Добірка наукової літератури з теми "Fermions"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fermions".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Fermions":

1

Ma, Tian-Chi, Jing-Nan Hu, Yuan Chen, Lei Shao, Xian-Ru Hu, and Jian-Bo Deng. "Coexistence of type-II and type-IV Dirac fermions in SrAgBi." Modern Physics Letters B 35, no. 11 (February 9, 2021): 2150181. http://dx.doi.org/10.1142/s0217984921501815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Relativistic massless Weyl and Dirac fermions have isotropic and linear dispersion relations to maintain Poincaré symmetry, which is the most basic symmetry in high-energy physics. The situation in condensed matter physics is less constrained; only certain subgroups of Poincaré symmetry — the 230 space groups that exist in 3D lattices — need be respected. Then, the free fermionic excitations that have no high-energy analogues could exist in solid state systems. Here, We discovered a type of nonlinear Dirac fermion without high-energy analogue in SrAgBi and named it type-IV Dirac fermion. The type-IV Dirac fermion has a nonlinear dispersion relationship and is similar to the type-II Dirac fermion, which has electron pocket and hole pocket. The effective model for the type-IV Dirac fermion is also found. It is worth pointing out that there is a type-II Dirac fermion near this new Dirac fermion. So we used two models to describe the coexistence of these two Dirac fermions. Topological surface states of these two Dirac points are also calculated. We envision that our findings will stimulate researchers to study novel physics of type-IV Dirac fermions, as well as the interplay of type-II and type-IV Dirac fermions.
2

GUENDELMAN, E. I., and A. B. KAGANOVICH. "DARK ENERGY, DARK MATTER AND FERMION FAMILIES IN THE TWO MEASURES THEORY." International Journal of Modern Physics A 19, no. 31 (December 20, 2004): 5325–32. http://dx.doi.org/10.1142/s0217751x04022542.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A field theory is proposed where the regular fermionic matter and the dark fermionic matter are different states of the same "primordial" fermion fields. In regime of the fermion densities typical for normal particle physics, each of the primordial fermions splits into three generations identified with regular fermions. In a simple model, this fermion families birth effect is accompanied with the right lepton numbers conservation laws. It is possible to fit the muon to electron mass ratio without fine tuning of the Yukawa coupling constants. When fermion energy density becomes comparable with dark energy density, the theory allows new type of states - Cosmo-Low Energy Physics (CLEP) states. Neutrinos in CLEP state can be both a good candidate for dark matter and responsible for a new type of dark energy. In the latter case the total energy density of the universe is less than it would be in the universe free of fermionic matter at all. The (quintessence) scalar field is coupled to dark matter but its coupling to regular fermionic matter appears to be extremely suppressed.
3

GUENDELMAN, E. I., and A. B. KAGANOVICH. "NEW PHYSICS AT LOW ENERGIES AND DARK MATTER-DARK ENERGY TRANSMUTATION." International Journal of Modern Physics A 20, no. 06 (March 10, 2005): 1140–47. http://dx.doi.org/10.1142/s0217751x05024018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A field theory is proposed where the regular fermionic matter and the dark fermionic matter can be different states of the same "primordial" fermion fields. In regime of the fermion densities typical for normal particle physics, the primordial fermions split into three families identified with regular fermions. When fermion energy density becomes comparable with dark energy density, the theory allows transition to new type of states. The possibility of such Cosmo-Low Energy Physics (CLEP) states is demonstrated by means of solutions of the field theory equations describing FRW universe filled with homogeneous scalar field and uniformly distributed nonrelativistic neutrinos. Neutrinos in CLEP state are drawn into cosmological expansion by means of dynamically changing their own parameters. One of the features of the fermions in CLEP state is that in the late time universe their masses increase as a3/2 (a=a(t) is the scale factor). The energy density of the cold dark matter consisting of neutrinos in CLEP state scales as a sort of dark energy; this cold dark matter possesses negative pressure and for the late time universe its equation of state approaches that of the cosmological constant. The total energy density of such universe is less than it would be in the universe free of fermionic matter at all.
4

BELYAEV, V. M., and IAN I. KOGAN. "MASSLESS FERMIONS IN KALUZA-KLEIN MODELS: SU(N) GAUGE FIELDS, ZN SYMMETRY AND STABILITY OF THE METASTABLE VACUUM." Modern Physics Letters A 07, no. 02 (January 20, 1992): 117–29. http://dx.doi.org/10.1142/s0217732392000057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Kaluza-Klein model on M4×S1 with SU (N) gauge fields and Nf fermions in fundamental representation is considered. It is noted that on one-loop level the lowest state of this theory corresponds to effective four-dimensional theory which has no massless fermions. This statement does not depend on fermion boundary conditions. The state with mass-less four-dimensional fermions is metastable. It is shown that this metastable states can be stabilized by effects of classical gravitation. The same problem of metastability of states with zero fermionic modes can appear in more realistic superstring compactification models and these effects of classical gravitation can resolve this problem of metastability.
5

CORDOVA, NICOLAS J. "FRACTIONAL CHARGE IN 1+1, 2+1 AND 3+1 DIMENSIONS." Modern Physics Letters A 06, no. 33 (October 30, 1991): 3071–77. http://dx.doi.org/10.1142/s0217732391003560.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fractional charge is analyzed in models containing massive fermions interacting with topologically non-trivial background fields in 1+1, 2+1 and 3+1 dimensions. It is found that the induced vacuum fermionic charge depends discontinuously on the fermion mass, when scalar interactions are involved.
6

Lee, Cheng-Yang. "Symmetries and unitary interactions of mass dimension one fermionic dark matter." International Journal of Modern Physics A 31, no. 35 (December 18, 2016): 1650187. http://dx.doi.org/10.1142/s0217751x16501876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The fermionic fields constructed from Elko have several unexpected properties. They satisfy the Klein–Gordon but not the Dirac equation and are of mass dimension one instead of three-half. Starting with the Klein–Gordon Lagrangian, we initiate a careful study of the symmetries and interactions of these fermions and their higher-spin generalizations. We find, although the fermions are of mass dimension one, the four-point fermionic self-interaction violates unitarity at high-energy so it cannot be a fundamental interaction of the theory. Using the optical theorem, we derive an explicit bound on energy for the fermion–scalar interaction. It follows that for the spin-half fermions, the demand of renormalizability and unitarity forbids four-point interactions and only allows for the Yukawa interaction. For fermions with spin [Formula: see text], they have no renormalizable or unitary interactions. Since the theory is described by a Klein–Gordon Lagrangian, the interaction generated by the local [Formula: see text] gauge symmetry which contains a four-point interaction, is excluded by the demand of renormalizability. In the context of the Standard Model, these properties make the spin-half fermions natural dark matter candidates. Finally, we discuss the recent developments on the introduction of new adjoint and spinor duals which may allow us to circumvent the unitarity constraints on the interactions.
7

DOLOCAN, ANDREI, VOICU OCTAVIAN DOLOCAN, and VOICU DOLOCAN. "A NEW HAMILTONIAN OF INTERACTION FOR FERMIONS." Modern Physics Letters B 19, no. 13n14 (June 20, 2005): 669–81. http://dx.doi.org/10.1142/s0217984905008700.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Using the Lagrangian formalism we attempt to introduce a new Hamiltonian for fermions. On this basis we have evaluated the expectation values for the interaction energy between fermions via bosons. The interaction energy between two fermions via phonons becomes attractive in a degenerate fermion-gas. The interaction energy between two fermions via photons appears to be attractive in certain conditions. The self-energy of the fermion + boson system, e.g. polaron and polariton, was evaluated.
8

Klaric, J., A. Shkerin, and G. Vacalis. "Non-perturbative production of fermionic dark matter from fast preheating." Journal of Cosmology and Astroparticle Physics 2023, no. 02 (February 1, 2023): 034. http://dx.doi.org/10.1088/1475-7516/2023/02/034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract We investigate non-perturbative production of fermionic dark matter in the early universe. We study analytically the gravitational production mechanism accompanied by the coupling of fermions to the background inflaton field. The latter leads to the variation of effective fermion mass during preheating and makes the resulting spectrum and abundance sensitive to its parameters. Assuming fast preheating that completes in less than the inflationary Hubble time and no oscillations of the inflaton field after inflation, we find an abundant production of particles with energies ranging from the inflationary Hubble rate to the inverse duration of preheating. The produced fermions can account for all observed dark matter in a broad range of parameters. As an application of our analysis, we study non-perturbative production of fermionic dark matter in the model of Palatini Higgs inflation.
9

Chiew, Mitchell, and Sergii Strelchuk. "Discovering optimal fermion-qubit mappings through algorithmic enumeration." Quantum 7 (October 18, 2023): 1145. http://dx.doi.org/10.22331/q-2023-10-18-1145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Simulating fermionic systems on a quantum computer requires a high-performing mapping of fermionic states to qubits. A characteristic of an efficient mapping is its ability to translate local fermionic interactions into local qubit interactions, leading to easy-to-simulate qubit Hamiltonians.All fermion-qubit mappings must use a numbering scheme for the fermionic modes in order for translation to qubit operations. We make a distinction between the unordered labelling of fermions and the ordered labelling of the qubits. This separation shines light on a new way to design fermion-qubit mappings by making use of the enumeration scheme for the fermionic modes. The purpose of this paper is to demonstrate that this concept permits notions of fermion-qubit mappings that are optimal with regard to any cost function one might choose. Our main example is the minimisation of the average number of Pauli matrices in the Jordan-Wigner transformations of Hamiltonians for fermions interacting in square lattice arrangements. In choosing the best ordering of fermionic modes for the Jordan-Wigner transformation, and unlike other popular modifications, our prescription does not cost additional resources such as ancilla qubits.We demonstrate how Mitchison and Durbin's enumeration pattern minimises the average Pauli weight of Jordan-Wigner transformations of systems interacting in square lattices. This leads to qubit Hamiltonians consisting of terms with average Pauli weights 13.9% shorter than previously known. By adding only two ancilla qubits we introduce a new class of fermion-qubit mappings, and reduce the average Pauli weight of Hamiltonian terms by 37.9% compared to previous methods. For n-mode fermionic systems in cellular arrangements, we find enumeration patterns which result in n1/4 improvement in average Pauli weight over naïve schemes.
10

GIROTTI, H. O. "CANONICAL QUANTIZATION OF THE SELF-DUAL MODEL COUPLED TO FERMIONS." International Journal of Modern Physics A 14, no. 16 (June 30, 1999): 2495–510. http://dx.doi.org/10.1142/s0217751x99001238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper is devoted to formulating the interaction-picture dynamics of the self-dual field minimally coupled to fermions. As a preliminary, we quantize the free self-dual model by means of the Dirac-bracket quantization procedure. The free self-dual model turns out to be a relativistically invariant quantum field theory whose excitations are identical to the physical (gauge-invariant) excitations of the free Maxwell–Chern–Simons theory. The interacting model is also quantized through the Dirac-bracket quantization procedure. One of the self-dual field components is found not to commute, at equal times, with the fermionic fields. Hence, the formulation of the interaction-picture dynamics demands the elimination of that component. This procedure brings, in turn, two new interactions terms, which are local in space and time while nonrenormalizable by power counting. Relativistic invariance is tested in connection with the elastic fermion–fermion scattering amplitude. We prove that all the noncovariant pieces in the interaction Hamiltonian are equivalent to the covariant minimal interaction of the self-dual field with the fermions. The high-energy behavior of the self-dual field propagator confirms that the coupled theory is nonrenormalizable. The self-dual field minimally coupled to fermions bears no resemblance to the renormalizable model defined by the Maxwell–Chern–Simons field minimally coupled to fermions.

Дисертації з теми "Fermions":

1

Bullinaria, J. A. "Kaehler fermions." Thesis, University of Southampton, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Espin, Johnny. "Second-order fermions." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/29954/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
It has been proposed several times in the past that one can obtain an equivalent, but in many aspects simpler description of fermions by first reformulating their first-order (Dirac) Lagrangian in terms of two-component spinors, and then integrating out the spinors of one chirality (e.g.primed or dotted). The resulting new Lagrangian is second-order in derivatives, and contains two-component spinors of only one chirality. The new second-order formulation simplifies the fermion Feynman rules of the theory considerably, e.g. the propagator becomes a multiple of an identity matrix in the field space. The aim of this thesis is to work out the details of this formulation for theories such as Quantum Electrodynamics, and the Standard Model of elementary particles. After having developed the tools necessary to establish the second-order formalism as an equivalent approach to spinor field theories, we proceed with some important consistency checks that the new formulation is required to pass, namely the presence or absence of anomalies in their perturbative and non-perturbative description, and the unitarity of the S-Matrix derived from their Lagrangian. Another aspect which is studied is unification, where we seek novel gauge-groups that can be used to embed all of the Standard Model content: forces and fermionic representations. Finally, we will explore the possibility to unify gravity and the Standard Model when the former is seen as a diffeomorphism invariant gauge-theory.
3

Ebling, Ulrich. "Dynamics of spinor fermions." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/284656.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ultracold atomic gases have established themselves as quantum systems, which are clean and offer a high degree of control over crucial parameters. They are well isolated from their environment and thus offer the possibility to study coherent many-body dynamics. In this thesis, we address the dynamics of ultracold Fermions with large spin. Fermionic spinor gases differ from the typical situation in condensed matter physics, due to both the presence of the trap and the possibility of having fermions with large (>1/2) spin. Compared to the spin-1/2 case, large spin fermions must have one of two possible new properties. Either they obey an enhanced SU(N) symmetry, or they feature spin-changing collisions and a quadratic Zeeman shift. Here, we address the latter case. In the weakly interacting scenario, there are three different regimes. For very weak interactions, the system is in the collisionless regime and interactions can be taken into account on a mean-field level. For stronger interactions, collisions ensure local equilibrium and the system is described by hydrodynamic equations. For the intermediate regime however, there is no simple description. Moreover, the scattering cross-section for spin-changing and spin-conserving collisions can be different for large-spin fermions and we find a situation, where the system is hydrodynamic with respect to one process but not the other. In this thesis, a semi-classical Boltzmann equation with full spin coherence is developed, which allows to interpolate between the collisionless and hydrodynamic regime in the presence of the trap and for large spins. This approach goes beyond mean-field theory and treats the single-particle dynamics as an open system coupled to an environment given by all other particles. We find good agreement with experiments performed in the group of Klaus Sengstock at Hamburg University, using ultracold Potassium-40. We begin by investigating the effect of the harmonic trap on a collisionless system. We find a dynamical mechanism for spin-segregation, the mean-field driven creation of two domains of opposite magnetization in phase-space. The effect finds a transparent explanation when introducing the concept of dynamically induced long-range interactions, occurring when the fast phase-space rotation induced by a strong parabolic trap effectively smears out the contact interactions. Further results in this thesis have been achieved in collaboration with the experimental group in Hamburg. In the first project, we study the collective excitations of a trapped four-component Fermi gas. Long wavelength spin waves are excited by using a magnetic field gradient to wind up a spin spiral. During the subsequent dynamics, the spin components oscillate in the trap, while the total density remains constant. The dynamics can be understood quantitatively by disentangling it into dipolar, nematic and octupolar configurations. In a further experiment with spin-9/2 fermions, it was found that spin-changing interactions can lead to collective and coherent oscillations of the spin state of the whole Fermi sea with long lifetimes. It is found theoretically, that these giant oscillations are protected from spatial dephasing by dynamically induced long-range interactions. We identify the suppression of such oscillations in the high-density regime as the consequence of incoherent non-forward scattering. In the last project, we study collision processes in ultracold Potassium in greater detail. We find that they can be arranged in 3 categories: Spin-changing vs. spin-conserving collisions, processes depending on density vs. processes depending on density gradients and forward vs. lateral scattering. With this categorization, as well as the exact dependence of each process on scattering lengths and momenta, we can explain and simulate not only the coherent mean-field driven oscillations, but also relaxation effects that appear to be incoherent on the single-particle level
Gases atómicos ultrafríos han establecido como sistemas cuánticos limpias que ofrecen un alto grado de control sobre parámetros cruciales. Están bien aisladas de su entorno y por eso ofrecen la posibilidad de estudiar la dinámica coherente de muchos cuerpos. En esta tesis, estudiamos la dinámica de fermiones ultrafríos con spin largo. Gases espinoriales fermiónicos difieren de la situación típica en la física de materia condensada por la presencia de la trampa y la posibilidad de tener un spin largo (> 1/2). En comparación con el caso de spin 1/2, fermiones de espín largo deben tener una de dos posibles propiedades nuevas. Obedecen a una simetría ampliada SU(N), o muestran colisiones spin-cambiante y un efecto Zeeman cuadrático. Aqui tratamos el segundo caso. En el escenario de interacciónes débiles, hay tres regímenes diferentes. Para interacciones muy débiles, el sistema está en el régimen sin colisiones e interacciones se puede describir en un nivel de campo medio. Para interacciones fuertes, las colisiones garantizan el equilibrio local y el sistema es descrito por ecuaciones hidrodinámicas. Para el régimen intermedio, no hay una descripción sencilla. Ademas, la sección transversa de dispersión para colisiones spin-cambiantes y de spin-conservación puede ser diferente para fermiones de espín largo. Encontramos una situación, donde el sistema es hidrodinámico con respecto a un proceso, pero no a la otra. En esta tesis desarrollamos una ecuación de Boltzmann semi-clásica, que permite interpolar el régimen intermedio, en presencia de la trampa y para espín largo. Este enfoque trata la dinámica de un cuerpo como un sistema abierto, acoplado a un entorno determinado por todas las atomos demás. Encontramos un buen acuerdo con experimentos realizados en el grupo de Klaus Sengstock en la Universidad de Hamburgo, hechos con potasio-40 ultrafrío. Comenzamos investigando el efecto de la trampa armónica en un sistema sin colisiones. Encontramos un mecanismo dinámico par la segregación de spin, la creación de dos dominios de magnetización opuesta en el espacio fásico, impulsada por el campo medio. Encontramos una explicación transparente de este efecto con la introducción del concepto de interacciones de largo alcance inducidos dinámicamente, que se forma cuando una fuerte trampa parabólica desenfoque eficazmente las interacciones de contacto. Otros resultados de esta tesis han sido realizados en colaboración con el grupo experimental en Hamburgo. En el primer proyecto, estudiamos las excitaciones colectivas de un gas de Fermi atrapada, con cuatro componentes de spin. Ondas de spin con larga longitud de onda se excitan mediante un gradiente de campo magnético. Durante la dinámica siguiente, los componentes de spin oscilan en la trampa, mientras que la densidad total permanece constante. Podemos entender esta dinámica cuantitativamente desligandola en configuraciones dipolares, nemáticos y octupolares de espín. En un experimento siguiente con fermiones de spin 9/2, se encontró que las interacciones spin-cambiando pueden activar oscilaciones colectivas y coherentes del estado de spin de todo el mar de Fermi con duración larga. Descubrimos teóricamente, que estas oscilaciones gigantes están protegidos de desfase espacial por las interacciones de largo alcance inducidos dinámicamente. Identificamos la supresión de tales oscilaciones en el régimen de alta densidad como la consecuencia de la dispersión incoherente lateral. En el último proyecto, estudiamos los procesos de colisión en potasio ultrafrío en mas detalle. Podemos organizarlos en tres categorías: Colisiones spin-cambiante vs. spin-conservación, procesos dependiente de la densidad vs. gradientes de densidad y colisiones hacia adelante vs. laterales. Con esta clasificación y la dependencia en la longitud de dispersión y momentos, podemos explicar y simular no sólo las oscilaciones coherentes impulsados por el campo medio, sino también efectos de relajación
4

Berzi, Alan. "Relativistic Fermions in Graphene." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-20657.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Fermi surface of graphene contains points where the connection between excitation energy and crystal momentum is linear, similar to massless or ultrarelativistic fermions. This is important for the physical properties of this material. In this thesis the candidate has combined a study of the theoretical and experimental literature with his own calculations of the excitation spectra of monolayer, bilayer and multilayer graphene.
5

Laia, João Nuno De Araújo Lopes. "Holography, holonomy and fermions." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610474.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hands, Simon John. "Lattice theories with fermions." Thesis, University of Edinburgh, 1986. http://hdl.handle.net/1842/14982.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mou, Zong-Gang. "Fermions in electroweak baryogenesis." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/30597/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We study the chiral anomaly by solving the Dirac equation for fermions in parallel electric and magnetic fields. In such case, only the lowest-energy Landau levels are relevant to the anomaly. Specifically, for massless fermions, the chiral anomaly is a result of the production of particles of one chirality, and no creation of particles of the other chirality. For massive fermions, we find that the chiral anomaly equation can be simply obtained via a proper regularization of the range of the momentum. We extend the method to anomaly cancellation, and conclude that the conservation of the baryon number plus lepton number must be violated as a quantum anomaly in the context of the Standard Model. Accordingly, such baryon number non-conservation can play a vital role during the electroweak transition to achieve the baryon asymmetry of the Universe. Through real-time lattice simulations, we refine the implementation of ensemble fermions for a cold electroweak transition, involving the SU (2) gauge field, Higgs field and one generation of fermions. We find that the dynamics and most observables converge quickly with a reasonable number of fermion realizations, and the method of ensemble fermions for the entire electroweak sector becomes numerically tractable. We apply the method to the computation of the effective preheating temperature during a fast electroweak transition, relevant for Cold Electroweak Baryogenesis. We find that the fermion temperature is never below 20 GeV, and this can indirectly rule out Standard Model CP -violation as the origin of the baryon asymmetry of the Universe, as Standard Model cold baryogenesis requires a temperature of at most of order of 1 GeV. For this reason, new CP -violation source from physics beyond the Standard Model is required in order to explain the baryon asymmetry. We further present a first-principles numerical computation of the baryon asymmetry in electroweak-scale baryogenesis, where the CP -violation is obtained as a consequence of including another Higgs doublet. For one particularly favourable scalar potential that could provide a high sphaleron transition rate, we calculate the asymmetry through large-scale computer simulations. The numerical signal is at the boundary of what is numerically discernible with the available computer resources, but we tentatively find an asymmetry of |η| ≤ 3.5 × 10−7 . We also find it is attainable to include the complete electroweak SU (2) × U (1) gauge fields in the reduced Standard Model that we are using in practical simulations, so that in further studies we can measure the cosmic magnetic field generated during the electroweak phase transition.
8

Zanotti, James Michael. "Baryon spectroscopy with FLIC fermions." Title page, abstract and table of contents only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phz33.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
"October 2002" Bibliography: p. 129-136. 1. Introduction -- 2. QCD and the standard model -- 3. The Lattice -- 4. Symanzik improvement in the Static Quark Potential -- 5. Scale determination for an improved Gluon Action -- 6. Fat-link Irrelevant Clover Fermion actions -- 7. Excited Baryons in Lattice QCD -- 8. Spin 3/2 Baryons -- 9. Conclusion. This thesis reports work done in conducting numerical simulations of Lattice QCD.
9

Han, Li. "Spin-orbit coupled ultracold fermions." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52314.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this Thesis we discussed ultracold Fermi gas with an s-wave interaction and synthetic spin-orbit coupling under a variety of conditions. We considered the system in both three and two spatial dimensions, with equal-Rashba-Dresselhaus type or Rashba-only type of spin-orbit-coupling, and with or without an artificial Zeeman field. We found competing effects on Fermionic superfluidity from spin-orbit coupling and Zeeman fields, and topologically non-trivial states in the presence of both fields. We gave an outlook on the many-body physics in the last.
10

Schofield, Andrew John. "Flux phases for correlated fermions." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Fermions":

1

Iachello, F. The interacting Boson-Fermion model. Cambridge [England]: Cambridge University Press, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kopietz, Peter. Bosonization of interacting fermions in arbitrary dimensions. Berlin: Springer, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

1940-, Szytuła Andrzej, ed. Valence fluctuations and heavy fermions. Kraków: Nakł. Uniwersytetu Jagiellońskiego, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wojciechowski, Ryszard J. Thermodynamic and elastic properties of heavy fermion systems in the normal state. Poznań: Wydawn. Nauk. Uniwersytetu im. Adama Mickiewica w Poznaniu, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Martín, Laura Ortiz. Topological Orders with Spins and Fermions. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23649-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hewson, A. C. The Kondo problem to heavy fermions. Cambridge: Cambridge University Press, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hewson, A. C. The Kondo problem to heavy fermions. Cambridge: Cambridge University Press, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Welp, Ulrich. Heavy fermion behaviour and magnetism in CeB r, CePb r and Ucu r. Konstanz: Hartung-Gorre, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mitrjushkin, V., and G. Schierholz, eds. Lattice Fermions and Structure of the Vacuum. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4124-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kopietz, Peter. Bosonization of Interacting Fermions in Arbitrary Dimensions. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-540-68495-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Fermions":

1

’t Hooft, Gerard. "Fermions." In Fundamental Theories of Physics, 147–67. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41285-6_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Stone, Michael. "Fermions." In Graduate Texts in Contemporary Physics, 72–82. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-0507-4_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cline, James M. "Fermions." In SpringerBriefs in Physics, 65–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56168-0_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kibler, Maurice, Mohammed Daoud, and Maurice Kibler. "Fermions." In Concise Encyclopedia of Supersymmetry, 212–13. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Roepstorff, Gert. "Fermions." In Path Integral Approach to Quantum Physics, 316–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57886-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Laine, Mikko, and Aleksi Vuorinen. "Fermions." In Basics of Thermal Field Theory, 65–79. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31933-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sator, Nicolas, Nicolas Pavloff, and Lénaïc Couëdel. "Fermions." In Statistical Physics, 275–96. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003272427-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bonora, Loriano. "Fermions." In Theoretical and Mathematical Physics, 3–51. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-21928-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gattringer, Christof, and Christian B. Lang. "Dynamical fermions." In Quantum Chromodynamics on the Lattice, 185–211. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01850-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Varma, C. M. "Heavy Fermions." In Springer Series in Solid-State Sciences, 117–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83425-7_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Fermions":

1

Rantaharju, Jarno, Vincent Drach, Ari Hietanen, Claudio Pica, and Francesco Sannino. "Wilson Fermions with Four Fermion Interactions." In The 33rd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.251.0228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

AMBRUŞ, VICTOR E., and ELIZABETH WINSTANLEY. "ROTATING FERMIONS." In Proceedings of the MG13 Meeting on General Relativity. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814623995_0330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kanamoto, Rina, and Makoto Tsubota. "Energy Spectrum of Fermions in a Rotating Boson-Fermion Mixture." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Creutz, Michael. "Local chiral fermions." In The XXVI International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.066.0080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Osborn, James, and Xiao-Yong Jin. "Flavor Filtered Fermions." In The 33rd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.251.0287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mart, T. "Are protons nonidentical fermions?" In 3RD INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED PHYSICS 2013 (ICTAP 2013). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4897090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Greene, Patrick B. "Inflationary reheating and fermions." In COSMO--98. ASCE, 1999. http://dx.doi.org/10.1063/1.59436.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

KENNEDY, A. D. "ALGORITHMS FOR DYNAMICAL FERMIONS." In Proceedings of the Workshop. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812790927_0002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kauffman, Louis H., and Samuel J. Lomonaco. "Braiding with Majorana fermions." In SPIE Commercial + Scientific Sensing and Imaging, edited by Eric Donkor and Michael Hayduk. SPIE, 2016. http://dx.doi.org/10.1117/12.2228510.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

GERNOTH, K. A., and M. L. RISTIG. "RENORMALIZED BOSONS AND FERMIONS." In Proceedings of the 33rd International Workshop. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814340793_0008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Fermions":

1

Grossman, Y. Twisted Split Fermions. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/827303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hirshfeld, Allen C. Fermions and Supersymmetry. GIQ, 2012. http://dx.doi.org/10.7546/giq-5-2004-51-66.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vekhter, Ilya. Inhomogeneous disorder Dirac Fermions: from heavy fermion superconductors to graphene. Final report. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1089679.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Neumeier, John. Investigations of Dimensionally-Constrained Fermions. Office of Scientific and Technical Information (OSTI), May 2022. http://dx.doi.org/10.2172/1867885.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Trugman, S., K. Bedell, J. Bonca, M. Gulacsi, and C. Yu. Heavy fermions in high magnetic fields. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/266362.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pu, Han, and Randall Hulet. Optical Lattice Simulations of Correlated Fermions. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada603643.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gupta, R., G. Guralnik, G. Kilcup, and S. Sharpe. The quenched spectrum with staggered fermions. Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/5929696.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pan, Wei, Xiaoyan Shi, Samuel D. Hawkins, and John Frederick Klem. Search for Majorana fermions in topological superconductors. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1177084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chan, H. S. Continuum regularization of gauge theory with fermions. Office of Scientific and Technical Information (OSTI), March 1987. http://dx.doi.org/10.2172/6347357.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Horng, Jason, Chi-Fan Chen, Baisong Geng, Caglar Girit, Yuanbo Zhang, Zhao Hao, Hans A. Bechtel, Michael Martin, Alex Zettl, and Michael F. Crommie. Drude Conductivity of Dirac Fermions in Graphene. Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada526672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії