Добірка наукової літератури з теми "FePO4"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "FePO4".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "FePO4"
Jing, Hai Li, Guo Jun Li, and Rui Ming Ren. "Preparation and Characteristics of FePO4·xH2O Powder." Materials Science Forum 675-677 (February 2011): 77–80. http://dx.doi.org/10.4028/www.scientific.net/msf.675-677.77.
Повний текст джерелаManickam, Minakshi, Pritam Singh, Touma B. Issa, Stephen Thurgate, and Kathryn Prince. "Electrochemical Behavior of LiFePO4 in Aqueous Lithium Hydroxide Electrolyte." Key Engineering Materials 320 (September 2006): 271–74. http://dx.doi.org/10.4028/www.scientific.net/kem.320.271.
Повний текст джерелаWang, Huiqi, Mingxia Guo, Yue Niu, Jiayu Dai, Qiuxiang Yin, and Ling Zhou. "Study on Precipitation Processes and Phase Transformation Kinetics of Iron Phosphate Dihydrate." Crystals 12, no. 10 (September 27, 2022): 1369. http://dx.doi.org/10.3390/cryst12101369.
Повний текст джерелаMa, Jun Jun, Jia Zhou, Xue Min Zu, and Xing Yao Wang. "Study of Circulation of Reaction Liquid in Liquid Phase Synthesis of LiFePO4 as Cathode Material." Advanced Materials Research 1120-1121 (July 2015): 128–31. http://dx.doi.org/10.4028/www.scientific.net/amr.1120-1121.128.
Повний текст джерелаSaveetha, S., and K. A. Vijayalakshmi. "The morphological study of FePO4/plasma treated bamboo charcoal composite act as cathode material in energy storage devices." Digest Journal of Nanomaterials and Biostructures 16, no. 4 (December 2021): 1359–63. http://dx.doi.org/10.15251/djnb.2021.164.1359.
Повний текст джерелаCao, Ying, Lianmei Wei, Xianzhen Song, Xixi Yan, Xiaoyu Liu, and Lijun Wang. "Synthesis of iron phosphate-SAPO-34 composite and its application as effective absorbent for wastewater treatment." MATEC Web of Conferences 238 (2018): 02003. http://dx.doi.org/10.1051/matecconf/201823802003.
Повний текст джерелаJiang, Bing, Wen Qin Wang, Yu Song Liu, and Zhi Meng Guo. "Preparation of FePO4•2H2O with Flower-like Microstructure by a Facile Hydrothermal Synthesis Method." Applied Mechanics and Materials 423-426 (September 2013): 550–53. http://dx.doi.org/10.4028/www.scientific.net/amm.423-426.550.
Повний текст джерелаSun, Yuan, Xiu Juan Zhao, and Rui Ming Ren. "Synthesis of LiFePO4 Cathode Materials by a Chemical Method." Materials Science Forum 675-677 (February 2011): 57–60. http://dx.doi.org/10.4028/www.scientific.net/msf.675-677.57.
Повний текст джерелаPark, Yejun, Byungjoo Lee, Chunjoong Kim, Jongmin Kim, and Byungwoo Park. "Effects of iron-phosphate coating on Ru dissolution in the PtRu thin-film electrodes." Journal of Materials Research 24, no. 1 (January 2009): 140–44. http://dx.doi.org/10.1557/jmr.2009.0013.
Повний текст джерелаMu, Long Fei, Song Li, and Yun Long Cui. "Effects of Different Ligands Value on the Synthesis of FePO4 Precursor." Materials Science Forum 809-810 (December 2014): 267–71. http://dx.doi.org/10.4028/www.scientific.net/msf.809-810.267.
Повний текст джерелаДисертації з теми "FePO4"
Intaranont, Noramon. "Selective lithium extraction from salt solutions by chemical reaction with FePO4." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/382486/.
Повний текст джерелаZhu, Changbao [Verfasser], and Joachim [Akademischer Betreuer] Maier. "Size effects on lithium storage and phase transition in LiFePO4/FePO4 system / Changbao Zhu. Betreuer: Joachim Maier." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2013. http://d-nb.info/1036874680/34.
Повний текст джерелаAliouane, Nadir. "Transitions de phase α-β dans le quartz et FePO4 : relations avec la diffusion anomale de la lumière et mécanismes". Toulon, 2002. http://www.theses.fr/2002TOUL0012.
Повний текст джерелаLachal, Marie. "Etude des mécanismes d'insertion/désinsertion des cations alcalins (Li+/Na+) au sein de la structure olivine FePO4 pour accumulateurs Li-ion et Na-ion." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI035/document.
Повний текст джерелаAs part of the development of Na-ion technology, NaFePO4 compound, chemical equivalent of theattractive LiFePO4 material, would be a promising option facing possible lithium shortage. However,olivine-type LiFePO4 and NaFePO4 display different structural and electrochemical behaviors duringcationic insertion. This thesis presents an analysis of the (de)insertion mechanisms of Li+ and Na+ ionswithin olivine-type FePO4 by chemical and electrochemical means. Samples of LiFePO4 weresynthesized by two different methods (hydrothermal and precipitation), then chemically delithiated bydifferent processes. In a first step, structural analysis (XRD) associated with nuclear analyses enabledfollowing the reaction kinetics. We have pointed out that the presence of grain boundaries, resultingfrom the heat treatment, strongly limits the delithiation kinetics. The analysis of the evolution of thecoherency domains enabled us to propose an original "Shrinking Core" type delithiation mechanismwith a core of LiFePO4, observed by HRTEM and STEM-EELS. In a second step, in order to comparechemical and electrochemical mechanisms, insertion and cyclability of Li+ and Na+ were characterizedin lithium and sodium half-cells. Although the electrochemical signature of LiFePO4 and NaFePO4materials is different, the performances in terms of restored capacity or power capability are similar.Finally, electrochemical insertion of Li+ and Na+ in a powder comprising structural defects wascharacterized by operando XRD, during a charge / discharge cycle performed at low rate. Theseanalyses revealed that the cationic co-insertion takes place via a solid solution LixNayFePO4(0
Matos, Izabela Teles de. "Caracterização em escala atômica de nanopartículas magnéticas de magnetita e ferrita do tipo TMFe2O4 (TM = Co, Ni) para uso em biomedicina pela espectroscopia de correlação angular gama-gama perturbada." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/85/85131/tde-30012019-144245/.
Повний текст джерелаThis work describes, from an atomic point of view, the investigation of magnetic nanoparticles (MNPs) of magnetite (Fe3O4) and ferrites of the type TMFe2O4 (TM = Co, Ni), which are a class of structured materials that currently have a great interest due to the great variety of its possible technological and biomedical applications by Perturbed γ-γ Angular Correlation Spectroscopy (PAC). Two chemical routes were used to produce MNPs: the co-precipitation method and the thermal decomposition method. Co-precipitation has the advantages of having moderate temperatures and relatively low costs, but particle size distribution control is not achieved. On the other hand, the thermal decomposition allows a monodisperse sample with size and shape control, but this method requires toxic reagents, expensive and high reaction temperature. The X-Ray Diffraction (XRD) technique was used to characterize the samples and the morphology of the NPs was studied by Electron Transmission Electron Microscopy (TEM). From this technique it was possible to evaluate grain size distribution, because some characteristics such as high magnetization value, high anisotropy and a high coercivity value are properties that depend on the nanostructures. The magnetic properties were studied locally from the Perturbed Angular Correlation (CAP), which uses as probe nuclei of the measurements, such as 111In (111Cd), 140La (140Ce) and 181Hf (181Ta). These properties were complemented by Magnetization measurements.
Ballesteros, Camilo Arturo Suarez. "Síntese e caracterização de nanopartículas Fe3O4@Au e desenvolvimento de sensores para aplicações em nanomedicina." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-23102012-101205/.
Повний текст джерелаAlong with the development of nanomaterials came the knowledge and design of their unique eletronic, optical and catalitycal properties which may be used for a variety of nanotecnological applications. A special class of nanomaterials with interesting characteristics is represented by the CoreαShell nanoparticles, which combine the physicochemical properties of two differerent nanomaterials (including oxides, metals, semiconductors or polymers). This combination provides greater efficiency in applications such as nanoelectronics, sensing, biosensing and biomedical areas. This study reports the synthesis of Fe₃O₄ Np, which in the presence of the polyamido amine generation 4.0 (Pamam G4), is covered with Au Np forming the Fe₃O₄αAu Nps. The nanomaterials had been characterized using spectroscopic, microscopic and electrochemical techniques. The results revealed the formation of Au Nps in the cavities of PAMAM G4 and showed that the electrostatic interactions between the PAMAM functional groups and the OH ⁻ and H ⁺ groups on the surface of the magnetic nanoparticles lead to a strong stability in the configuration of Fe₃O₄αAu Nps. The optical properties of the Au Np (namely the Plasmon resonance band at 542 nm) as well as the superparamagnetic properties of the Fe₃O₄ Np were present in the core-shell nanostrutures. Due to their electrocatalytical properties, the core-shell nanoparticles were employed as active elements for dopamine (DA) detection. The fabrication of the modified electrodes for DA detection consisted in the deposition by LbL technique of alternating layers of nanoparticles and poly(vinyl sulfonic acid) (PVS) on the ITO eletrode, in three distinct architectures: ITO - (Fe₃O₄αAu Fe₃O₄ PV S), ITO - (Fe₃O₄ ⁄ PV S) and ITO - (Au ⁄ PV S). We found a good selectivity and rapid response toward the detection of DA, being the sensor ITO - (Fe₃O₄αAu ⁄ PV S) the most efficient. The effect of Fe₃O₄αAu Nps showed a higher cytotoxicity in cancer cells compared to healthy cells, because cancer cells are more sensitive to oxidative stress produced by the nanoparticles.
Rodrigues, Marcos Renan Flores. "Estudo e caracterização de nanopartículas de Fe3O4, Fe2O3, Fe3O4/ Aunanop E Fe2O3/Aunanop." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/184573.
Повний текст джерелаFe3O4 and Fe2O3 nanoparticles were synthesized by coprecipitation route carried out under N2 atmosphere, maintaining the pH between 9 and 14 at room temperature and using FeCl2 and FeCl3 as precursors. After synthesis the iron oxide nanoparticles were thermally treated at 250, 500 and 800 oC. To obtain a hybrid system, gold nanoparticles were synthesized on the thermally treated oxide nanoparticles. The samples were analyzed by UV-Vis, X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (MET-AR), spectroscopy in the region of Infrared (FTIR), vibrating sample magnitude (VSM) and Mossbauer, and applied to produce H2 through hydrazine decomposition. The results show the synthesis of Fe3O4 nanoparticles with average diameter of about 7 nm. When heated to 250 oC the average size increased to about 11 nm and a small change in the optical and structural behavior was observed, while the superparamegnetic behaviour was maintained. When heated to 500 °C, the average particle size increase to ca 51nm, significant changes in the optical, morphological and structural properties are observed, in addition to a transition from superparamegnetic to paramagnetic behaviour. When heated to 800 oC the effects on the properties are even more significant; the nanoparticles increase to ca. 200 nm, the absorption spectrum in UV-Vis changes significantly and the particles present paramagnetic behaviour. The results suggest that when heated to 250 and 500 oC a mixture of -Fe2O3 e -Fe2O3 is obtained, after heating at 800 oC only -Fe2O3 is observed. The gold nanoparticles synthesized on the iron oxides present average size of 6.0 nm, and did not affect the magnetic properties of the oxides. The iron oxides/gold nanoparticle samples were efficiently applied to produce hydrogen, promoting the decomposition of hydrazin. The selectivity to hydrogen reached up to 33%.
Nunes, Eloiza da Silva [UNESP]. "Preparação e caracterização de nanocompósitos de Fe@SiO2, Fe@Fe3O4 e Fe3O4@PNIPAM." Universidade Estadual Paulista (UNESP), 2015. http://hdl.handle.net/11449/124538.
Повний текст джерелаNeste trabalho foi investigada a obtenção de nanopartículas de ferro metálico em diferentes meios não aquosos (glicóis) e em água através da rota de redução com boroidreto e a obtenção de estruturas caroço@casca Fe@SiO2 e Fe@Fe3O4. Também são apresentados resultados da caracterização de nanocompósitos magnéticos à base poli(N-isopropilacrilamida) (PNIPAM) e de nanogéis poliméricos (controles) através do método de polimerização radicalar por precipitação. A composição dos nanocompósitos poliméricos foi variada quanto ao tipo de co-monômero (ácido acrílico e poli(etileno glicol) metiléter metacrilato (PEGMA)), reticulador (metileno bis-acrilamida (MBA) e poli(etileno glicol) diacrilato (PEGDA)) e nanopartícula magnética precursora. As nanopartículas metálicas e nanoestruturas Fe@SiO2 e Fe@Fe3O4 foram caracterizadas por DRX, espectroscopia Mössbauer, XPS, SEM e TEM. Os resultados obtidos demostraram que as nanopartículas de ferro metálico foram compostas de α-Fe e variáveis teores de liga de Fe1-xBx e a morfologia e tamanho de partícula variaram em função dos diferentes meios reacionais empregados. As metodologias de recobrimento das partículas metálicas precursoras foram eficazes na estabilização química do caroço magnético. O recobrimento com sílica para obtenção das estruturas Fe@SiO2 foi realizado empregando-se precursores alcoxissilanos através do processo sol-gel. A espessura da camada de sílica pode ser controlada mais eficientemente no caso de partículas maiores oriundas de redução no meio aquoso e no caso de nanopartículas pequenas observou-se a formação de agregados. As estruturas Fe@Fe3O4 foram obtidas pela passivação das nanopartículas metálicas em solvente glicol. A metodologia de passivação demostrou a possiblidade de oxidação controlada da superfície para fase de magnetita evitando a formação de óxi-hidróxidos não...
In this work the obtainment of metallic iron nanoparticles in several non-aqueous (glycols) and in aqueous media through chemical reduction with sodium borohydride and the obtainment of core@shell structures Fe@SiO2 and Fe@Fe3O4, was investigated. The characterization results of poly(N-isoproprylacrylamide) (PNIPAM) based magnetic nanocomposites and bare polymeric nanogels (controls) synthesized through radical precipitation polymerization were also presented. The composition of the polymeric nanocomposites was varied as the type of co-monomer (acrylic acid and poly(ethyleneglycol) methylether methacrylate (PEGMA)), crosslinker (methylene bis-acrylamide (MBA) and poly(ethyleneglycol) diacrylate (PEGDA)) and precursor magnetic nanoparticle. The metallic nanoparticles and the core@shell Fe@SiO2 and Fe@Fe3O4 nanostructures were characterized by XRD, Mössbauer spectroscopy, XPS, SEM and TEM. The results show that the iron nanoparticles were composed of α-Fe and varying amounts of Fe1-xBx alloy and the size and morphology of the particles was dependent of the reaction media used. The strategies for metallic nanoparticles coating was efficient and chemically stabilized the magnetic cores. The Fe@SiO2 nanostructures was prepared by using alkoxysilanes precursors through the sol-gel process to produce the silica coating. The silica thickness could be controlled more efficiently in the case of bigger particles produced from chemical reduction in aqueous media. In the case of small nanoparticles the formation of aggregates was observed. The Fe@Fe3O4 core@shell structures were obtained by passivation of the metallic iron nanoparticles in a glycol solvent. The method of passivation enabled good oxidation control of the metallic surface to magnetite phase, avoiding the formation of non-magnetic oxy-hydroxides. The metallic to oxide phase ratio was determined by Rietveld refinement and was dependent of the type...
Cláudia, Vaz de Araújo Ana. "Síntese de nanopartículas de Fe3O4, nanocompósitos de Fe3O4 com polímeros e materiais carbonáceos." Universidade Federal de Pernambuco, 2011. https://repositorio.ufpe.br/handle/123456789/9226.
Повний текст джерелаUniversidade Federal Rural de Pernambuco
Nanopartículas magnéticas de Fe3O4 foram sintetizadas através do método da precipitação a partir de uma solução aquosa de sulfato ferroso, sob ultrassom. Um planejamento fatorial 23 em duplicata foi desenvolvido para determinar as melhores condições de síntese e obter o menor tamanho de cristalito. As condições selecionadas foram: freqüência do ultrassom de 593 kHz durante 40 min em 1,0 mol L-1 de hidróxido de sódio. Foi obtido tamanho médio do cristalito da ordem de 25 nm. A fase cristalina obtida foi identificada por difratometria de raios-X (DRX) como sendo a magnetita. A microscopia eletrônica de varredura (MEV) mostrou partículas polidispersas com dimensões em torno de 57 nm, enquanto a microscopia eletrônica de transmissão (MET) revelou um diâmetro médio das partículas em torno de 29 nm, na mesma ordem de grandeza do tamanho de cristalito determinado com a equação de Scherrer. Estas nanopartículas magnéticas foram utilizadas para a obtenção de nanocompósitos com polianilina (PAni). O material foi preparado sob exposição à luz ultravioleta (UV) ou sob aquecimento, a partir de dispersões das nanopartículas em solução ácida de anilina. Ao contrário de outras rotas sintéticas reportadas na literatura, esta nova rota não faz uso de um agente oxidante adicional. Análises de DRX mostraram o surgimento de uma segunda fase cristalina em todos os compósitos de PAni-Fe3O4, a qual foi indexada como goetita. Além disso, o tamanho de cristalito diminui quase 50% em função do aumento do tempo de síntese. Esta diminuição de tamanho sugere que as nanopartículas são consumidas durante a síntese. A análise termogravimétrica mostrou que a quantidade de polianilina aumenta com o aumento do tempo de síntese. A condutividade elétrica dos nanocompósitos foi de cerca de 10-5 S cm-1, aproximadamente uma ordem de grandeza mais alta que para a magnetita pura. A condutividade variou com a quantidade de PAni presente no sistema, sugerindo que as propriedades elétricas dos nanocompósitos podem ser ajustadas de acordo com a sua composição. Sob a aplicação de um campo magnético externo os nanocompósitos apresentam histerese a temperatura ambiente, característica de materiais ferromagnéticos. A magnetização de saturação (MS) observada para a magnetita pura foi cerca de 74 emu/g. Para os nanocompósitos PAni-Fe3O4, MS variou de aproximadamente 2,0 a 70 emu/g de acordo com as condições de síntese. Isto sugere que a composição do material também pode ser usada para controlar suas propriedades magnéticas. Um nanocompósito de PAni-Fe3O4-Quitosana foi obtido a partir de uma mistura das nanopartículas de Fe3O4 com uma solução de anilina e uma solução ácida de quitosana exposta à UV. O uso da quitosana permitiu a obtenção de filmes contendo PAni e nanopartículas de Fe3O4, as quais apresentaram diâmetro médio da ordem de 5 nm. A ausência de histerese nas medidas de magnetização indicou que o material possui características superparamagnéticas. A pirólise de misturas de PAni sintetizada quimicamente e nanopartículas de Fe3O4 foi utilizada para produzir materiais carbonáceos porosos. Morfologias fibrilares foram observadas por MEV e MET. Resultados mostraram que o material é mesoporoso (diâmetro de poro de 2 a 50 nm), com áreas superficiais de BET entre 200 e 400 m2/g
Jesus, Ana Carla Batista de. "Síntese e caracterização de nanoestruturas Fe3O4 e Fe3O4@Ag para estudos com hipertermia magnética." Pós-Graduação em Física, 2018. http://ri.ufs.br/jspui/handle/riufs/8037.
Повний текст джерелаFundação de Apoio a Pesquisa e à Inovação Tecnológica do Estado de Sergipe - FAPITEC/SE
In this work we have performed a study of the structural and magnetic properties in Fe3o4@Agx nanostructures (x=0,1,5 and 10%), synthesized by thermal decomposition (DT) and co-precipitation (CP). The samples were characterized by measurements of X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns indicate the presence of the Fe3o4 and Ag phase. The mean crystallites size corresponding to the Fe3o4 estimated by using the Scherrer’s equation shows that the nanostructures present not change considerable in the size after insertion of Ag for both growth methods. The TEM images obtained for DT samples reveal that the nanostructures are a like-spherical shape and average sizes of 3 nm which are in good according with size estimated by XRD. The mass loss observed in TG analysis was used to estimate the amount of organic matter present in the samples and consenquently normalize the magnetic measurements. The magnetic characterization was carried out by magnetization measurements as a function of magnetic field (MvsH) and temperature in Zero Field Cooling – Field Cooling (ZFC/FC) modes. These results indicate that the samples present superparamagnetic behavior to start 220 K. Fits of the ZFC / FC curves allowed verify that the magnetic anisotropy constant decreasing as a function of Ag-concentration. Magnetic hyperthermia measurements were performed in the samples synthesized via CP and the specific absorption rate (SAR) was estimated between 8 and 40 W / g.
Neste trabalho foi realizado um estudo das propriedades estruturais e magnéticas em nanoestruturas Fe3o4@Agx (x=0,1,5 and 10%), sintetizadas pelos métodos de decomposição térmica (DT) e de co-precipitação (CP). As amostras foram caracterizadas estruturalmente através de medidas de difração de raios X (DRX) e microscopia eletrônica de transmissão (MET). Os padrões de DRX indicam a presença da fase cristalina de Fe3o4 para todas as amostras, mas nas amostras aonde foi inserida a Ag há presença de uma outra fase cristalina, ou seja, a fase da Ag. O tamanho médio dos cristalitos estimados utilizando a largura à meia altura dos picos de DRX e a equação de Scherrer, mostra que as nanoestruturas não sofreram alterações consideráveis de tamanho após o acréscimo da Ag, mesmo com o aumento da concentração de Ag para ambos os métodos. As imagens de MET obtidas para as amostras sintetizadas via DT revelam que as nanoestruturas apresentam formatos praticamente esféricos e com tamanhos médios de 3 nm, que estão de acordo com os tamanhos estimados por DRX. Análises termogravimétricas foram utilizadas para estimar as perdas de massa de orgânicos presente nas amostras e assim realizar a normalização das medidas de magnetização. A caracterização magnética foi feita através de medidas de magnetização em função do campo magnético (MvsH) e da temperatura no modo Zero Field Cooling – Field Cooling (ZFC/FC). Estas medidas indicam que as amostras apresentam um comportamento superparamagnético a partir de 220 K. A realização de ajustes nas curvas ZFC/FC permitiu verificar que a constante de anisotropia magnética diminui com a concentração de Ag. Também foram realizadas medidas de hipertermia magnética nas amostras sintetizadas via CP e através das análises foi estimada a taxa de absorção específica (SAR), com valores entre 8 e 40 W/g.
São Cristóvão, SE
Книги з теми "FePO4"
Goulding, Harold B. Yasmé: Some random collections of a former FEPOW. London: People's Publications, 1988.
Знайти повний текст джерелаFepow: The story of a voyage beyond belief. London: Hale, 1985.
Знайти повний текст джерелаKelly, Terence. Fepow: The story of a voyage beyond belief. Hale, 1985.
Знайти повний текст джерелаWalker, J. Of Rice and Men. Lane Publishers, 1999.
Знайти повний текст джерелаNúñez Lira, Luis Alberto. Participación ciudadana, mito y realidad una aproximación teórica. 2nd ed. Fondo Editorial Professionals On Line, 2022. http://dx.doi.org/10.47422/fepol.1.
Повний текст джерелаDiaz Dumont, Jorge Rafael. Tecnología de información y comunicación teoría y filosofía. 2nd ed. Fondo Editorial Professionals On Line, 2022. http://dx.doi.org/10.47422/fepol.2.
Повний текст джерелаQuiroz Quiroz, Enrique, та Florencio Flores Ccanto. Significado de la Potenciación en ℝ. Fondo Editorial Professionals On Line, 2022. http://dx.doi.org/10.47422/fepol.3.
Повний текст джерелаGarcia Curo, Gianmarco, and Erika Mirella Gutiérrez Sullca. Sistema interactivo para el aprendizaje del idioma inglés en personas con deficiencia visual. Fondo Editorial Professionals On Line, 2022. http://dx.doi.org/10.47422/fepol.4.
Повний текст джерелаGarcia Curo, Gianmarco. Certificación Digital con QR. Fondo Editorial Professionals On Line, 2022. http://dx.doi.org/10.47422/fepol.6.
Повний текст джерелаDiaz Dumont, Jorge Rafael. Escala de valoración para entornos virtuales de aprendizaje (EVA). Fondo Editorial Professionals On Line, 2022. http://dx.doi.org/10.47422/fepol.5.
Повний текст джерелаЧастини книг з теми "FePO4"
Harisch, Günther, and Michael Kretschmer. "Ferrum phosphoricum (Eisenphosphat, FePO4)." In Jenseits vom Milligramm, 91–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-47595-5_6.
Повний текст джерелаHashizume, Takashi, Atsushi Saiki, and Kiyoshi Terayama. "Solid Reaction Mechanism of Li2 CO3 and FePO4 /C Powder." In Ceramic Transactions Series, 93–102. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118771464.ch9.
Повний текст джерелаKhan, F. B., K. Bharuth-Ram, and H. B. Friedrich. "Phase transformations of the FePO4 catalyst in the oxidative dehydrogenation to form an alkyl methacrylate." In HFI / NQI 2010, 317–23. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-1269-0_52.
Повний текст джерелаVillars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, N. Melnichenko-Koblyuk, et al. "Fe3O4." In Structure Types. Part 5: Space Groups (173) P63 - (166) R-3m, 668. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-46933-9_542.
Повний текст джерелаVaneeckhaute, Céline, Joery Janda, Erik Meers, and F. M. G. Tack. "Efficiency of Soil and Fertilizer Phosphorus Use in Time: A Comparison Between Recovered Struvite, FePO4-Sludge, Digestate, Animal Manure, and Synthetic Fertilizer." In Nutrient Use Efficiency: from Basics to Advances, 73–85. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2169-2_6.
Повний текст джерелаVillars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, N. Melnichenko-Koblyuk, et al. "(Eu0.5Yb0.5)Fe2O4." In Structure Types. Part 5: Space Groups (173) P63 - (166) R-3m, 549–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-46933-9_434.
Повний текст джерелаHolze, Rudolf. "Ionic conductance of FeSO4." In Electrochemistry, 889. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_836.
Повний текст джерелаWollschläger, J. "Coexistence of domains: other binary oxides (Ce7O11, Fe3O4, Fe3O4/MgO, SnO2, WO3)." In Physics of Solid Surfaces, 338–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_76.
Повний текст джерелаMoarref, Roxana, and Saeed Pourmahdian. "Preparation of Fe3O4/Polymethyl Methacrylate Composite Particles from Monolayer Oleic Acid-Modified Fe3O4." In Eco-friendly and Smart Polymer Systems, 371–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45085-4_89.
Повний текст джерелаPylypchuk, Ie V., Iu P. Mukha, N. V. Vityuk, K. Szczepanowicz, L. P. Storozhuk, A. M. Eremenko, P. Warszyński, and P. P. Gorbyk. "Tryptophan-Stabilized Plasmonic Fe3O4/Ag Nanoparticles." In Springer Proceedings in Physics, 417–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17755-3_28.
Повний текст джерелаТези доповідей конференцій з теми "FePO4"
Prosini, Pier Paolo, Cinzia Cento, Amedeo Masci, Maria Carewska, and Paola Gislon. "A synthesis of LiFePO4 starting from FePO4 under reducing atmosphere." In PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4883049.
Повний текст джерелаIslam, Mujahidul, Adedamla Omole, Arif Islam, and Alexander Domijan. "Dynamic capacity estimation for a typical grid-tied event programmable Li-FePO4 battery." In 2010 IEEE International Energy Conference (ENERGYCON 2010). IEEE, 2010. http://dx.doi.org/10.1109/energycon.2010.5771751.
Повний текст джерелаSanchez, Luciano, Ines Couso, and Cecilio Blanco. "Online SOC estimation of Li-FePO4 batteries through an observer of the system state with minimal nonspecificity." In 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2015. http://dx.doi.org/10.1109/fuzz-ieee.2015.7337901.
Повний текст джерелаZhang, Bao, Jiafeng Zhang, Chao Shen, Chunli Peng, and Qian Lian. "Effects of reaction conditions on preparation of FePO4·2H2O and properties of LiFePO4 by solution precipitation route." In 2010 IEEE 3rd International Nanoelectronics Conference (INEC). IEEE, 2010. http://dx.doi.org/10.1109/inec.2010.5424913.
Повний текст джерелаTanboonjit, Bundit, and Nisai H. Fuengwarodsakul. "Implementation of charger and battery management system for fast charging technique of Li-FePO4 battery in electric bicycles." In 2014 Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER). IEEE, 2014. http://dx.doi.org/10.1109/ever.2014.6844103.
Повний текст джерелаMa, XiaoLing, Yejun Zhao, and Youxiang Zhang. "Effect of reaction time on the FePO4 synthesized for the LiFePO4/C cathode material of lithium ion batteries." In 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/iccmcee-15.2015.128.
Повний текст джерелаCarkit, Taner. "Using Artificial Bee Colony and Dragonfly Algorithms to Improve the Accuracy of Parameter Estimation of Li- FePO4 Battery Cell." In 2022 Global Energy Conference (GEC). IEEE, 2022. http://dx.doi.org/10.1109/gec55014.2022.9987189.
Повний текст джерелаSanchez, Luciano, Ines Couso, and Juan Carlos Viera. "Online SOC Estimation of Li-FePO4 Batteries through a New Fuzzy Rule-Based Recursive Filter with Feedback of the Heat Flow Rate." In 2014 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2014. http://dx.doi.org/10.1109/vppc.2014.7007113.
Повний текст джерелаHuang, Z., J. Yue, J. Wang, Y. Zhai, Y. Xu, and B. Wang. "Oscillatory tunneling magnetoresistance in Fe3O4/GaAs/Fe3O4 junction." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7156969.
Повний текст джерелаAlbano, Carmen, Gema Gonzalez, and Claudio Naranjo. "PLLA- Fe3O4 nanocomposites." In 6TH INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2012. http://dx.doi.org/10.1063/1.4738455.
Повний текст джерелаЗвіти організацій з теми "FePO4"
S.E. Ziemniak and R.A. Castelli. Immiscibility in the Fe3O4-FeCr2O4 Spinel Binary. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/821371.
Повний текст джерелаToney, Michael F. Nanoscale Phase Separation in Fe3O4(111) Films on Sapphire(0001) and Phase Stability of Fe3O4(001) Films on MgO(001) Grown by Oxygen-Plasma-Assisted Molecular Beam Epitaxy. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/813273.
Повний текст джерелаSteven A. Attanasio, David S. Morton, and Mark A. Ando. Measurement and Calculation of Electrochemical Potentials in Hydrogenated High Temperature Water, including an Evaluation of the Yttria-Stabilized Zirconia/Iron-Iron Oxide (Fe/Fe3O4) Probe as Reference Electrode. Office of Scientific and Technical Information (OSTI), October 2001. http://dx.doi.org/10.2172/821313.
Повний текст джерела