Добірка наукової літератури з теми "Flow body"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Flow body".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Flow body"

1

Beraia, M., and G. Beraia. "Energy/information dissipation and blood flow in human body." Cardiology Research and Reports 3, no. 2 (May 10, 2021): 01–08. http://dx.doi.org/10.31579/2692-9759/017.

Повний текст джерела
Анотація:
The amount of work done to displace blood in systemic arteries and capillaries exceeds the work done by the left ventricle. Besides, at the heartbeat, electromagnetic energy dissipates from the heart to the whole human body. For the problem study, the dielectric spectroscopy method was used. Ringer’s, amino acid solution, and heparinized venous blood were affected by the external electromagnetic oscillations (100-65000Hz, 1-8MHz.) in 17 healthy individuals. Correlations were noted between the initial and induced signal forms/frequencies according to the impedance of the system. The electric impulse from the heart initiates an oscillating electric field around the charged cells/particles and an emerging repulsing electromagnetic force, based on the electroacoustic phenomena, promotes the blood flow, in addition to the pulse pressure from the myocardial contraction. Blood conduces mechanical, electromagnetic waves of different frequencies and transmits energy/information to implement the spontaneous chemical processes in the human body.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

BISWAS, Debasish, and Tomohiko JIMBO. "J101014 Studies on Flow Induced Vibration of Cylindrical Body Based on Coupled Solution of Flow and Structure." Proceedings of Mechanical Engineering Congress, Japan 2012 (2012): _J101014–1—_J101014–5. http://dx.doi.org/10.1299/jsmemecj.2012._j101014-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Smith, F. T., and P. Servini. "Channel Flow Past A Near-Wall Body." Quarterly Journal of Mechanics and Applied Mathematics 72, no. 3 (June 8, 2019): 359–85. http://dx.doi.org/10.1093/qjmam/hbz009.

Повний текст джерела
Анотація:
Summary Near-wall behaviour arising when a finite sized body moves in a channel flow is investigated for high flow rates. This is over the interactive-flow length scale that admits considerable upstream influence. The focus is first on quasi-steady two-dimensional flow past a thin body in the outer reaches of one of the viscous wall layers. The jump conditions near the front of the body play an important part in the whole solution which involves an unusual multi-structured flow due to the presence of the body: flows above, below, ahead of and behind the body interact fully. Analytical solutions are presented and the repercussions for shorter and longer bodies are then examined. Second, implications are followed through for the movement of a free body in a dynamic fluid–body interaction. Particular key findings are that instability persists for all body lengths, the growth rate decreases like the $1/4$ power of distance as the body approaches the wall, and lift production on the body is dominated by high pressures from an unexpected flow region emerging on the front of the body.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Murad, Abdullah. "Inviscid Uniform Shear Flow past a Smooth Concave Body." International Journal of Engineering Mathematics 2014 (July 23, 2014): 1–7. http://dx.doi.org/10.1155/2014/426593.

Повний текст джерела
Анотація:
Uniform shear flow of an incompressible inviscid fluid past a two-dimensional smooth concave body is studied; a stream function for resulting flow is obtained. Results for the same flow past a circular cylinder or a circular arc or a kidney-shaped body are presented as special cases of the main result. Also, a stream function for resulting flow around the same body is presented for an oncoming flow which is the combination of a uniform stream and a uniform shear flow. Possible fields of applications of this study include water flows past river islands, the shapes of which deviate from circular or elliptical shape and have a concave region, or past circular arc-shaped river islands and air flows past concave or circular arc-shaped obstacles near the ground.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

SUD, V., and G. SEKHON. "Arterial flow under periodic body acceleration." Bulletin of Mathematical Biology 47, no. 1 (1985): 35–52. http://dx.doi.org/10.1016/s0092-8240(85)90004-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Avent, James. "Flow Cytometry in Body Fluid Analysis." Clinics in Laboratory Medicine 5, no. 2 (June 1985): 389–403. http://dx.doi.org/10.1016/s0272-2712(18)30876-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Svettsov, V. V. "Nonstationary supersonic flow around a body." Technical Physics 44, no. 12 (December 1999): 1484–86. http://dx.doi.org/10.1134/1.1259554.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sud, V. K., and G. S. Sekhon. "Arterial flow under periodic body acceleration." Bulletin of Mathematical Biology 47, no. 1 (January 1985): 35–52. http://dx.doi.org/10.1007/bf02459645.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chaturani, P., and A. S. A. Wassf Isaac. "Blood flow with body acceleration forces." International Journal of Engineering Science 33, no. 12 (October 1995): 1807–20. http://dx.doi.org/10.1016/0020-7225(95)00027-u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Matsumoto, M., N. Shiraishi, and H. Shirato. "Bluff body aerodynamics in pulsating flow." Journal of Wind Engineering and Industrial Aerodynamics 28, no. 1-3 (August 1988): 261–70. http://dx.doi.org/10.1016/0167-6105(88)90122-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Flow body"

1

Akbari, Mohammad Hadi. "Bluff-body flow simulations using vortex methods." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq55294.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Abramson, Philip S. "Fluidic control of aerodynamic forces and moments on an axisymmetric body." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31707.

Повний текст джерела
Анотація:
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2010.
Committee Chair: Ari Glezer; Committee Member: Bojan Vukasinovic; Committee Member: Mark Costello. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shanbhogue, Santosh Janardhan. "Dynamics of perturbed exothermic bluff-body flow-fields." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24823.

Повний текст джерела
Анотація:
Thesis (Ph.D.)--Aerospace Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Lieuwen, Tim; Committee Member: Gaeta, Rick; Committee Member: Menon, Suresh; Committee Member: Seitzman, Jerry; Committee Member: Zinn, Ben.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lee, Jongsoo. "Facet model optic flow and rigid body motion." Diss., Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/53885.

Повний текст джерела
Анотація:
The dissertation uses the facet model technique to compute the optic flow field directly from a time sequence of image frames. Two techniques, an iterative and a non-iterative one, determine 3D motion parameters and surface structure (relative depth) from the computed optic flow field. Finally we discuss a technique for the image segmentation based on the multi-object motion using both optic flow and its time derivative. The facet model technique computes optic flow locally by solving over-constrained linear equations obtained from a fit over 3D (row, column, and time) neighborhoods in an image sequence. The iterative technique computes motion parameters and surface structure using each to update the other. This technique essentially uses the least square error method on the relationship between optic flow field and rigid body motion. The non-iterative technique computes motion parameters by solving a linear system derived from the relationship between optic flow field and rigid body motion and then computes the relative depth of each pixel using the motion parameters computed. The technique also estimates errors of both the computed motion parameters and the relative depth when the optic flow is perturbed.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

He, Kui. "Effect of body force on turbulent pipe flow." Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/11845/.

Повний текст джерела
Анотація:
Two non-equilibrium flows, namely, a transient turbulent pipe flow following a sudden change of flow rate and a turbulent pipe flow subjected to a non-uniform body force are systematically studied using direct numerical simulation (DNS). It is revealed that the transient response of a turbulent pipe flow to a sudden increase of flow rate is a laminar-turbulent transition. The response of the flow is not a progressive evolution from the initial turbulence to a new one, but shows a three-stage development, i.e., a pre-transitional stage, a transitional stage and a fully developed stage. This is similar to a typical boundary layer bypass transition with three characteristical regions, i.e., pre-transitional region, transitional region and fully developed region. The results are carefully compared with those of a channel flow of He & Seddighi, J. Fluid Mech. (2013). The statistical and instantaneous behaviours of the two flows are similar in the near-wall region, but there are distinctive differences in the centre of the flow. The transitional critical Reynolds numbers for the transient pipe and channel flow are predicted with the same correlation. The possibility of predicting such transient flow using transitional turbulence modelling, such as γ-Reθ SST, is discussed. The effect of the rate of the change of the flow is also examined. In a fast ramp-up case, the flow is similar to that of a step-change flow, also showing a three-stage development. In a slow ramp-up case, the flow response is not as clear as that in a fast ramp-up case but the main features of the response are similar. A series prescribed body forces are used to emulate flows, which contain features similar to those of real buoyancy-aiding flows. It has been shown that the body force with various amplitudes, coverages and distribution profiles can systematically influence the base flow. The body force influenced flows are classified into four groups, namely, partially laminarized flow, 'completely' laminarized flow, partially recovery flow and strongly recovery flow. A new perspective has been proposed for the partially laminarized flow and 'completely' laminarized flow. In contrast to the conventional view, which views the flow to be re-laminarized, the new theory proves that the turbulence of the flow remains largely unchanged following the imposition of the body force. The body force induces a perturbation flow, which lowers the pressure gradient required to maintain the same Reynolds number. This is the mechanism of turbulence relaminarization. The recovery flows show two-layer turbulence. The outer turbulence is generated by a shear layer in the core of the flow caused by the body force. The inner turbulence is generated in the wall layer, increasing with the outer turbulence. The two layers of turbulence increase hand in hand. The stronger the outer generation, the stronger the inner recovery is. The inner turbulence structure is very similar to an equilibrium turbulent flow. In the region very close to the wall (y+0 < 10), it shows similar budget patterns and flow structures (sweeps and ejections) to those of the base flow. In the region between y+0=10 and the new shear layer, the turbulence structure is complicated, where the turbulence is a mixture of the inner turbulence and the outer turbulence. The transient response of the turbulence to the imposition of a non-uniform body force has been examined. The turbulence decay and recovery features of the flows with non-uniform body forces are studied in detail. It is found that the transient features are mainly determined by the total amplitude of the body force. The higher the amplitude, the stronger the turbulence decay is. In some flows, the near wall turbulence is recovered toward the later stage of the transient process. Under such condition, the inner self-sustaining regeneration interacts strongly with the turbulence from the outer shear layer.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pareshkumar, Gordhandas Pattani. "Nonlinear analysis of rigid body-viscous flow interaction." Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/27181.

Повний текст джерела
Анотація:
This thesis decribes the work on extending the finite element method to cover interaction between viscous flow and a moving body. The problem configuration of interest is that of a two-dimensional incompressible flow over a solid body which is elastically supported or alternatively undergoing a specified harmonic oscillation. The problem addressed in this thesis is that of an arbitrarily shaped body undergoing a simple harmonic motion in an otherwise undisturbed fluid. The finite element modelling is based on a velocity-pressure primitive variable representation of the Navier-Stokes equations using curved isoparametric elements with quadratic interpolation for velocities and bilinear for pressure. The problem configuration is represented by a fixed finite element grid but the body moves past the grid. The nonlinear boundary conditions on the moving body are obtained by expanding the relevant body boundary terms to first order in the body amplitude ratio to approximate the velocities at the finite element grid points. The method of averaging is used to analyse the resulting periodic motion of the fluid. The stability of the periodic solutions is studied by introducing small perturbations and applying Floquet theory. Numerical results are obtained for three different body shapes, namely, (1) a square body oscillating parallel to one of its sides, (2) an oscillating circular body and (3) a symmetric Joukowski profile oscillating parallel to the line of symmetry. The latter case is considered to investigate the flow pattern around an asymmetrical body. In all cases, results are obtained for steady streaming, instantaneous velocity vectors in the fluid domain, added mass, added damping, added force and stability of the flow. A comparision is made between the numerical and published experimental steady streamlines. Very good agreement is obtained for the basic nonlinear phenomenon of steady streaming.
Applied Science, Faculty of
Civil Engineering, Department of
Graduate
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nicolaou, D. "Internal waves around a moving body." Thesis, University of Manchester, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383254.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Connell, Benjamin S. H. "Numerical investigation of the flow-body interaction of thin flexible foils and ambient flow." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35706.

Повний текст джерела
Анотація:
Thesis (Ph. D. in Ocean Engineering)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.
Includes bibliographical references (p. 267-274).
Flow-induced flapping of flexible thin bodies is oft observed in our day-to-day lives in phenomena such as flag flapping, and is important in a host of engineering applications. Despite its prevalence, however, this fundamental problem of fluid-structure interaction is not very well understood. Use of flexible control surfaces in ocean vehicles holds promise for achieving the efficiencies and maneuverability of waterborne animals, but requires an understanding of the natural responses of flexible foils and the associated physics. Likewise, industrial applications such as the handling of flexible textiles and paper benefit from improved understanding of the relationship between the system parameters and the anticipated response of the body. The present work furthers the understanding of the passive flapping problem through the development and application of a nonlinear computational simulation capability. Examining the flapping problem over a wide range of system parameters and responses indicates the influences and trends of the system behavior, and allows investigation of relevant physical mechanisms in the fluid-structure interaction.
(cont.) To pursue this study, the fluid-structure direct simulation (FSDS) capability is developed, coupling a Navier-Stokes fluid-dynamic solver to a geometrically nonlinear thin-body structural solver. The coupled solver is developed in both two dimensions and three dimensions, where the thin foil is free to spanwise variation as a nonlinear plate. The viscous fluid dynamics are solved on a moving grid fitted to the structural boundary. Fluid forcing to the structure is calculated at this boundary and used as external forcing to the structural equations of motion. As both the fluid dynamic and structural solvers use fully implicit backwards difference time integration, they must be solved simultaneously. An iterative approach is used for the simultaneous solution, converging to structural equilibrium with a divergence-free flow field. A detailed study of the canonical problem of a thin flexible foil in uniform flow is first performed in two dimensions, using linear analysis and FSDS simulation, and examining the stability and natural responses as a function of the system parameters. The three relevant nondimensional parameters governing the problem are the Reynolds number, Re = VL/v; the structure-to-fluid mass ratio, ... ;
(cont.) and the nondimensional bending rigidity, ... The flag problem, which has been the subject of recent experimental and numerical studies, is at the limit of vanishing bending rigidity, where the physics are governed by the two parameters of Reynolds number and mass ratio. We find stability of the system to increase for decreasing Reynolds number, decreasing mass ratio, and increasing bending rigidity. Three distinct regimes of response are observed, (I) fixed-point stability, (II) limit-cycle flapping, and (III) chaotic flapping, in order of decreasing stability. Characteristics of the dynamic interaction between the fluid and structure are considered with the modal response and associated flow wake, and the mechanics of the significant physical phenomena of stability hysteresis and chaotic snapping are investigated in detail. The linear analysis is extended to examine the stability of the three-dimensional problem and indicates an increase in stability with spanwise wavenumber. Simulations confirm the relationship between spanwise variation and stability, and display the three-dimensional flapping response and associated wake.
(cont.) Fundamental three-dimensional modes of a spanwise standing wave, spanwise traveling wave, and two-dimensional flapping are revealed along with their unique wake patterns, and the evolution of the system to hybrid modes is displayed. Through this work, we identify for the first time the relationship between the relevant nondimensional parameters of the passive flapping system and the response through the three distinct regimes. The comprehensive study provides new understanding of the physical mechanisms associated with the regime transitions and the flapping dynamics, including chaotic snapping. FSDS allows a first investigation of the three-dimensional passive flapping problem, identifying the stability characteristics and modes of response. The detailed examination and enhanced understanding of the relationship between the relevant nondimensional parameters and the kinematics, forcing, and wake characteristics for the system of a passive flexible foil in uniform flow allows for better engineering of flexible foils for both passive and active applications.
by Benjamin S.H. Connell.
Ph.D.in Ocean Engineering
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Castledine, Andre J. "Investigation of the fluid flow around blunt body samplers." Thesis, University of Leeds, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Whiteman, Jacob T. "Active Flow Control Schemes for Bluff Body Drag Reduction." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1452184221.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Flow body"

1

Shashikanth, Banavara N. Dynamically Coupled Rigid Body-Fluid Flow Systems. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82646-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

The physics of pulsatile flow. New York: AIP Press, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Albertson, Cindy W. Aerothermal evaluation of a spherically blunted body with a trapezoidal cross section in the Langley 8-foot high-temperature tunnel. Hampton, Va: Langley Research Center, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ritter, Arno, Wolfgang Tschapeller, and Christina Jauernik. Hands have no tears to flow: Reports from/without architecture. Wien: Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fossen, G. James Van. Influence of turbulence parameters, Reynolds number, and body shape on stagnation-region heat transfer. Cleveland, Ohio: Lewis Research Center, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Biofluid mechanics. Singapore: World Scientific, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Biofluid mechanics. 2nd ed. New Jersey: World Scientific, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition (1995 Hilton Head, S.C.). Bio-medical fluids engineering: Presented at the 1995 ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition, August 13-18, 1995, Hilton Head, South Carolina. New York, N.Y: American Society of Mechanical Engineers, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Volobuev, A. N. Osnovy nessimetrichnoĭ gidromekhaniki. Saratov: SamLi︠u︡ksPrint, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Goyal, Megh Raj. Biofluid dynamics of human body systems. Toronto: Apple Academic Press, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Flow body"

1

Vanzulli, Angelo. "Flow-Based MRA." In MR Angiography of the Body, 3–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-79717-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Délery, Jean. "Separated Flow on a Body." In Three-dimensional Separated Flow Topology, 47–68. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118578544.ch3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dey, Pranab. "Flow Cytometry of Body Cavity Fluid." In Diagnostic Flow Cytometry in Cytology, 153–68. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2655-5_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nijholt, Anton, Marco Pasch, Betsy van Dijk, Dennis Reidsma, and Dirk Heylen. "Observations on Experience and Flow in Movement-Based Interaction." In Whole Body Interaction, 101–19. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-433-3_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mölder, Sannu. "Blunt Body Flow — The Transonic Region." In Shock Waves @ Marseille I, 101–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78829-1_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Meng, Ellis, Sascha Gassmann, and Yu-Chong Tai. "A Mems Body Fluid Flow Sensor." In Micro Total Analysis Systems 2001, 167–68. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-1015-3_71.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Surmas, Rodrigo, Luís Orlando Emerich dos Santos, and Paulo Cesar Philippi. "Flow Interference in Bluff Body Wakes." In Lecture Notes in Computer Science, 967–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44860-8_100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Panescu, Dorin, and Robert A. Stratbucker*. "Current Flow in the Human Body." In TASER® Conducted Electrical Weapons: Physiology, Pathology, and Law, 63–84. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-85475-5_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tamura, Toshiyo, Ming Huang, and Tatsuo Togawa. "Body Temperature, Heat Flow, and Evaporation." In Seamless Healthcare Monitoring, 281–307. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69362-0_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schwalbe, Dan, and Stan Wagon. "Lead Flow in the Human Body." In VisualDSolve, 171–78. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2250-7_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Flow body"

1

Sahu, Jubaraj. "Coupled CFD and Rigid Body Dynamics Modeling of a Spinning Body with Flow Control." In 2nd AIAA Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-2317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Thomas, Flint, Alexey Kozlov, and Thomas Corke. "Plasma Actuators for Bluff Body Flow Control." In 3rd AIAA Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-2845.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Weingaertner, Andre, Philipp Tewes, and Jesse C. Little. "Parallel Vortex Body Interaction Enabled by Active Flow Control." In 2018 Flow Control Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-3521.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gregory, James, Christopher Porter, Daniel Sherman, and Thomas McLaughlin. "Bluff Body Wake Control using Spatially Distributed Plasma Forcing." In 4th Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-4417.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

PEERY, K., and S. IMLAY. "Blunt-body flow simulations." In 24th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2904.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Choi, Haecheon. "Distributed Forcing for Flow over a Bluff Body." In 2nd AIAA Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-2522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Abramson, Philip, Bojan Vukasinovic, and Ari Glezer. "Fluidic Control of Asymmetric Forces on a Body of Revolution." In 4th Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-3770.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Coller, Brian, and Chethan Gururaja. "Investigation of Low Order Models of Bluff Body Flow." In 2nd AIAA Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-2414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Akhtar, Imran, and Ali Nayfeh. "On Controlling the Bluff Body Wake Using a Reduced-Order Model." In 4th Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-4189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yuriev, Anatoly, Sergey Pirogov, Nikolay Savischenko, Sergey Leonov, and Eugeny Ryzhov. "Investigation of Pulse-Repetitive Energy Release Upstream Body Under Supersonic Airflow." In 1st Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-2730.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Flow body"

1

Anthony Leonard, Phillippe Chatelain, and Michael Rebel. Bluff Body Flow Simulation Using a Vortex Element Method. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/947549.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Malmuth, Norman D., and Alexander V. Fedorov. Mathematical Fluid Dynamics of Store and Stage Separation, Multi-Body Flows and Flow Control. Fort Belvoir, VA: Defense Technical Information Center, February 2008. http://dx.doi.org/10.21236/ada482146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sahu, Jubaraj. Unsteady Flow Computations of a Finned Body in Supersonic Flight. Fort Belvoir, VA: Defense Technical Information Center, August 2007. http://dx.doi.org/10.21236/ada471736.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Miles, Richard B., and Alexander J. Smits. Rayleigh Imaging of Mach 8 Boundary Layer Flow Around an Elliptic Cone Body. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada372445.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sahu, Jubaraj. Time-Accurate Simulations of Synthetic Jet-Based Flow Control for An Axisymmetric Spinning Body. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada426557.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chen, L. T., and T. Q. Dang. Improved Potential Flow Computational Methods with Euler Corrections for Airfoil and Wing/Body Design. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada192303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hsieh, T., and F. J. Priolo. Generation of the Starting Plane Flowfield for Supersonic Flow over a Spherically Capped Body. Fort Belvoir, VA: Defense Technical Information Center, May 1985. http://dx.doi.org/10.21236/ada161117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Marples, Brian, Olga Kovalchuk, Michele McGonagle, Alvaro Martinez, and Wilson, George, D. The Application of Flow Cytometry to Examine Damage Clearance in Stem Cells From Whole-Body Irradiated Mice. Office of Scientific and Technical Information (OSTI), February 2010. http://dx.doi.org/10.2172/972636.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Miles, Richard B. Student Training Program in Rayleigh Imaging of Mach 8 Boundary Layer Flow Around an Elliptic Cone Body. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada386425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fu, Thomas C., Paisan Atsavapranee, and David E. Hess. PIV Measurements of the Cross-Flow Velocity Field Around a Turning Submarine Model (ONR Body-1). Part 1. Experimental Setup. Fort Belvoir, VA: Defense Technical Information Center, February 2002. http://dx.doi.org/10.21236/ada401545.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії