Добірка наукової літератури з теми "Fluid-structure interaction – Mathematical models"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fluid-structure interaction – Mathematical models".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Fluid-structure interaction – Mathematical models"
Griffith, Boyce E., and Neelesh A. Patankar. "Immersed Methods for Fluid–Structure Interaction." Annual Review of Fluid Mechanics 52, no. 1 (January 5, 2020): 421–48. http://dx.doi.org/10.1146/annurev-fluid-010719-060228.
Повний текст джерелаBenaroya, Haym, and Rene D. Gabbai. "Modelling vortex-induced fluid–structure interaction." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1868 (November 5, 2007): 1231–74. http://dx.doi.org/10.1098/rsta.2007.2130.
Повний текст джерелаSurana, K. S., B. Blackwell, M. Powell, and J. N. Reddy. "Mathematical models for fluid–solid interaction and their numerical solutions." Journal of Fluids and Structures 50 (October 2014): 184–216. http://dx.doi.org/10.1016/j.jfluidstructs.2014.06.023.
Повний текст джерелаLopes, D., H. Puga, J. C. Teixeira, and S. F. Teixeira. "Fluid–Structure Interaction study of carotid blood flow: Comparison between viscosity models." European Journal of Mechanics - B/Fluids 83 (September 2020): 226–34. http://dx.doi.org/10.1016/j.euromechflu.2020.05.010.
Повний текст джерелаMarom, Gil. "Numerical Methods for Fluid–Structure Interaction Models of Aortic Valves." Archives of Computational Methods in Engineering 22, no. 4 (October 2, 2014): 595–620. http://dx.doi.org/10.1007/s11831-014-9133-9.
Повний текст джерелаTello, Alexis, Ramon Codina, and Joan Baiges. "Fluid structure interaction by means of variational multiscale reduced order models." International Journal for Numerical Methods in Engineering 121, no. 12 (February 27, 2020): 2601–25. http://dx.doi.org/10.1002/nme.6321.
Повний текст джерелаLarsson, Jonas. "A new Hamiltonian formulation for fluids and plasmas. Part 2. MHD models." Journal of Plasma Physics 55, no. 2 (April 1996): 261–78. http://dx.doi.org/10.1017/s0022377800018821.
Повний текст джерелаCottet, Georges-Henri, Emmanuel Maitre, and Thomas Milcent. "Eulerian formulation and level set models for incompressible fluid-structure interaction." ESAIM: Mathematical Modelling and Numerical Analysis 42, no. 3 (April 3, 2008): 471–92. http://dx.doi.org/10.1051/m2an:2008013.
Повний текст джерелаDesjardins, B., and M. J. Esteban. "On Weak Solutions for Fluid‐Rigid Structure Interaction: Compressible and Incompressible Models." Communications in Partial Differential Equations 25, no. 7-8 (January 1999): 263–85. http://dx.doi.org/10.1080/03605300008821553.
Повний текст джерелаColciago, C. M., S. Deparis, and A. Quarteroni. "Comparisons between reduced order models and full 3D models for fluid–structure interaction problems in haemodynamics." Journal of Computational and Applied Mathematics 265 (August 2014): 120–38. http://dx.doi.org/10.1016/j.cam.2013.09.049.
Повний текст джерелаДисертації з теми "Fluid-structure interaction – Mathematical models"
Taylor, Richard. "Finite element modelling of three dimensional fluid-structure interaction." Thesis, Swansea University, 2013. https://cronfa.swan.ac.uk/Record/cronfa42308.
Повний текст джерелаLemmon, Jack David Jr. "Three-dimensional computational modeling of fluid-structure interaction : study of diastolic function in a thin-walled left heart model." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/15912.
Повний текст джерелаHong, Say Yenh. "Fluid structure interaction modeling of pulsatile blood flow in serial pulmonary artery stenoses." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112571.
Повний текст джерелаObando, Vallejos Benjamin. "Mathematical models for the study of granular fluids." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0274/document.
Повний текст джерелаThis Ph.D. thesis aims to obtain and to develop some mathematical models to understand some aspects of the dynamics of heterogeneous granular fluids. More precisely, the expected result is to develop three models, one where the dynamics of the granular material is modeled using a mixture theory approach, and the other two, where we consider the granular fluid is modeled using a multiphase approach involving rigid structures and fluids. More precisely : • In the first model, we obtained a set of equations based on the mixture theory using homogenization tools and a thermodynamic procedure. These equations reflect two essential properties of granular fluids : the viscous nature of the interstitial fluid and a Coulomb-type of behavior of the granular component. With our equations, we study the problem of a dense granular heterogeneous flow, composed by a Newtonian fluid and a solid component in the setting of the Couette flow between two infinite cylinders. • In the second model, we consider the motion of a rigid body in a viscoplastic material. The 3D Bingham equations model this material, and the Newton laws govern the displacement of the rigid body. Our main result is the existence of a weak solution for the corresponding system. • In the third model, we consider the motion of a perfect heat conductor rigid body in a heat conducting Newtonian fluid. The 3D Fourier-Navier-Stokes equations model the fluid, and the Newton laws and the balance of internal energy model the rigid body. Our main result is the existence of a weak solution for the corresponding system. The weak formulation is composed by the balance of momentum and the balance of total energy equation which includes the pressure of the fluid, and it involves a free boundary (due to the motion of the rigid body). To obtain an integrable pressure, we consider a Navier slip boundary condition for the outer boundary and the mutual interface
Romanel, Celso 1952. "DYNAMIC SOIL-STRUCTURE INTERACTION IN A LAYERED MEDIUM." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276511.
Повний текст джерелаJones, Piet. "Structure learning of gene interaction networks." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86650.
Повний текст джерелаENGLISH ABSTRACT: There is an ever increasing wealth of information that is being generated regarding biological systems, in particular information on the interactions and dependencies of genes and their regulatory process. It is thus important to be able to attach functional understanding to this wealth of information. Mathematics can potentially provide the tools needed to generate the necessary abstractions to model the complex system of gene interaction. Here the problem of uncovering gene interactions is cast in several contexts, namely uncovering gene interaction patterns using statistical dependence, cooccurrence as well as feature enrichment. Several techniques have been proposed in the past to solve these, with various levels of success. Techniques have ranged from supervised learning, clustering analysis, boolean networks to dynamical Bayesian models and complex system of di erential equations. These models attempt to navigate a high dimensional space with challenging degrees of freedom. In this work a number of approaches are applied to hypothesize a gene interaction network structure. Three di erent models are applied to real biological data to generate hypotheses on putative biological interactions. A cluster-based analysis combined with a feature enrichment detection is initially applied to a Vitis vinifera dataset, in a targetted analysis. This model bridges a disjointed set of putatively co-expressed genes based on signi cantly associated features, or experimental conditions. We then apply a cross-cluster Markov Blanket based model, on a Saccharomyces cerevisiae dataset. Here the disjointed clusters are bridged by estimating statistical dependence relationship across clusters, in an un-targetted approach. The nal model applied to the same Saccharomyces cerevisiae dataset is a non-parametric Bayesian method that detects probeset co-occurrence given a local background and inferring gene interaction based on the topological network structure resulting from gene co-occurance. In each case we gather evidence to support the biological relevance of these hypothesized interactions by investigating their relation to currently established biological knowledge. The various methods applied here appear to capture di erent aspects of gene interaction, in the datasets we applied them to. The targetted approach appears to putatively infer gene interactions based on functional similarities. The cross-cluster-analysis-based methods, appear to capture interactions within pathways. The probabilistic-co-occurrence-based method appears to generate modules of functionally related genes that are connected to potentially explain the underlying experimental dynamics.
AFRIKAANSE OPSOMMING: Daar is 'n toenemende rykdom van inligting wat gegenereer word met betrekking tot biologiese stelsels, veral inligting oor die interaksies en afhanklikheidsverhoudinge van gene asook hul regulatoriese prosesse. Dit is dus belangrik om in staat te wees om funksionele begrip te kan heg aan hierdie rykdom van inligting. Wiskunde kan moontlik die gereedskap verskaf en die nodige abstraksies bied om die komplekse sisteem van gene interaksies te modelleer. Hier is die probleem met die beraming van die interaksies tussen gene benader uit verskeie kontekste uit, soos die ontdekking van patrone in gene interaksie met behulp van statistiese afhanklikheid , mede-voorkoms asook funksie verryking. Verskeie tegnieke is in die verlede voorgestel om hierdie probleem te benader, met verskillende vlakke van sukses. Tegnieke het gewissel van toesig leer , die groepering analise, boolean netwerke, dinamiese Bayesian modelle en 'n komplekse stelsel van di erensiaalvergelykings. Hierdie modelle poog om 'n hoë dimensionele ruimte te navigeer met uitdagende grade van vryheid. In hierdie werk word 'n aantal benaderings toegepas om 'n genetiese interaksie netwerk struktuur voor te stel. Drie verskillende modelle word toegepas op werklike biologiese data met die doel om hipoteses oor vermeende biologiese interaksies te genereer. 'n Geteikende groeperings gebaseerde analise gekombineer met die opsporing van verrykte kenmerke is aanvanklik toegepas op 'n Vitis vinifera datastel. Hierdie model verbind disjunkte groepe van vermeende mede-uitgedrukte gene wat gebaseer is op beduidende verrykte kenmerke, hier eksperimentele toestande . Ons pas dan 'n tussen groepering Markov Kombers model toe, op 'n Saccharomyces cerevisiae datastel. Hier is die disjunkte groeperings ge-oorbrug deur die beraming van statistiese afhanklikheid verhoudings tussen die elemente in die afsondelike groeperings. Die nale model was ons toepas op dieselfde Saccharomyces cerevisiae datastel is 'n nie- parametriese Bayes metode wat probe stelle van mede-voorkommende gene ontdek, gegee 'n plaaslike agtergrond. Die gene interaksie is beraam op grond van die topologie van die netwerk struktuur veroorsaak deur die gesamentlike voorkoms gene. In elk van die voorgenome gevalle word ons hipotese vermoedelik ondersteun deur die beraamde gene interaksies in terme van huidige biologiese kennis na te vors. Die verskillende metodes wat hier toegepas is, modelleer verskillende aspekte van die interaksies tussen gene met betrekking tot die datastelle wat ons ondersoek het. In die geteikende benadering blyk dit asof ons vermeemde interaksies beraam gebaseer op die ooreenkoms van biologiese funksies. Waar die a eide gene interaksies moontlik gebaseer kan wees op funksionele ooreenkomste tussen die verskeie gene. In die analise gebaseer op die tussen modelering van gene groepe, blyk dit asof die verhouding van gene in bekende biologiese substelsels gemodelleer word. Dit blyk of die model gebaseer op die gesamentlike voorkoms van gene die verband tussen groepe van funksionele verbonde gene modelleer om die onderliggende dinamiese eienskappe van die experiment te verduidelik.
Chin, David 1982. "Wall shear patterns of a 50% asymmetric stenosis model using photochromic molecular flow visualization." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111613.
Повний текст джерелаMagal, Rithvik. "Development and validation of a mathematical model for a monotube automotive damper." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22951/.
Повний текст джерелаRomanel, Celso. "A global-local approach for dynamic soil-structure interaction analysis of deeply embedded structures in a layered medium." Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184762.
Повний текст джерелаRuckman, Christopher E. "A regression-based approach for simulating feedfoward active noise control, with application to fluid-structure interaction problems." Diss., This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-06062008-170941/.
Повний текст джерелаКниги з теми "Fluid-structure interaction – Mathematical models"
Fluid structure interaction: Applied numerical methods. Chichester: Wiley, 1995.
Знайти повний текст джерелаWang, Xiaodong Sheldon. Fundamentals of fluid-solid interactions: Analytical and computational approaches. Amsterdam: Elsevier, 2008.
Знайти повний текст джерелаJournées numériques de Besançon (1992 Les Moussières, France). Computational methods for fluid-structure interaction: Proceedings of the Journées numériques de Besançon, 1992. Edited by Crolet J. M and Ohayon R. Harlow: Longman Scientific & Technical, 1994.
Знайти повний текст джерелаKolář, Vladimír. Modelling of soil-structure interaction. Amsterdam: Elsevier, 1989.
Знайти повний текст джерелаKolář, Vladimír. Modelling of soil-structure interaction. Amsterdam: Elsevier, 1989.
Знайти повний текст джерелаKolář, Vladimír. Studie nového modelu podloží staveb. Praha: Academia, nakl. Československé akademie věd, 1986.
Знайти повний текст джерелаDłużewski, Janusz Maciej. Numerical modelling of soil-structure interactions in consolidation problems. Warszawa: Wydawnictwa Politechniki Warszawskiej, 1993.
Знайти повний текст джерелаInternational, Workshop on Physical Modelling of Flow and Dispersion Phenomena (2003 Prato Italy). Proceedings of PHYSMOD2003: International Workshop on Physical Modelling of Flow and Dispersion phenomena, 3-5 September 2003, Prato, Italy. Firenze: Firenze University Press, 2003.
Знайти повний текст джерелаLeenders, Roger Th A. J. Structure and influence: Statistical models for the dynamics of actor attributes, network structure, and their interdependence. Amsterdam: Thesis Publishers, 1995.
Знайти повний текст джерелаKuramoto, Y. Dynamics of one-dimensional quantum systems: Inverse-square interaction models. Cambridge, UK: Cambridge University Press, 2009.
Знайти повний текст джерелаЧастини книг з теми "Fluid-structure interaction – Mathematical models"
Bodnár, Tomáš, Antonio Fasano, and Adélia Sequeira. "Mathematical Models for Blood Coagulation." In Fluid-Structure Interaction and Biomedical Applications, 483–569. Basel: Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0822-4_7.
Повний текст джерелаKaltenbacher, Manfred, and Stefan Schoder. "Physical Models for Flow: Acoustic Interaction." In Advances in Mathematical Fluid Mechanics, 265–353. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67845-6_6.
Повний текст джерелаTriggiani, Roberto. "Linear parabolic-hyperbolic fluid-structure interaction models. The case of static interface." In Mathematical Theory of Evolutionary Fluid-Flow Structure Interactions, 53–171. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92783-1_2.
Повний текст джерелаBukal, Mario, and Boris Muha. "A Review on Rigorous Derivation of Reduced Models for Fluid–Structure Interaction Systems." In Advances in Mathematical Fluid Mechanics, 203–37. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-68144-9_8.
Повний текст джерелаMaday, Yvon. "Analysis of coupled models for fluid-structure interaction of internal flows." In Cardiovascular Mathematics, 279–306. Milano: Springer Milan, 2009. http://dx.doi.org/10.1007/978-88-470-1152-6_8.
Повний текст джерелаAvalos, George, and Francesca Bucci. "Exponential Decay Properties of a Mathematical Model for a Certain Fluid-Structure Interaction." In Springer INdAM Series, 49–78. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11406-4_3.
Повний текст джерелаBhattacharya, Paritosh, Susmita Paul, and K. S. Choudhury. "Analysis on Food Web Structure, Interaction, Strength and Stability of Different Mathematical Models of Prey and Predator." In Lecture Notes in Electrical Engineering, 207–17. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1817-3_22.
Повний текст джерелаKukavica, Igor, and Amjad Tuffaha. "An introduction to a fluid-structure model." In Mathematical Theory of Evolutionary Fluid-Flow Structure Interactions, 1–52. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92783-1_1.
Повний текст джерелаČanić, Sunčica. "Fluid-Structure Interaction with Incompressible Fluids." In Progress in Mathematical Fluid Dynamics, 15–87. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54899-5_2.
Повний текст джерелаHasnedlová-Prokopová, J., M. Feistauer, A. Kosík, and V. Kučera. "Two Dimensional Compressible Fluid-Structure Interaction Model Using DGFEM." In Numerical Mathematics and Advanced Applications 2011, 361–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33134-3_39.
Повний текст джерелаТези доповідей конференцій з теми "Fluid-structure interaction – Mathematical models"
Elliott, Novak S. J. "Cerebrospinal Fluid-Structure Interactions: The Development of Mathematical Models Accessible to Clinicians." In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-29096.
Повний текст джерелаHamadiche, Mahmoud. "Fluid and Structure Interaction in Cochlea’s Similar Geometry." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30019.
Повний текст джерелаLiang, Yue, Jiansheng Chen, and Liang Chen. "Mathematical Model for Piping Erosion Based on Fluid-Solid Interaction and Soils Structure." In GeoHunan International Conference 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/47628(407)14.
Повний текст джерелаEbna Hai, Bhuiyan Shameem Mahmood, and Markus Bause. "Adaptive Multigrid Methods for Extended Fluid-Structure Interaction (eXFSI) Problem: Part I — Mathematical Modelling." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53265.
Повний текст джерелаNeiland, V. "Mathematical models of steady and unsteady flows with a strong interaction of non-vortex and vortex flows." In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1979.
Повний текст джерелаEbna Hai, Bhuiyan Shameem Mahmood, Markus Bause, and Paul Kuberry. "Finite Element Approximation of the Extended Fluid-Structure Interaction (eXFSI) Problem." In ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fedsm2016-7506.
Повний текст джерелаTemis, Joury M., Alexey V. Selivanov, and Ivan J. Dzeva. "Finger Seal Design Based on Fluid-Solid Interaction Model." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95701.
Повний текст джерелаEbna Hai, Bhuiyan Shameem Mahmood, and Markus Bause. "Numerical Modeling and Approximation of the Coupling Lamb Wave Propagation With Fluid-Structure Interaction Problem." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87448.
Повний текст джерелаRosetti, Guilherme Feitosa, Guilherme Vaz, and André Luís Condino Fujarra. "On the Effects of Turbulence Modeling on the Fluid-Structure Interaction of a Rigid Cylinder." In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54989.
Повний текст джерелаRouthu, Manoha, and A. G. Agwu Nnanna. "Mathematical Formulation of Transport Phenomena in Buoyancy-Driven Nanofluids." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13268.
Повний текст джерела