus in the Santa Eulalia sub-basin, Peru : Scoping study for the food sector. Wageningen: Stichting Wageningen Research, Wageningen Plant Research, Business Unit Agrosystems Research, 2021. http://dx.doi.org/10.18174/544179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Savage, Roger, Simon Spooner, Vassiliki Kravva, Alistair McMahon, Joanne Parker, and Philippa Ross. Topic Guide: Managing the water, energy, food and land nexus in the context of climate change and food security. Evidence on Demand, January 2016. http://dx.doi.org/10.12774/eod_tg.october2015.savageretal.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії