Добірка наукової літератури з теми "Fluid mechanics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fluid mechanics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Fluid mechanics"

1

Nishihara, Kazuyoshi, and Koji Mori. "OS22-11 Mechanical Active Noise Control for Multi Blade Fan(Fluid Machinery and Functional Fluids,OS22 Experimental method in fluid mechanics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 275. http://dx.doi.org/10.1299/jsmeatem.2015.14.275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ido, Yasushi, Hiroki Yokoyama, and Hitoshi Nishida. "OS22-13 Viscous Property of Magnetic Compound Fluids Containing Needle-like Particles(Fluid Machinery and Functional Fluids,OS22 Experimental method in fluid mechanics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 277. http://dx.doi.org/10.1299/jsmeatem.2015.14.277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bland, J. A., D. Pnueli, and C. Gutfinger. "Fluid Mechanics." Mathematical Gazette 78, no. 482 (July 1994): 221. http://dx.doi.org/10.2307/3618595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Quinlan, Suzanne. "Fluid mechanics." Nursing Standard 14, no. 41 (June 28, 2000): 26. http://dx.doi.org/10.7748/ns.14.41.26.s42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Radev, St, F. R. A. Onofri, A. Lenoble, and L. Tadrist. "Fluid Mechanics." Journal of Theoretical and Applied Mechanics 43, no. 2 (June 1, 2013): 5–30. http://dx.doi.org/10.2478/jtam-2013-0011.

Повний текст джерела
Анотація:
Abstract The paper review key results [1-14] of the joint researches conducted by IMech and IUSTI. In the First part, we review models and experimental results on the linear and nonlinear instability of a capillary jet including both axisymmetric and nonaxisymmetric disturbances. In the Second part, results on draw resonances, occurring during a glass fibre process are reviewed, as well as the unique optical models and methods developed to perform these studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liggett, J. A., and B. E. Larock. "Fluid Mechanics." Journal of Hydraulic Engineering 120, no. 10 (October 1994): 1233. http://dx.doi.org/10.1061/(asce)0733-9429(1994)120:10(1233).

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Barnes, H. A. "Fluid Mechanics." Journal of Non-Newtonian Fluid Mechanics 37, no. 2-3 (January 1990): 387. http://dx.doi.org/10.1016/0377-0257(90)90014-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Drazin, Philip. "Fluid mechanics." Physics Education 22, no. 6 (November 1, 1987): 350–54. http://dx.doi.org/10.1088/0031-9120/22/6/004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gartshore, I. S. "Fluid mechanics." International Journal of Heat and Fluid Flow 10, no. 4 (December 1989): 372–73. http://dx.doi.org/10.1016/0142-727x(89)90033-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Saegusa, Koyo, Shohei Shinoki, and Hidemasa Takana. "OS22-12 Visualization and Analysis on Electrospray Formation with Ionic Liquid(Fluid Machinery and Functional Fluids,OS22 Experimental method in fluid mechanics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 276. http://dx.doi.org/10.1299/jsmeatem.2015.14.276.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Fluid mechanics"

1

Wylie, Jonathan James. "Geological fluid mechanics." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hildyard, M. L. "The fluid mechanics of filters." Thesis, University of Leeds, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233871.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Goode, Peter Allan. "Momentum transfer across fluid-fluid interfaces in porous media." Thesis, Heriot-Watt University, 1991. http://hdl.handle.net/10399/847.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Coffey, Christopher J. "The fluid mechanics of emptying boxes." Thesis, Imperial College London, 2006. http://hdl.handle.net/10044/1/11978.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Connick, Owen. "The fluid mechanics of hybrid ventilation." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/39347.

Повний текст джерела
Анотація:
A low-energy ventilation system is often incorporated as one of the major energy saving measures in sustainable building design. These systems often employ a hybrid strategy in which mechanical equipment, governed by a computer controlled building management system, is used to assist or manage a naturally-driven airflow - the latter occurring due to the density difference between warm air inside and cooler air outside the room. Hybrid ventilation flows are poorly understood and the principal aim of the research was to enhance our understanding of the fluid mechanics through complementary theoretical and experimental modelling. The research begins by comparing solely natural and solely mechanical ventilation of a room. The hybrid ventilation of a room is then considered under the combined effect of naturally occurring and mechanically imposed pressure differences, in which a mechanical fan imposes a fixed airflow rate through one vent, thereby altering the natural pressure distribution. Simplified theoretical models, to describe the ventilation airflow rate through a room and the resulting mean air temperature, were developed for solely natural ventila- tion, solely mechanical ventilation and, finally, hybrid ventilation. At each stage the theoretical model was compared with results from small-scale experiments, and good agreement was demonstrated. From the theoretical investigation, the neutral pressure level emerged as a key pa- rameter in determining the characteristics of the ventilation airflow. Moreover, it was found that the airflow rate through an open vent can be controlled remotely by managing the position of the neutral pressure level, and that this can be achieved by varying the magnitude of the mechanically imposed airflow rate. Experimental investigations revealed that, as the neutral pressure level approached the plane of a vent, quasi-steady pulsing flows and bi-directional or exchange flows were observed. The complicated fluid dynamics involved in these flows provides inspiration for significant future work.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

PAULINO, RIVANIA HERMOGENES. "USING MULTIGRID TECHNIQUES ON FLUID MECHANICS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1997. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19462@1.

Повний текст джерела
Анотація:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Este trabalho trata da solução numérica das equações de Navier-Stokes, na forma vorticidade-função corrente, via método das Diferenças Finitas e técnicas de aceleração baseadas no uso de malhas múltiplas. Embora outras opções tenham sido consideradas, a que melhor funcionou tratou o problema de forma não acoplada: a solução da equação de vorticidade foi obtida pela uso desta aceleração e a solução da equação de função corrente, uma equação puramente elíptica, foi resolvida via método das relaxações sucessivas. O código desenvolvido foi aplicado a diversos problemas, inclusive ao problema da cavidade com tampa móvel, em diversos números de Reynolds, típico no teste de simuladores em Dinâmica dos Fluidos. Foram testados um método clássico (armazenamento da correção) e o método FAZ (Full Approximation Storage). Os resultados obtidos mostram claramente os ganhos computacionais obtidos na formulação escolhida. Expressando em percentual, valores com 80 por cento de ganho foram obtidos se comparados os resultados do método multigrid com o método iterativo básico utilizado (S.O.R.), indicando o potencial do uso desta técnica para problemas mais complexo incluindo aqueles em coordenadas generalizadas.
This works deals with the numerical solution of the Navier-Stokes equations, written in the stream function-vorticity form, by the finite difference method and acceleration techniques using multiple meshes. Although other solution schemes have been investigated, best results were obtained by treating the problem in a non-coupled form: the solution for the vorticity equation was obtained by the multigrid method and the solution of the streamfunction equation, which is purely elliptic, was solved by the S.O.R. (Successive over relaxation method). The computer code was applied to several problems, including the wall driven problem considering a wide range of Reynolds numbers, which is a typical benchmark problem for testing fluid-dynamic simulations. The classical method (storage of the correction) and the methos FAS (Full Approximation Storage) have been tested. The results obtained clearly show that a very efficient computational scheme has been achieved with the multigrid method. For example, when comparing this method with the basic S.O.R. method, relative gains in the order of 80 per cent have been obtained. This indicates that the present technique has potential use in more complicated fluid dynamics problems including those involving generalized coordinates.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Heimerdinger, Daniel John. "Fluid mechanics in a magnetoplasmadynamic thruster." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/34030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lea, Patrick D. "Fluid Structure Interaction with Applications in Structural Failure." Thesis, Northwestern University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3605735.

Повний текст джерела
Анотація:

Methods for modeling structural failure with applications for fluid structure interaction (FSI) are developed in this work. Fracture as structural failure is modeled in this work by both the extended finite element method (XFEM) and element deletion. Both of these methods are used in simulations coupled with fluids modeled by computational fluid dynamics (CFD). The methods presented here allow the fluid to pass through the fractured areas of the structure without any prior knowledge of where fracture will occur. Fracture modeled by XFEM is compared to an experimental result as well as a test problem for two phase coupling. The element deletion results are compared with an XFEM test problem, showing the differences and similarities between the two methods.

A new method for modeling fracture is also proposed in this work. The new method combines XFEM and element deletion to provide a robust implementation of fracture modeling. This method integrates well into legacy codes that currently have element deletion functionality. The implementation allows for application by a wide variety of users that are familiar with element deletion in current analysis tools. The combined method can also be used in conjunction with the work done on fracture coupled with fluids, discussed in this work.

Structural failure via buckling is also examined in an FSI framework. A new algorithm is produced to allow for structural subcycling during the collapse of a pipe subjected to a hydrostatic load. The responses of both the structure and the fluid are compared to a non-subcycling case to determine the accuracy of the new algorithm.

Overall this work looks at multiple forms of structural failure induced by fluids modeled by CFD. The work extends what is currently possible in FSI simulations.

Стилі APA, Harvard, Vancouver, ISO та ін.
9

Woods, Andrew W. "Geophysical fluid flows." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306472.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bocchi, Edoardo. "Compressible-incompressible transitions in fluid mechanics : waves-structures interaction and rotating fluids." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0279/document.

Повний текст джерела
Анотація:
Ce manuscrit porte sur les transitions compressible-incompressible dans les équations aux dérivées partielles de la mécanique des fluides. On s'intéresse à deux problèmes : les structures flottantes et les fluides en rotation. Dans le premier problème, l'introduction d'un objet flottant dans les vagues induit une contrainte sur le fluide et les équations gouvernant le mouvement acquièrent une structure compressible-incompressible. Dans le deuxième problème, le mouvement de fluides géophysiques compressibles est influencé par la rotation de la Terre. L'étude de la limite à rotation rapide montre que le champ vectoriel de vitesse tend vers une configuration horizontale et incompressible.Les structures flottantes constituent un exemple particulier d'interaction fluide-structure, où un solide partiellement immergé flotte à la surface du fluide. Ce problème mathématique modélise le mouvement de convertisseurs d'énergie marine. En particulier, on s'intéresse aux bouées pilonnantes, installées proche de la côte où les modèles asymptotiques en eaux peu profondes sont valables. On étudie les équations de Saint-Venant axisymétriques en dimension deux avec un objet flottant à murs verticaux se déplaçant seulement verticalement. Les hypothèses sur le solide permettent de supprimer le problème à bord libre associé avec la ligne de contact entre l'air, le fluide et le solide. Les équations pour le fluide dans le domaine extérieur au solide sont donc écrites comme un problème au bord quasi-linéaire hyperbolique. Celui-ci est couplé avec une EDO non-linéaire du second ordre qui est dérivée de l'équation de Newton pour le mouvement libre du solide. On montre le caractère bien posé localement en temps du système couplé lorsque que les données initiales satisfont des conditions de compatibilité afin de générer des solutions régulières.Ensuite on considère une configuration particulière: le retour à l'équilibre. Il s'agit de considérer un solide partiellement immergé dans un fluide initialement au repos et de le laisser retourner à sa position d'équilibre. Pour cela, on utilise un modèle hydrodynamique différent, où les équations sont linearisées dans le domaine extérieur, tandis que les effets non-linéaires sont considérés en dessous du solide. Le mouvement du solide est décrit par une équation intégro-différentielle non-linéaire du second ordre qui justifie rigoureusement l'équation de Cummins, utilisée par les ingénieurs pour les mouvements des objets flottants. L'équation que l'on dérive améliore l'approche linéaire de Cummins en tenant compte des effets non-linéaires. On montre l'existence et l'unicité globale de la solution pour des données petites en utilisant la conservation de l'énergie du système fluide-structure.Dans la deuxième partie du manuscrit, on étudie les fluides en rotation rapide. Ce problème mathématique modélise le mouvement des flots géophysiques à grandes échelles influencés par la rotation de la Terre. Le mouvement est aussi affecté par la gravité, ce qui donne lieu à une stratification de la densité dans les fluides compressibles. La rotation génère de l'anisotropie dans les flots visqueux et la viscosité turbulente verticale tend vers zéro dans la limite à rotation rapide. Notre interêt porte sur ce problème de limite singulière en tenant compte des effets gravitationnels et compressibles. On étudie les équations de Navier-Stokes-Coriolis anisotropes compressibles avec force gravitationnelle dans la bande infinie horizontale avec une condition au bord de non glissement. Celle-ci et la force de Coriolis donnent lieu à l'apparition des couches d'Ekman proche du bord. Dans ce travail on considère des données initiales bien préparées. On montre un résultat de stabilité des solutions faibles globales pour des lois de pression particulières. La dynamique limite est décrite par une équation quasi-géostrophique visqueuse en dimension deux avec un terme d'amortissement qui tient compte des couches limites
This manuscript deals with compressible-incompressible transitions arising in partial differential equations of fluid mechanics. We investigate two problems: floating structures and rotating fluids. In the first problem, the introduction of a floating object into water waves enforces a constraint on the fluid and the governing equations turn out to have a compressible-incompressible structure. In the second problem, the motion of geophysical compressible fluids is affected by the Earth's rotation and the study of the high rotation limit shows that the velocity vector field tends to be horizontal and with an incompressibility constraint.Floating structures are a particular example of fluid-structure interaction, in which a partially immersed solid is floating at the fluid surface. This mathematical problem models the motion of wave energy converters in sea water. In particular, we focus on heaving buoys, usually implemented in the near-shore zone, where the shallow water asymptotic models describe accurately the motion of waves. We study the two-dimensional nonlinear shallow water equations in the axisymmetric configuration in the presence of a floating object with vertical side-walls moving only vertically. The assumptions on the solid permit to avoid the free boundary problem associated with the moving contact line between the air, the water and the solid. Hence, in the domain exterior to the solid the fluid equations can be written as an hyperbolic quasilinear initial boundary value problem. This couples with a nonlinear second order ODE derived from Newton's law for the free solid motion. Local in time well-posedness of the coupled system is shown provided some compatibility conditions are satisfied by the initial data in order to generate smooth solutions.Afterwards, we address a particular configuration of this fluid-structure interaction: the return to equilibrium. It consists in releasing a partially immersed solid body into a fluid initially at rest and letting it evolve towards its equilibrium position. A different hydrodynamical model is used. In the exterior domain the equations are linearized but the nonlinear effects are taken into account under the solid. The equation for the solid motion becomes a nonlinear second order integro-differential equation which rigorously justifies the Cummins equation, assumed by engineers to govern the motion of floating objects. Moreover, the equation derived improves the linear approach of Cummins by taking into account the nonlinear effects. The global existence and uniqueness of the solution is shown for small data using the conservation of the energy of the fluid-structure system.In the second part of the manuscript, highly rotating fluids are studied. This mathematical problem models the motion of geophysical flows at large scales affected by the Earth's rotation, such as massive oceanic and atmospheric currents. The motion is also influenced by the gravity, which causes a stratification of the density in compressible fluids. The rotation generates anisotropy in viscous flows and the vertical turbulent viscosity tends to zero in the high rotation limit. Our interest lies in this singular limit problem taking into account gravitational and compressible effects. We study the compressible anisotropic Navier-Stokes-Coriolis equations with gravitational force in the horizontal infinite slab with no-slip boundary condition. Both this condition and the Coriolis force cause the apparition of Ekman layers near the boundary. They are taken into account in the analysis by adding corrector terms which decay in the interior of the domain. In this work well-prepared initial data are considered. A stability result of global weak solutions is shown for power-type pressure laws. The limit dynamics is described by a two-dimensional viscous quasi-geostrophic equation with a damping term that accounts for the boundary layers
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Fluid mechanics"

1

H, Power, ed. Bio-fluid mechanics. Southampton: Computational Mechanics Publications, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Spurk, Joseph H. Fluid mechanics. 2nd ed. Berlin: Springer, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Durst, Franz. Fluid Mechanics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-71343-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Spurk, Joseph H. Fluid Mechanics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-58277-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Boxer, G. Fluid Mechanics. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-09805-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Spurk, Joseph H., and Nuri Aksel. Fluid Mechanics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-30259-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Widden, Martin. Fluid Mechanics. London: Macmillan Education UK, 1996. http://dx.doi.org/10.1007/978-1-349-11334-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Douglas, J. F. Fluid mechanics. 3rd ed. Harlow: Longman Scientific & Technical, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Brewster, Hilary D. Fluid mechanics. Jaipur, India: Oxford Book Co., 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

White, Frank M. Fluid mechanics. 7th ed. New York, N.Y: McGraw Hill, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Fluid mechanics"

1

Larson, Mats G., and Fredrik Bengzon. "Fluid Mechanics." In Texts in Computational Science and Engineering, 289–325. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33287-6_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Betounes, David. "Fluid Mechanics." In Partial Differential Equations for Computational Science, 245–98. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2198-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lawson, Thomas B. "Fluid Mechanics." In Fundamentals of Aquacultural Engineering, 84–110. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-7047-9_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ng, Xian Wen. "Fluid Mechanics." In Engineering Problems for Undergraduate Students, 579–728. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13856-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kaviany, M. "Fluid Mechanics." In Mechanical Engineering Series, 17–118. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4254-3_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kaviany, M. "Fluid Mechanics." In Mechanical Engineering Series, 429–508. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4254-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Knudson, Duane. "Fluid Mechanics." In Fundamentals of Biomechanics, 191–209. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-5298-4_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kuwana, Kazunori. "Fluid Mechanics." In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, 1–8. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-51727-8_149-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kaviany, M. "Fluid Mechanics." In Mechanical Engineering Series, 15–113. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-0412-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kaviany, M. "Fluid Mechanics." In Mechanical Engineering Series, 385–463. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-0412-8_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Fluid mechanics"

1

MANOFF, S. "LAGRANGIAN FLUID MECHANICS." In Proceedings of the 5th International Workshop on Complex Structures and Vector Fields. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810144_0017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vradis, George C. "Heat Transfer and Fluid Mechanics of Herschel-Bulkley Fluids." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0452.

Повний текст джерела
Анотація:
Abstract A comprehensive review of the heat transfer phenomena related to the flow of purely viscous non-Newtonian fluids exhibiting a yield stress in some simple and complex geometries is presented. Both attached and separated flows of Bingham and Herschel-Bulkley fluids are discussed. The presence of a yield-stress is shown to significantly impact the heat transfer and flow characteristics, as compared to those in the case of a Newtonian fluid, in particular in the cases where separation of the flow would be expected.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

"Fluid mechanics, turbulence, wind power." In CONV-09. Proceedings of International Symposium on Convective Heat and Mass Transfer in Sustainable Energy. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/ichmt.2009.conv.910.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Boettcher, Konrad, Marcel Schade, Claudius Terkowsky, and Tobias R. Ortelt. "Virtual Labs in Fluid Mechanics." In 2023 6th Experiment@ International Conference (exp.at'23). IEEE, 2023. http://dx.doi.org/10.1109/exp.at2358782.2023.10545825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Redekopp, L. "The resonantly-forced Korteweg-DeVries equation and sediment resuspension." In Theroretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sobieczky, Helmut. "Theoretical knowledge base for accelerated transonic design." In Theroretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cramer, M. "Transonic flows of arbitrary gases." In Theroretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cole, J., L. Cook, and G. Schleiniger. "An unsteady transonic flow - Flow about a suddenly deflected wedge." In Theroretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kluwick, A., and G. Lindner. "Perturbation analysis of steady and unsteady transonic flow through cascades." In Theroretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Malmuth, Norman, and Julian Cole. "Asymptotic theory of slender configurations in and out of wind tunnels." In Theroretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Fluid mechanics"

1

Monin, A. S., and A. M. Yaglom. Statistical Fluid Mechanics: The Mechanics of Turbulence. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada398728.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Puterbaugh, Steven L., David Car, and S. Todd Bailie. Turbomachinery Fluid Mechanics and Control. Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada514567.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Martinez-Sanchez, Manuel. Physical Fluid Mechanics in MPD Thrusters. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada190309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Anderson, D. M., G. B. McFadden, and A. A. Wheeler. Diffuse-interface methods in fluid mechanics. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.6018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Car, David, and Steven L. Puterbaugh. Fluid Mechanics of Compression System Flow Control. Fort Belvoir, VA: Defense Technical Information Center, July 2005. http://dx.doi.org/10.21236/ada444617.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bdzil, John Bohdan. Fluid Mechanics of an Obliquely Mounted MIV Gauge. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1429987.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lipfert, F., M. Daum, G. Hendrey, and K. Lewin. Fluid mechanics and spatial performance of face arrays. Office of Scientific and Technical Information (OSTI), May 1989. http://dx.doi.org/10.2172/5292902.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Seume, J., G. Friedman, and T. W. Simon. Fluid mechanics experiments in oscillatory flow. Volume 1. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/10181069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Leidermark, Daniel, and Magnus Andersson, eds. Reports in Applied Mechanics 2022. Linköping University Electronic Press, February 2024. http://dx.doi.org/10.3384/9789180754156.

Повний текст джерела
Анотація:
This is the first volume of the concurring series of Reports in Applied Mechanics, which is based on the outcome of the advanced project course TMPM07 in Applied Mechanics at Link¨oping University during the autumn of 2022. The course lay-up is based on several industrial related projects within the field of Solid Mechanics, concerning fatigue, topology optimisation, structural dimensioning, contacts etc, and Fluid Mechanics, concerning fluid dynamics, flow, aerodynamics, heat transfer etc. The students tackle industry relevant projects in close collaboration with industry from near and neighbouring regions and work in project groups to solve the given tasks within the time limit of the course. Close collaboration with the industry is necessary to define planning, update and feedback for further evaluation at the industry. Three projects were performed during the course of 2022, two within Solid Mechanics and one in Fluid Mechanics. The projects were all performed in tight collaboration with industry partners, and had a close application to real industrial problems. A good opportunity for the students to show-off all their gained knowledge and apply in the best possible way to make innovative solutions in the respective projects. Something they all managed to do with success!
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Homsy, George M. Fundamental Studies of Fluid Mechanics: Stability in Porous Media. Office of Scientific and Technical Information (OSTI), February 2014. http://dx.doi.org/10.2172/1120125.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії