Добірка наукової літератури з теми "Fluides magnétiques – Propriétés magnétiques"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fluides magnétiques – Propriétés magnétiques".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Fluides magnétiques – Propriétés magnétiques"
Chenevier, B., M. Bacmann, D. Fruchart, J. P. Senateur, and R. Fruchart. "Propriétés magnétiques de MnRhAs structures magnétiques." physica status solidi (a) 90, no. 1 (July 16, 1985): 331–41. http://dx.doi.org/10.1002/pssa.2210900134.
Повний текст джерелаLahoubi, M., and G. Fillion. "Propriétés magnétiques anisotropes du composé Tb0,37Y2,63Fe5O12." Le Journal de Physique IV 07, no. C1 (March 1997): C1–287—C1–288. http://dx.doi.org/10.1051/jp4:19971113.
Повний текст джерелаJanot, Chr. "Les amorphes métalliques et leurs propriétés magnétiques." Revue de Physique Appliquée 21, no. 11 (1986): 635–47. http://dx.doi.org/10.1051/rphysap:019860021011063500.
Повний текст джерелаDjerrab, Abderrezak, Ian Hedley, Pierre Camps, Salah Abdessadok, Cecilio Barroso Ruiz, and Daniel Botella Ortega. "Contribution des paramètres magnétiques à l’identification des niveaux stratigraphiques et de la pédogenèse (Grotte del Angel, Espagne)." Estudios Geológicos 69, no. 1 (June 30, 2013): 71. http://dx.doi.org/10.3989/egeol.40946.222.
Повний текст джерелаFnidiki, A., J. Juraszek, J. Teillet, M. Kaabouchi, and C. Sella. "Propriétés magnétiques et structurales de multicouches Fe/Ti." Le Journal de Physique IV 06, no. C7 (November 1996): C7–167—C7–172. http://dx.doi.org/10.1051/jp4:1996720.
Повний текст джерелаBENMOUSSA, A., and C. MICHEL. "Propriétés magnétiques de phosphates et silicophosphates de titane." Annales de Chimie Science des Matériaux 24, no. 3 (March 1999): 233–40. http://dx.doi.org/10.1016/s0151-9107(99)80049-x.
Повний текст джерелаSajieddine, Mohammed, Philippe Bauer, Gérard Marchal, and Abdelmajid Nourreddine. "Propriétés magnétiques des multicouches Tb/Fe amorphes recuites." Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy 327, no. 5 (May 1999): 523–27. http://dx.doi.org/10.1016/s1287-4620(99)80110-0.
Повний текст джерелаde Bournonville, M. B., D. Bizot, J. Chassaing, and M. Quarton. "Structures et propriétés magnétiques de Li2NbF6 et Na2NbF6." Journal of Solid State Chemistry 62, no. 2 (April 1986): 212–19. http://dx.doi.org/10.1016/0022-4596(86)90234-3.
Повний текст джерелаSassi, O., J. Aride, G. Moya, and A. Berrada. "Propriétés magnétiques des défauts trempés dans les alliages CoGa." Journal de Chimie Physique 88 (1991): 2191–96. http://dx.doi.org/10.1051/jcp/1991882191.
Повний текст джерелаCHASSAING, I., L. PRESMANES, Ph TAILHADES, A. ROUSSET, and P. MOLLARD. "Propriétés magnétiques de ferrites CoMnxFe2-xO4 (0ࣘxࣘ1) à structure spinelle." Le Journal de Physique IV 02, no. C3 (December 1992): C3–127—C3–131. http://dx.doi.org/10.1051/jp4:1992319.
Повний текст джерелаДисертації з теми "Fluides magnétiques – Propriétés magnétiques"
Ferreira, Da Silva Anailde. "Structure locale et propriétés thermodiffusives de nano-colloïdes magnétiques." Paris 6, 2013. http://www.theses.fr/2013PA066801.
Повний текст джерелаThe spatial organization and the thermodiffusion of ferrite magnetic nanoparticles (NPs) in dispersion are here studied. The NPs are obtained by coprecipitation of Fe3+ and Co2+ (or Mn2+) ions in alkaline medium and protected by a maghemite shell. Colloidal samples are either directly issued from chemical synthesis at volume fraction Φ ≈ 1% and pH ≈ 2 with the ionic strength I badly controlled, or at pH Φ ≈ 3 with I = 10-3 mol/L, both being fixed by osmotic stress at Φ up to 30%. . A controlled sample dilution is then possible. Spatial organization of positively charged NPs is probed by small angle x-ray scattering. The analysis of the scattered intensity allows to extract form and structure factors of the NPs, in conditions ranging from weakly interparticle attraction to strong repulsion for which at large Φ the system becomes glassy. The first-neighbor peak of the structure factor, observed in Fluid phase, tends to disappear in glassy samples. The NPs dynamics is probed by Rayleigh forced scattering. A periodic array of temperature is created in the fluid sample via the image of a grid using a pump beam. It induces by Soret effect, an array of NPs concentration in the sample. If the pump beam is shut down, the concentration array relaxes by massic NPs diffusion. A temporal pump modulation allows to determine the Soret coefficient ST, here negative, the NPs go towards hot regions. ST is proportionnal to the compressibility of the NPs system. A description based on a Carnahan-Starling model is proposed to describe the Φ-dependence of both compressibity and Soret effect in the range of weak Φ's, where the samples remain Fluid, far from the glassy transition
Nesse trabalho, investigamos a organização estrutural e a dinâmica de dispersões de nanopartículas (NPs) magnétiques de ferrita obtidas por coprecipitação em meio alcalino de íons de Fe3+ e M2+ (M2+ = Co2+, Mn2+), protegidas por uma coroa de maguemita. As amostras são obtidas à partir da síntese com uma fração volumétrica Φ ≈ 1%, pH ≈ 2 e uma força iônica I imprecisa, ou em pH = 3 e I = 10-3 mol/L, ambos valores fixados por compressão osmótica até Φ ≈ 30 % (seguido eventualmente de uma diluição). A organização estrutural das NPs, que são carregadas positivamente, é investigada por espalhamento de raios X em baixo ângulo. A análise da intensidade espalhada permite extrair fatores de forma e de estrutura das NPs desde situações onde existem atrações pouco intensas entre NPs para situações de fortes repulsões interpartículas até mais altas concentrações nas quais o colóide se torna vítreo. O pico de primeiro vizinho do fator de estrutura, observado na fase fluida, tende a colapsar. A dinâmica das NPs é testada por espalhamento Rayleigh forçado. Um padrão periódico de temperatura é criado em amostras fluidas utilizando a imagem de uma grade formada por um feixe de luz. Este induz uma rede de concentração via efeito Soret: Quando o feixe de luz é cancelado, a rede relaxa por difusão de massa de NPs. A modulação temporal do feixe de luz permite determinar o coeficiente Soret ST negativo, as NPs migram para regiões quentes. Este é proporcional à compressibilidade do sistema de NPs. Um modelo de Carnahan-Starling é proposto para descrever a dependência com Φ da compressibilidade e de ST numa gama de valores baixos de Φ onde as amostras permanecem fluidas, longe da transição vítrea
Jalled, Ouissem. "Caractérisation basse fréquence de ferrofluides et de couches minces magnétiques entourées par une nappe de courant, selon un design original." Saint-Etienne, 2005. http://www.theses.fr/2005STET4005.
Повний текст джерелаDuring this thesis I initially studied the magneto-dielectric properties of ferrofluids (primary variations of their permittivity in the presence of a d-c magnetic field) then the permeability of these magnetic liquids by using the method of the split torus. Among the objectives of DIOM laboratory is the realization of ultra high frequencies passive components with thin layers. Those can be obtained at the Laboratory by radio frequency cathodic sputtering. It is necessary to know their permeability. The methods described up to now in the literature are well adapted to measurement of layers with high permeability. The measurement loop, surrounding the magnetic layer with its substrate, is sensitive to the contribution of both media. I propose an inductive measurement technique taking into account only the characteristics of the layer desposited where the loop surrounds exclusively the layer. This technique was validated on a large scale and preliminary measurements were carried out on thin layers of BaM and YIG deposited on alumina substrate. These measurements enabled to detect the various difficulties and sources of error and to solve them. The prototypes dimensions are relatively large (2cm X 5cm) involving, being given the dimensions of the target (75 mm diameter), a certain variation of the layers' thickness profile. However some tests involving close the edge strips showed that it didn't lead to prohibitary errors. Finally, I could measure a relative permeability of 25 for thin film of YIG, with a precision of about 10%
Sousa, Marcelo Henrique. "Propriétés magnétiques et magnéto-optiques de fluides magnétiques à base de nanoparticules de ferrites de nickel, de cuivre et de zinc." Paris 6, 2003. http://www.theses.fr/2003PA066591.
Повний текст джерелаGwak, Jihye. "Synthèse et caractérisation de membranes inorganiques poreuses présentant des propriétés magnétiques spécifiques." Montpellier 2, 2003. http://www.theses.fr/2003MON20058.
Повний текст джерелаClaracq, Jérôme. "Comportement viscoélastique de fluides magnétorhéologiques." Pau, 2001. http://www.theses.fr/2001PAUU3026.
Повний текст джерелаKhelfallah, Malika. "Magnetic properties of ferrofluids of self-assembled nano-magnets." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS502.
Повний текст джерелаThe main objective of this thesis is to explore the effects of the assembly caused by dipolar magnetic interactions between magnetic nanoparticles suspended in a liquid (so-called ferrofluid) on the magnetic properties of this ferrofluid. It is based on the in-depth characterization of ferrofluids made up of flower-shaped nanoparticles composed of hard magnetic materials such as cobalt ferrite (CoFe2O4), or soft magnetic materials such as manganese ferrite (MnFe2O4) and maghemite (γ- Fe2O3). The magnetic properties of these ferrofluids were measured using standard magnetometry methods, highlighting the significant influence of the chemical composition of the nanoparticles on the macroscopic characteristics of the ferrofluid. In addition, this research focused on the structuring of nanoparticles in liquid ferrofluid, by observing isolated particles, as well as the formation of assemblies and aggregates, using a cryogenic Transmission Electron Microscopy method, with a protocol developed specifically during the thesis. The impact of nanoparticle morphology on their magnetic properties was explored using tomography, three-dimensional imaging of nanoparticles, in collaboration with the IPCMS laboratory in Strasbourg. At the nanoscale, the magnetic properties of the assemblies were measured using electron holography, in collaboration with the CEMES laboratory in Toulouse. The study of binary ferrofluids, defined as ferrofluid mixtures composed of nanoparticles of hard and soft magnetic materials, has enabled new dipolar magnetic interactions to be explored. These new materials allow creating ferrofluids with novel properties that may be of interest for biomedical applications. These binary ferrofluids have revealed original bulk magnetic properties that differ from the simple addition of the individual properties of the original ferrofluids. In addition, the organization of nanoparticles in the binary ferrofluid has been meticulously studied using chemically selective and spatially resolved transmission X-ray microscopy on the HERMES beamline at the SOLEIL synchrotron, yielding chemical mappings of CoFe2O4 and MnFe2O4 nanoparticle assemblies. The separation of the magnetic contributions of the two types of nanoparticles composing the binary ferrofluid was achieved using a magnetometry technique known as the FORC (First Order Reversal Curve) diagram, in collaboration with the IPGP laboratory. FORC diagrams were used to assess the influence of CoFe2O4 nanoparticles on the magnetic behavior of MnFe2O4 nanoparticles in the binary ferrofluid. In addition, spectroscopic measurements of chemically selective magnetization curves were carried out using a liquid cell for in-situ ferrofluid measurements, with experiments carried out on the GALAXIES beamline at the SOLEIL synchrotron. Finally, a comparison of the magnetic properties of different binary ferrofluids was undertaken, by varying the ratio between hard and soft magnetic components, the composition of the soft material as well as the size of the nanoparticles, thus providing a comprehensive perspective on the design and optimization possibilities of these advanced magnetic materials. This thesis establishes a significant relationship between the structuring of nanoparticles in ferrofluid and their magnetic properties
Daveze, Pascal. "Contribution à l'étude des propriétés magnéto-optiques des liquides magnétiques : applications opto-électroniques." Saint-Etienne, 1996. http://www.theses.fr/1996STET4008.
Повний текст джерелаSleiman, Hussein. "Systèmes de suspension semi-active à base de fluide magnétorhéologique pour l’automobile." Paris, ENSAM, 2010. http://www.theses.fr/2010ENAM0020.
Повний текст джерелаIn the automotive field, semi-active suspensions based on magnetorheological (MR) fluid put forward a very interesting compromise between high performance and low power consumption. These devices have adjustable properties and damping parameter that can be controlled thereby optimize in real time their behavior over a wide frequency range of excitations. Under an external magnetic field, the MR fluids see their viscosity increases, with a response time lower than few milliseconds. In this dissertation, we present the design of a MR damper and an experimental test bench for a scaled-down semi-active suspension. The static and dynamic characterization of the damper is shown. Experimental evaluation of the damping force according to dynamic and electrical variables is presented and compared with the specifications used to assess the design method proposed. A Bingham model is proposed for the static behaviour of the damper whereas the dynamic behaviour is explained by a Bouc-Wen model. The last part of this study concerns the development and validation of several control and strategy laws for semi-active suspensions, in particular innovative laws based on model inversion EMR. A comparison performances study from comfort and power consumption point of view of each law is presented. Compared to existing control laws, these new control laws shown very interesting performances while reducing power consumption
Skalski, Pawell. "Analyse des propriétés viscoplastiques du fluide magnétorhéologique dans des conditions de travail d'un amortisseur." Thesis, Orléans, 2011. http://www.theses.fr/2011ORLE2003/document.
Повний текст джерелаThe main goal of this dissertation is a mathematical description and an analysis of viscoplasticproperties of magnetorheological fluid, in operational conditions of the damper’s work, as well as the determining the optimum, in view of indicated values of parameters, size of the gap for the MR fluid to flow, in these devices. A detailed analysis of literature was made. The scope of research work has been limited to two types of magnetorheological devices: the shock absorber LORD RD 1005-3 and the MR damper prototype T-MR SiMR -132 DG. On the basis of performed experiments, it has been estimated i.e.: conventional yield point and the maximum shear stress of analyzed MR fluid, including variable shear rate, intensity of current flowing in a solenoid, liquid’s temperature and the gap height. Identified viscoplastic models were used to develop a simulation that verifies the proposed mathematical model which describes the behaviour of MR fluid in operating gap of machine’s head, with data derived from performed experiments
Thoumire, Olivier. "Influence de la nitruration en lit fluidisé sur les propriétés structurales, mécaniques et magnétiques d'alliages FeSi et FeSiAl." Rouen, 1999. http://www.theses.fr/1999ROUES003.
Повний текст джерелаКниги з теми "Fluides magnétiques – Propriétés magnétiques"
Kalmus, Herbert T. Les propriétés magnétiques du cobalt et du FEp2sCO. Ottawa: Impr. du Gouvernement, 1997.
Знайти повний текст джерелаProperties of materials. New York: Oxford University Press, 1999.
Знайти повний текст джерелаTatiana, Makarova, and Palacio Parada Fernando, eds. Carbon-based magnetism: An overview of the magnetism of metal free carbon-based compounds and materials. Amsterdam: Elsevier, 2006.
Знайти повний текст джерелаH, Bennett Larry, Flom Y, and Vezzoli G. C, eds. Proceedings of high-Tc[subscript] superconductors, magnetic interactions: 11-13 October 1988, Gaithersburg, Maryland, USA. Singapore: World Scientific, 1989.
Знайти повний текст джерелаIntroduction to frustrated magnetism: Materials, experiments, theory. Berlin: Springer, 2011.
Знайти повний текст джерела1958-, Bland A., and Heinrich B. 1940-, eds. Ultrathin magnetic structures. Berlin: Springer, 1994.
Знайти повний текст джерелаKalmus, Herbert T. Les Propriétés Magnétiques du Cobalt Et du Fe2co (Classic Reprint) (French Edition). Forgotten Books, 2018.
Знайти повний текст джерела(Contributor), J. Gilbert Kaufman, Stephen R. Crosby (Contributor), Paul J. Sikorsky (Contributor), and Howard W. Sizek (Contributor), eds. Asm Ready Reference Electrical and Magnetic Properties of Metals (ASM Ready Reference). ASM International, 2000.
Знайти повний текст джерела(Editor), Manfred Fiebig, Victor V. Eremenko (Editor), and Irina E. Chupis (Editor), eds. Magnetoelectric Interaction Phenomena in Crystals: Proceedings of the NATO ARW on Magnetoelectric Interaction Phenomena in Crystals, Sudak, Ukraine from ... II: Mathematics, Physics and Chemistry). Springer, 2004.
Знайти повний текст джерела(Editor), I. Prigogine, and Stuart A. Rice (Editor), eds. Volume 112, Advances in Chemical Physics. Wiley-Interscience, 2000.
Знайти повний текст джерелаЧастини книг з теми "Fluides magnétiques – Propriétés magnétiques"
JAMET, Matthieu, Diogo C. VAZ, Juan F. SIERRA, Josef SVĚTLÍK, Sergio O. VALENZUELA, Bruno DLUBAK, Pierre SENEOR, Frédéric BONELL, and Thomas GUILLET. "La spintronique bidimensionnelle." In Au-delà du CMOS, 155–213. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9127.ch5.
Повний текст джерелаAkeoune, A., J. Claverie, A. Tazaikt, G. Villeneuve, and A. Casalot. "Propriétés structurales, magnétiques et électriques des oxyfluorures V 1-x MxO 2-2x F2x (M = Mg, Ni)." In May 16, 271–82. De Gruyter, 1985. http://dx.doi.org/10.1515/9783112494646-029.
Повний текст джерелаТези доповідей конференцій з теми "Fluides magnétiques – Propriétés magnétiques"
Raymond, S. "Des propriétés électroniques aux excitations magnétiques." In JDN 16 – Diffusion Inélastique des Neutrons pour l'Etude des Excitations dans la Matiére Condensée. Les Ulis, France: EDP Sciences, 2010. http://dx.doi.org/10.1051/sfn/2010002.
Повний текст джерела