Добірка наукової літератури з теми "Femtosecond pules"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Femtosecond pules".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Femtosecond pules"

1

Renard, William, Clément Chan, Antoine Dubrouil, Jérôme Lhermite, Giorgio Santarelli, and Romain Royon. "Agile femtosecond synchronizable laser source from a gated CW laser." Laser Physics Letters 19, no. 7 (May 31, 2022): 075105. http://dx.doi.org/10.1088/1612-202x/ac7133.

Повний текст джерела
Анотація:
Abstract In this letter we demonstrate agile femtosecond pulse generation with a widely tunable repetition rate (10–100 MHz) from a continuous wave laser diode optically gated by a Mach–Zehnder electro-optic intensity modulator. Initial sub-50 ps pulses are strongly spectral broadened (>5 nm) by self-phase modulation in a polarization maintaining single-mode fiber. A tunable optical pulse train with pulse durations of a few hundred femtoseconds is obtained using a simple fixed grating compressor, thanks to spectral broadening saturation phenomena. The source is easily synchronized with low timing jitter using an external clock signal.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ye, Hanyu, Florian Leroy, Lilia Pontagnier, Giorgio Santarelli, Johan Boullet, and Eric Cormier. "Non-linear amplification to 200 W of an electro-optic frequency comb with GHz tunable repetition rates." EPJ Web of Conferences 287 (2023): 07025. http://dx.doi.org/10.1051/epjconf/202328707025.

Повний текст джерела
Анотація:
We present a monolithic Yb-doped fiber laser system delivering 200 W average power of femtosecond pulses at tunable GHz repetition rates. The system is based on a GHz electro-optic (EO) frequency comb operating in the nonlinear regime. The EO comb pulses at 1 µm wavelength are initially pre-compressed to sub-2 ps, amplified to 2.5 W, and finally boosted to 200 W in a newly designed large-mode-area, Yb-doped photonic crystal fiber. Continuously tunable across 1-18 GHz, the picosecond pulses experience nonlinear propagation in the booster amplifier, leading to output pulses compressible down to several hundreds of femtoseconds. To push our system deeper into the nonlinear amplification regime, the pulse repetition rate is further reduced to 2 GHz, enabling significant spectral broadening at 200 W. Characterization reveals sub-200 fs duration after compression. The present EO-comb seeded nonlinear amplification system opens a new route to the development of high-power, tunable GHz-repetition-rate, femtosecond fiber lasers.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zeng, Li, Xiaofan Wang, Yifan Liang, Huaiqian Yi, Weiqing Zhang, and Xueming Yang. "Chirped-Pulse Amplification in an Echo-Enabled Harmonic-Generation Free-Electron Laser." Applied Sciences 13, no. 18 (September 14, 2023): 10292. http://dx.doi.org/10.3390/app131810292.

Повний текст джерела
Анотація:
The field of ultrafast science has experienced significant growth over the last decade, largely attributed to advancements in optical and laser technologies such as chirped-pulse amplification and high-harmonic generation. The distinctive characteristics of intense ultrafast free-electron lasers (FELs) have introduced novel prospects for investigating molecular dynamics, as well as providing an opportunity to gain deeper insights into nonlinear processes in materials. Therefore, high-power ultrafast FELs can be widely used for both fundamental research and practical applications. This study presents a novel approach for producing high-power femtosecond FEL pulses, utilizing chirped-pulse amplification in echo-enabled harmonic generation. Chirped seed pulses are employed to induce frequency-chirped energy modulation in the electron beam. The generated FEL pulse, which inherits the chirped frequency, can be compressed through the gratings in the off-plane mount geometry to provide ultraintense ultrafast pulses. The numerical modeling results indicate that peak power exceeding 20 GW and a pulse duration in the order of several femtoseconds can be achieved.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Saha, Asit. "Bifurcation analysis of the propagation of femtosecond pulses for the Triki-Biswas equation in monomode optical fibers." International Journal of Modern Physics B 33, no. 29 (November 20, 2019): 1950346. http://dx.doi.org/10.1142/s0217979219503466.

Повний текст джерела
Анотація:
Bifurcation analysis of the propagation of femtosecond pulses for the Triki–Biswas (TB) equation in monomode optical fibers is reported for the first time. Bifurcation of phase plots of the dynamical system is dispensed using phase plane analysis through symbolic computation. It is observed that the TB equation supports femtosecond solitary pulse, periodic pulse, superperiodic pulse, kink and anti-kink pulses, which are presented through time series plot numerically. Analytical forms of the femtosecond solitary pulses are obtained. This contribution may be applicable to interpret the dynamical behavior of various femtosecond pulses in monomode optical fibers beyond the Kerr limit.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhu, Chang Jun, Jun Fang He, Xue Jun Zhai, Bing Xue, and Chong Hui Zhang. "Two Synchronized Operating Modes of Femtosecond and Picosecond Pulses in a Dual-Wavelength Laser." Materials Science Forum 663-665 (November 2010): 284–87. http://dx.doi.org/10.4028/www.scientific.net/msf.663-665.284.

Повний текст джерела
Анотація:
Two synchronized operating modes of femtosecond and picosecond pulses, cross mode-locking and multi-pulse operating, are presented in a two-beam-pumped dual-wavelength Ti:sapphire laser. For the cross mode-locking mode, synchronized laser pulses of 37.5 fs and 0.891ps, with a timing jitter of 139 fs, are obtained in the femtosecond cavity and picosecond cavity, respectively. For the multi-pulse mode, pulses of 35 fs are obtained in the femtosecond cavity, whereas, multi-pulse mode appears in the picosecond cavity, with a pulse envelope width of 1.06 ps. The two operating modes can be switched from one to the other, dominated mainly by the mutual interaction between cross-phase modulation and self-amplitude modulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jana, Kamalesh, Amit D. Lad, Ankit Dulat, Yash M. Ved, and G. Ravindra Kumar. "Ultrafast time-resolved two-dimensional velocity mapping of the hot-dense plasmas generated by intense-laser pulses." AIP Advances 12, no. 9 (September 1, 2022): 095112. http://dx.doi.org/10.1063/5.0102048.

Повний текст джерела
Анотація:
Experimental measurements of spatially resolved ultrafast dynamics of the critical surface in ultra-intense laser–solid interactions are essential for a proper understanding of the physical mechanism of the interaction. Resolving ultrafast motion at both the relevant length scales (micrometers) and timescales (femtoseconds) simultaneously has been a challenging task. Here, we demonstrate a novel technique for mapping the spatiotemporal dynamics of hot and solid dense plasma created by high contrast (picosecond contrast ∼10−9) femtosecond relativistic intensity laser pulses. This pump–probe Doppler spectrometry technique offers hundreds of femtosecond temporal resolution, together with a few micrometer spatial resolution across the transverse profile of the plasma. We present the evolution of the plasma surface critical for the probe pulse at the target front as well as the rear. Early time measurements ([Formula: see text] 5 ps) using this technique provide very important information about shock wave generation and propagation and the state of the target rear.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Spence, Stephanie, Takaaki Harada, Athanasios Margiolakis, Skylar Deckoff-Jones, Aaron N. Shugar, James F. Hamm, Keshav M. Dani, and Anya R. Dani. "Applicability of Femtosecond Lasers in the Cross-section Sampling of Works of Art." MRS Advances 2, no. 33-34 (2017): 1801–4. http://dx.doi.org/10.1557/adv.2017.242.

Повний текст джерела
Анотація:
ABSTRACTIssues in traditional cross-section sampling of paintings and other cultural artifacts with a scalpel, such as crumbling, delamination and paint compression, can deter conservators from sampling fragile paint layers. Often, such sampling carries the risk of causing further damage from a scalpel, which outweighs the benefits of scientific investigation. Here, we show that femtosecond lasers offer a viable alternative to obtaining cross-sections with minimal damage to the surrounding artwork. A Regenerative Ti:Sapphire amplifier system with a pulse duration of 70 femtoseconds, a few milliwatts of average power and a repetition rate of 1 kHz (1000 pulses/sec) was used for the study. Tests were performed on oil paintings ranging in age from the 19th century to late 20th century. Effective settings were determined to be 2 mW of power at a speed of 10mm/sec using an 800nm laser. Preliminary results suggest femtosecond lasers could be a viable alternative for obtaining paint cross-sections when traditional sampling methods cause unnecessary damage to fragile materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Neutze, Richard. "Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers." Philosophical Transactions of the Royal Society B: Biological Sciences 369, no. 1647 (July 17, 2014): 20130318. http://dx.doi.org/10.1098/rstb.2013.0318.

Повний текст джерела
Анотація:
X-ray free-electron lasers (XFELs) are revolutionary X-ray sources. Their time structure, providing X-ray pulses of a few tens of femtoseconds in duration; and their extreme peak brilliance, delivering approximately 10 12 X-ray photons per pulse and facilitating sub-micrometre focusing, distinguish XFEL sources from synchrotron radiation. In this opinion piece, I argue that these properties of XFEL radiation will facilitate new discoveries in life science. I reason that time-resolved serial femtosecond crystallography and time-resolved wide angle X-ray scattering are promising areas of scientific investigation that will be advanced by XFEL capabilities, allowing new scientific questions to be addressed that are not accessible using established methods at storage ring facilities. These questions include visualizing ultrafast protein structural dynamics on the femtosecond to picosecond time-scale, as well as time-resolved diffraction studies of non-cyclic reactions. I argue that these emerging opportunities will stimulate a renaissance of interest in time-resolved structural biochemistry.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rudenkov, A. S., V. E. Kisel, A. S. Yasukevich, K. L. Hovhannesyan, A. G. Petrosyan, and N. V. Kuleshov. "Yb:CALYO-based femtosecond chirped pulse regenerative amplifier for temporally resolved pump-probe spectroscopy." Devices and Methods of Measurements 9, no. 3 (September 17, 2018): 205–14. http://dx.doi.org/10.21122/2220-9506-2018-9-3-205-214.

Повний текст джерела
Анотація:
Diode-pumped femtosecond chirped pulse regenerative amplifiers based on Yb3+-materials are of practical importance for wide range of scientific, industrial and biomedical applications. The aim of this work was to study the amplification of broadband chirped femtosecond pulses in regenerative amplifier based on Yb3+:CaYAlO4crystal.Such systems use femtosecond mode-locked lasers as seed pulse sources and amplify nJ-seed pulses to sub-mJ energy range. Most chirped pulse regenerative amplifier systems described in the literature use seed lasers with typical pulse spectral width at the level of 10–15 nm full width at half maximum (FWHM) that limit the seed pulse duration of about 90 fs and amplified pulse duration at the level of 200 fs due to strong influence of gain narrowing effect on the amplified pulse parameters. Yb3+-doped crystals with wide and smooth gain bandwidth as an active medium of chirped femtosecond pulse regenerative amplification systems allow to reduce negative contribution of gain narrowing effect and lead to shortening of amplified pulses. In this research we study the chirped pulse regenerative amplification of broad-band femtosecond pulses (60 nm spectral width FWHM) in the Yb3+:CaYAlO -based chirped pulse regenerative amplifier. Substantial reduction of the amplified pulse duration down to 120 fs (19.4 nm spectral width FWHM) with average power of 3 W at 200 kHz pulse repetition frequency was demonstrated without any gain narrowing compensation technique.The results of experimental investigation of broad-band seeded Yb3+:CaYAlO -based chirped pulse regenerative amplifier are reported for the first time to our knowledge. 120 fs-pulses (19.4 nm FWHM) with average output power of 3 W were demonstrated without any gain narrowing compensation technique. Despite the significant reduction of amplified pulse duration the task of improvement group velocity dispersion balance (including high orders of group velocity dispersion) remains relevant.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhu, Jianqiang, Xinglong Xie, Meizhi Sun, Qunyu Bi, and Jun Kang. "A Novel Femtosecond Laser System for Attosecond Pulse Generation." Advances in Optical Technologies 2012 (January 15, 2012): 1–6. http://dx.doi.org/10.1155/2012/908976.

Повний текст джерела
Анотація:
We report a novel ultrabroadband high-energy femtosecond laser to be built in our laboratory. A 7-femtosecond pulse is firstly stretched by an eight-pass offner stretcher with a chirp rate 15 ps/nm, and then energy-amplified by a two-stage optical parametric chirped pulse amplification (OPCPA). The first stage as preamplification with three pieces of BBO crystals provides the majority of the energy gain. At the second stage, a YCOB crystal with the aperture of ~50 mm is used instead of the KDP crystal as the gain medium to ensure the shortest pulse. After the completion, the laser will deliver about 8 J with pulse duration of about 10 femtoseconds, which should be beneficial to the attosecond pulse generation and other ultrafast experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Femtosecond pules"

1

Charpin, Pierre-Jean. "Modélisation de l'interaction laser-plasma dans les faisceaux de Bessel femtoseconde." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://indexation.univ-fcomte.fr/nuxeo/site/esupversions/fe2dc0aa-3386-4ecd-a96f-7f70a3113aa7.

Повний текст джерела
Анотація:
Les impulsions femtoseconde mises en forme de faisceaux de Bessel permettent de créer des nano-plasmas denses dans les diélectriques, menant à la formation de nano-vides à très haut rapport de forme pour des applications dans le domaine de la microélectronique. La modélisation de l'interaction laser-plasma est de prime importance pour comprendre l'évolution spatio-temporelle de la création de plasma et du dépôt d'énergie par l'impulsion laser femtoseconde. Ceci permettra de développer une interaction laser-matière extrêmement efficace dans d'autres géométries et matériaux. La thèse a pour objectif d'adapter des modèles d'ionisation et d'interaction laser plasma, de développer des outils d'analyse d'expériences, pour converger vers un modèle prédictif
Femtosecond pulses shaped as Bessel beams create dense nano-plasma in dielectrics, leading to the formation of very high aspect ratio nano-voids for microelectronics applications. The modeling of laser-plasma interaction is very important to understand the spatio-temporal evolution of plasma creation and energy deposition by the femtosecond laser pulse. This will allow the development of highly efficient laser-matter interaction in other geometries and materials. The thesis aims to adapt ionization and plasma laser interaction models, to develop tools for the analysis of experiments, in order to converge towards a predictive model. Translated with www.DeepL.com/Translator (free version)
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wefers, Marc Michael. "Femtosecond optical pulse shaping and multiple-pulse femtosecond spectroscopy." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/10597.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fernández, González Alma. "Chirped pulse oscillators generating microjoule femtosecond pulses at megahertz repetition rate /." [S.l.] : [s.n.], 2007. http://edoc.ub.uni-muenchen.de/archive/00006967.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fernández, González Alma. "Chirped Pulse Oscillators: Generating microjoule femtosecond pulses at megahertz repetition rate." Diss., lmu, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:19-69673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Belloni, Valeria. "Spatial and temporal pulse shaping for ultrafast laser materials processing." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCD055.

Повний текст джерела
Анотація:
Le traitement par laser ultrarapide a suscité un grand intérêt dans les applications industrielles en raison de sa capacité à réaliser une ablation précise et de haute qualité dans les matériaux. Cependant, les contraintes liées aux lasers, telles que l'énergie des impulsions et les taux de répétition, ont limité son développement, en particulier dans les environnements industriels.Dans ce cadre, la personnalisation des profils spatiaux et temporels des faisceaux laser peut améliorer l'interaction entre le laser et le matériau. Les techniques de mise en forme des faisceaux jouent un rôle crucial dans l'optimisation des performances du traitement des matériaux par laser ultrarapide et permettent d'atteindre des régimes jusqu'alors inaccessibles. Parallèlement, les lasers ultrarapides fonctionnant à des taux de répétition de l'ordre du gigahertz délivrent un nombre d'impulsions par unité de temps nettement plus élevé que les sources laser conventionnelles. La division d'une impulsion en plusieurs sous-impulsions avec un taux de répétition élevé semble être une méthode efficace pour augmenter le taux d'ablation dans le traitement laser.Cette thèse explore la possibilité d'utiliser des systèmes laser ultrarapides avec des taux de répétition de l'ordre du gigahertz, ainsi que des techniques avancées de mise en forme du faisceau pour améliorer le traitement laser ultrarapide. Le faisceau de Bessel est particulièrement utile dans le traitement des matériaux transparents grâce à sa robustesse aux distorsions non linéaires. Un faisceau de Bessel d'ordre élevé est utilisé dans cette thèse pour générer, pour la première fois, des nano piliers positifs avec une seule impulsion laser sur une surface de saphir. En outre, un nouveau système optique de génération de faisceaux de Bessel hautement focalisés a été développé pour étudier de nouvelles possibilités dans le traitement du silicium. Enfin, une source laser de fréquence de répétition allant jusqu’à 15 GHz, a été utilisée pour traiter le silicium. Des résultats prometteurs ont été obtenus en utilisant ce taux de répétition très élevé à la fois avec un faisceau gaussien et avec une mise en forme de faisceau en profil carré
Ultrafast laser processing has gained significant attention in industrial applications due to its ability to achieve precise and high-quality material ablation. However, laser constraints such as pulse energy and repetition rates have limited the throughput of ultrafast laser processes, especially in industrial settings.In this framework, customizing the spatial and temporal profiles of laser beams can enhance the interaction between the laser and the material. Beam shaping techniques play a crucial role in optimizing the performance of ultrafast laser materials processing and reaching previously inaccessible regimes. In parallel, ultrafast lasers operating at GHz repetition rates deliver a significantly higher number of pulses per unit of time compared to conventional laser sources. Splitting a single pulse into several sub-pulses with high repetition rate seems to be an effective method to increase the ablation rate in laser processing.This thesis explores the possibility of ultrafast laser systems with GHz repetition rates and advanced beam shaping techniques to improve ultrafast laser processing. The Bessel beam is particularly beneficial in processing transparent materials thanks to its robustness to non-linear distortions. A high-order Bessel beam is used in this thesis to generate, for the first time, positive nanopillars with a single laser pulse across the surface of sapphire. In addition, a new setup for highly focused Bessel beams has been developed to investigate new opportunities in silicon processing. Finally, a GHz repetition laser source, in a new regime up to 15 GHz, has been used to process silicon. Promising results were obtained with this very high repetition rate with a Gaussian beam and top-hat beam shaping
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chin, Roger S. "Femtosecond laser pulse compression." Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/29799.

Повний текст джерела
Анотація:
Once the Spectra-Physics Femtosecond Laser System had arrived, it had to be characterized. For further pulse compression, various techniques had to be considered. The best of these were chosen considering our needs and limitations. First, the Spectra-Physics Femtosecond Laser System is described and its 616 nm laser pulses are characterized. By using an autocorrelation technique based on the nonlinear optical characteristics of a potassium dihydrogen phosphate (KDP) crystal and assuming a particular intensity pulse shape (such as that described by a symmetric exponential decay), the pulse width (full width at half maximum) could be obtained. Assuming a pulse shape described by a symmetric exponential decay function, the "exponential" pulse width was measured to be 338 ± 6 fs. The nominal average power of the 82-MHz modelocked pulse train was 225 mW. The "exponential" pulse energy was 2.7 nJ with a peak pulse power of 2.8 kW. Theoretical calculations for fibre grating pulse compression are presented. Experimentally, I was able to produce 68 ± 1 fs (exponential) pulses at 616 nm. The average power was 55 mW. The "exponential" pulse energy was 0.67 nJ with a peak power of 3.4 kW. The pulse compressor consisted of a 30.8 ±0.5 cm fibre and a grating compressor with the effective grating pair distance of 103.8 ± 1 cm. Various techniques were considered for further pulse compression. Fibre-grating pulse compression and hybrid mode locking appeared to be the most convenient and least expensive options while yielding moderate results. The theory of hybrid mode locking is presented. Experimentally, it was determined that with the current laser system tuned to 616 nm, DODCI is better than DQOCI based on pulse shape, power, stability and expense. The recommended DODCI concentration is 2-3 mmol/l. The shortest "exponential" pulse width was 250 fs. The average power was 185 mW. The exponential pulse energy was 2.3 nJ with a peak pulse power of 2.6 kW. An attempt to increase the bandwidth of the laser pulse by replacing the one-plate birefringent plate with a pellicle severely limited the tunability of the dye laser and introduces copious noise. Attempts to reduce group velocity dispersion (responsible for pulse broadening) with a grating compressor was indeterminate, but did result in a slightly better pulse shape. Interferometric autocorrelation is recommended for such a study. An increase or decrease from the nominal power output of the pulse compressor showed a decrease in pulse compression.
Science, Faculty of
Physics and Astronomy, Department of
Graduate
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dooley, Patrick W. Corkum Paul B. "Molecular imaging using femtosecond laser pulses." *McMaster only, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kafka, Kyle R. P. "Laser-Induced Damage with Femtosecond Pulses." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1483661596059632.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chanal, Margaux. "Space-time study of energy deposition with intense infrared laser pulses for controlled modification inside silicon." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0488/document.

Повний текст джерела
Анотація:
La modification du silicium dans son volume est possible aujourd’hui avec des lasers infrarouges nanosecondes. Néanmoins, le régime d’intérêt pour la modification contrôlée en volume des matériaux transparents correspond aux impulsions femtosecondes. Cependant, aujourd’hui aucune démonstration de modification permanente du volume du Si n’a été réalisée avec une impulsion ultra-brève (100 fs). Pour infirmer ce résultat, nous avons développé des méthodes de microscopie infrarouge ultra-rapides. Tout d’abord, nous étudions le microplasma confiné dans le volume, caractérisé par la génération de porteurs libres par ionisation nonlinéaire du silicium, suivie de la relaxation totale du matériau. Ces observations, couplées à la reconstruction de la propagation du faisceau dans le matériau, démontrent un dépôt d’énergie d’amplitude fortement limitée par des effets nonlinéaires d’absorption et de propagation. Cette analyse a été confirmée par un modèle numérique simulant la propagation nonlinéaire du faisceau femtoseconde. La compréhension de cette limitation a permis de développer de nouvelles configurations expérimentales grâce auxquelles l’endommagement local et permanent du volume du silicium a pu être initié en régime d’impulsions courtes
The modification of bulk-silicon is realized today with infrared nanosecond lasers. However, the interest regime for controlled modifications inside transparent materials is femtosecond pulses. Today, there is no demonstration of a permanent modification in bulk-Si with ultra-short laser pulses (100 fs). To increase our knowledge on the interaction between femtosecond lasers and silicon, we have developedultra-fast infrared microscopy experiments. First, we characterize the microplasma confined inside the bulk, being the generation of free-carriers under nonlinear ionization processes, followed by the complete relaxation of the material. These results, combined with the reconstruction of the beam propagation inside silicon, demonstrate that the energy deposition is strongly limited by nonlinear absorption andpropagation effects. This analysis has been confirmed by a numerical model simulating the nonlinear propagation of the femtosecond pulse. The understanding of this clamping has allowed us the development of new experimental arrangements, leading to the modification of the bulk of Si with short pulses
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bowlan, Pamela. "Measuring the spatiotemporal electric." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28188.

Повний текст джерела
Анотація:
Thesis (M. S.)--Physics, Georgia Institute of Technology, 2009.
Committee Chair: Rick Trebino; Committee Member: Jennifer Curtis; Committee Member: John Buck; Committee Member: Mike Chapman; Committee Member: Stephen Ralph.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Femtosecond pules"

1

Rullière, Claude, ed. Femtosecond Laser Pulses. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rullière, Claude, ed. Femtosecond Laser Pulses. New York, NY: Springer New York, 2005. http://dx.doi.org/10.1007/b137908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Akhmanov, S. A. Optics of femtosecond laser pulses. New York: American Institute of Physics, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mitsuru, Uesaka, ed. Femtosecond beam science. London: Imperial College Press, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

1939-, Hannaford Peter, ed. Femtosecond laser spectroscopy. New York, NY: Springer, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Paul-Henri, Barret, and Palmer Michael 1962-, eds. High power and femtosecond lasers: Properties, materials, and applications. Hauppauge, NY: Nova Science Publishers, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Diels, Jean-Claude. Ultrashort laser pulse phenomena: Fundamentals, techniques, and applications on a femtosecond time scale. San Diego, Calif: Academic Press, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schreiber, Elmar. Femtosecond real-time spectroscopy of small molecules and clusters. New York: Springer, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sigrid, Avrillier, Tualle Jean-Michel, Society of Photo-optical Instrumentation Engineers., and European Optical Society, eds. Femtosecond laser applications in biology: 29 April 2004, Strasbourg, France. Bellingham, Wash: SPIE, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

1956-, Rudolph Wolfgang, ed. Ultrashort laser pulse phenomena: Fundamentals, techniques, and applications on a femtosecond time scale. 2nd ed. Amsterdam: Elsevier / Academic Press, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Femtosecond pules"

1

Hirlimann, C. "Laser Basics." In Femtosecond Laser Pulses, 1–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bonvalet, A., and M. Joffre. "Terahertz Femtosecond Pulses." In Femtosecond Laser Pulses, 285–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hirlimann, C. "Pulsed Optics." In Femtosecond Laser Pulses, 25–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ducasse, A., C. Rullière, and B. Couillaud. "Methods for the Generation of Ultrashort Laser Pulses: Mode-Locking." In Femtosecond Laser Pulses, 53–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hirlimann, C. "Further Methods for the Generation of Ultrashort Optical Pulses." In Femtosecond Laser Pulses, 83–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Amand, T., and X. Marie. "Pulsed Semiconductor Lasers." In Femtosecond Laser Pulses, 111–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Salin, F. "How to Manipulate and Change the Characteristics of Laser Pulses." In Femtosecond Laser Pulses, 159–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sarger, L., and J. Oberlé. "How to Measure the Characteristics of Laser Pulses." In Femtosecond Laser Pulses, 177–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rullière, C., T. Amand, and X. Marie. "Spectroscopic Methods for Analysis of Sample Dynamics." In Femtosecond Laser Pulses, 203–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Joffre, M. "Coherent Effects in Femtosecond Spectroscopy: A Simple Picture Using the Bloch Equation." In Femtosecond Laser Pulses, 261–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Femtosecond pules"

1

Gaafar, Mahmoud A., Markus Ludwig, Kai Wang, Thibault Wildi, Thibault Voumard, Milan Sinobad, Jan Lorenzen, et al. "Integrated Femtosecond Pulse Amplifier." In CLEO: Applications and Technology, AM3J.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.am3j.4.

Повний текст джерела
Анотація:
We demonstrate for the first-time f emtosecond p ulse a mplification in a CMOS-compatible photonic chip. We report >50-fold amplification of 1 GHz-repetitionrate chirped femtosecond pulses to 800 W of on-chip peak power with 116 fs pulse duration.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Yi-Hao, Jeffrey Moses, and Frank Wise. "Long-wave-infrared pulse generation in H2-filled hollow-core fiber." In CLEO: Science and Innovations, SM3Q.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sm3q.2.

Повний текст джерела
Анотація:
We present a two-color and two-pulse approach to femtosecond pulse generation at long-wave-infrared wavelengths in H2-filled hollow-core fiber. The technique numerically produces 88-fs pulses at 12 µm with 48 % quantum efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zacharias, Thomas, Robert Gray, James Williams, Luis Ledezma, and Alireza Marandi. "Femtosecond Pulse Characterization using Nanophotonic Parametric Amplification." In CLEO: Science and Innovations, SM4L.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sm4l.2.

Повний текст джерела
Анотація:
We introduce and experimentally demonstrate a FROG-based ultrashort pulse characterization technique using nanophotonic parametric amplification as a crucial tool for ultrafast nanophotonic circuits, and measure sub-50-femtosecond pulses.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Flöry, T., V. Stummer, J. Pupeikis, B. Willenberg, A. Nussbaum-Lapping, F. Valduga de Almeida Camargo, M. Barkauskas, et al. "Nonlinear time-resolved spectroscopy with extremely high temporal dynamic range." In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.sm2f.2.

Повний текст джерела
Анотація:
We present nonlinear time-resolved spectroscopy based on time filtering of femtosecond frequency combs by pulse gating in a dual-channel amplifier delivering millijoule energies with electronically-tunable femtosecond-precise delays of output pulses from femtoseconds to milliseconds.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Becker, P. C., C. H. Brito Cruz, and A. G. Prosser. "Generation of Sub-100 Femtosecond Pulses Tunable in the 690-750 nm Range." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.pdp2.

Повний текст джерела
Анотація:
We report the generation of tunable femtosecond pulses in the 690-750 nm wavelength region, by selective continuum amplification and subsequent recompression, in a CPM based ultrashort pulse system. The continuum is generated in a jet of ethylene glycol with amplified CPM pulses at 620 nm. The amplified continuum pulses are typically of duration 75-85 femtoseconds (assuming a sech2 profile) with energies per pulse of several microjoules, at a repetition rate of 8.5 kHz. The pump source for the amplifier is a copper vapor laser. The dyes used as the gain medium for the continuum amplifier are LDS 698 and LDS 750, which, even though they are significantly less efficient than Rhodamine or Styryl 9, accomplish the desired purpose. These pulses are then launched in a 10 mm length of single mode fiber to produce a broad spectral continuum which is then compressed to pulses of duration 12-13 femtoseconds. Ultrashort pulses in this wavelength range will be useful for resonant investigations of quantum well structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shah, Jay D., Tissa C. Gunaratne, Xin Zhu, Vadim Lozovoy, and Marcos Dantus. "Effect of Pulse Shaping on Micromachining Transparent Dielectrics." In Femtosecond Laser Microfabrication. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/lm.2009.lmtua4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Juodkazis, Saulius, and Hiroaki Misawa. "Three-Dimensional Structuring of Materials by Femtosecond Laser Pulses." In Femtosecond Laser Microfabrication. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/lm.2009.lmtub1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Knoesen, A., D. R. Yankelevich, A. Dienes, R. W. Schoenlein, and C. V. Shank. "Femtosecond second harmonic generation and autocorrelation applications using nonlinear poled polymeric thin films." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.thmm35.

Повний текст джерела
Анотація:
The large second-order nonlinearities and short interaction lengths of poled polymer thin films permit unique ultrashort pulse applications. Second-harmonic generation (SHG) with femtosecond pulses requires the use of extraordinarily thin nonlinear media because of the group velocity mismatch (GVM) between the fundamental and second harmonic waves. This limitation is especially severe for the visible to UV wavelength conversions. The short interaction length of poled polymer films results in negligible pulse broadening of the fundamental and second harmonic pulses. For autocorrelation measurements, since phase matching is not a requirement, the poled films can be readily used at different wavelengths. Experimental results of a femtosecond pulse application feasibility study that uses poled polymeric thin films are presented. For example, the results of an experiment that demonstrate SHG of 14-fs long 630-nm pulses using a poled polymeric film 2.5 μm thick are presented. The efficiency is high for such a thin material: 0.16% has been measured and 0.5% has been determined to be possible. A damage threshold of ~60 GW/cm2 was observed. Since GVM is negligible in the film, this allows the generation of UV pulses as short as a few femtoseconds.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dubov, M., T. D. P. Allsop, S. R. Natarajan, V. K. Mezentsev, and I. Bennion. "Curvilinear Low-Loss Waveguides in Borosilicate Glass Fabricated by Femtosecond Chirp-pulse Oscillator." In Femtosecond Laser Microfabrication. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/lm.2009.lmtuc6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Okhrimchuk, Andrey G., Vladimir Mezentsev, Holger Schmitz, Mykhaylo Dubov, and Ian Bennion. "Cascaded nonlinear absorption of laser pulse energy in femtosecond microfabrication. Experiment, numerics, and theory." In Femtosecond Laser Microfabrication. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/lm.2009.lmtua6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Femtosecond pules"

1

G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn. Pulse compression in plasma: Generation of femtosecond pulses without CPA. Office of Scientific and Technical Information (OSTI), July 2000. http://dx.doi.org/10.2172/758641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lukofsky, David, Marc Currie, and Ulf Oesterberg. Water Transmission of 1440-nm Femtosecond Pulses. Fort Belvoir, VA: Defense Technical Information Center, April 2009. http://dx.doi.org/10.21236/ada499941.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ippen, Erich P. Optical Phase Control of Ultrashort Femtosecond Pulse. Fort Belvoir, VA: Defense Technical Information Center, June 1998. http://dx.doi.org/10.21236/ada413214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Alexander, Dennis R., Jianchao Li, Haifeng Zhang, and David Doerr. Transmission Measurements of Femtosecond Laser Pulses Through Aerosols. Fort Belvoir, VA: Defense Technical Information Center, December 2003. http://dx.doi.org/10.21236/ada419719.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kuska, M. Interferometric second-harmonic-generation autocorrelator for characterizing femtosecond pulses. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/7139136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Berezhiani, V. I., S. M. Mahajan, and I. G. Murusidze. A photon accelerator -- Large blueshifting of femtosecond pulses in semiconductors. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/481608.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Huang, Z. Femtosecond X-ray Pulses From a frequency chirped SASE FEL. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/826693.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ditmire, Todd. High Intensity Femtosecond XUV Pulse Interactions with Atomic Clusters: Final Report. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1328857.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fainman, Y. Nonlinear Spatio-Temporal Processing of Femtosecond Pulses for Ultrahigh Bandwidth Communication. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada371188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Campbell, Benjamin, and Jeremy Andrew Palmer. Investigation of temporal contrast effects in femtosecond pulse laser micromachining of metals. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/887259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії