Добірка наукової літератури з теми "Femtosecond pules"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Femtosecond pules".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Femtosecond pules"
Renard, William, Clément Chan, Antoine Dubrouil, Jérôme Lhermite, Giorgio Santarelli, and Romain Royon. "Agile femtosecond synchronizable laser source from a gated CW laser." Laser Physics Letters 19, no. 7 (May 31, 2022): 075105. http://dx.doi.org/10.1088/1612-202x/ac7133.
Повний текст джерелаYe, Hanyu, Florian Leroy, Lilia Pontagnier, Giorgio Santarelli, Johan Boullet, and Eric Cormier. "Non-linear amplification to 200 W of an electro-optic frequency comb with GHz tunable repetition rates." EPJ Web of Conferences 287 (2023): 07025. http://dx.doi.org/10.1051/epjconf/202328707025.
Повний текст джерелаZeng, Li, Xiaofan Wang, Yifan Liang, Huaiqian Yi, Weiqing Zhang, and Xueming Yang. "Chirped-Pulse Amplification in an Echo-Enabled Harmonic-Generation Free-Electron Laser." Applied Sciences 13, no. 18 (September 14, 2023): 10292. http://dx.doi.org/10.3390/app131810292.
Повний текст джерелаSaha, Asit. "Bifurcation analysis of the propagation of femtosecond pulses for the Triki-Biswas equation in monomode optical fibers." International Journal of Modern Physics B 33, no. 29 (November 20, 2019): 1950346. http://dx.doi.org/10.1142/s0217979219503466.
Повний текст джерелаZhu, Chang Jun, Jun Fang He, Xue Jun Zhai, Bing Xue, and Chong Hui Zhang. "Two Synchronized Operating Modes of Femtosecond and Picosecond Pulses in a Dual-Wavelength Laser." Materials Science Forum 663-665 (November 2010): 284–87. http://dx.doi.org/10.4028/www.scientific.net/msf.663-665.284.
Повний текст джерелаJana, Kamalesh, Amit D. Lad, Ankit Dulat, Yash M. Ved, and G. Ravindra Kumar. "Ultrafast time-resolved two-dimensional velocity mapping of the hot-dense plasmas generated by intense-laser pulses." AIP Advances 12, no. 9 (September 1, 2022): 095112. http://dx.doi.org/10.1063/5.0102048.
Повний текст джерелаSpence, Stephanie, Takaaki Harada, Athanasios Margiolakis, Skylar Deckoff-Jones, Aaron N. Shugar, James F. Hamm, Keshav M. Dani, and Anya R. Dani. "Applicability of Femtosecond Lasers in the Cross-section Sampling of Works of Art." MRS Advances 2, no. 33-34 (2017): 1801–4. http://dx.doi.org/10.1557/adv.2017.242.
Повний текст джерелаNeutze, Richard. "Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers." Philosophical Transactions of the Royal Society B: Biological Sciences 369, no. 1647 (July 17, 2014): 20130318. http://dx.doi.org/10.1098/rstb.2013.0318.
Повний текст джерелаRudenkov, A. S., V. E. Kisel, A. S. Yasukevich, K. L. Hovhannesyan, A. G. Petrosyan, and N. V. Kuleshov. "Yb:CALYO-based femtosecond chirped pulse regenerative amplifier for temporally resolved pump-probe spectroscopy." Devices and Methods of Measurements 9, no. 3 (September 17, 2018): 205–14. http://dx.doi.org/10.21122/2220-9506-2018-9-3-205-214.
Повний текст джерелаZhu, Jianqiang, Xinglong Xie, Meizhi Sun, Qunyu Bi, and Jun Kang. "A Novel Femtosecond Laser System for Attosecond Pulse Generation." Advances in Optical Technologies 2012 (January 15, 2012): 1–6. http://dx.doi.org/10.1155/2012/908976.
Повний текст джерелаДисертації з теми "Femtosecond pules"
Charpin, Pierre-Jean. "Modélisation de l'interaction laser-plasma dans les faisceaux de Bessel femtoseconde." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://indexation.univ-fcomte.fr/nuxeo/site/esupversions/fe2dc0aa-3386-4ecd-a96f-7f70a3113aa7.
Повний текст джерелаFemtosecond pulses shaped as Bessel beams create dense nano-plasma in dielectrics, leading to the formation of very high aspect ratio nano-voids for microelectronics applications. The modeling of laser-plasma interaction is very important to understand the spatio-temporal evolution of plasma creation and energy deposition by the femtosecond laser pulse. This will allow the development of highly efficient laser-matter interaction in other geometries and materials. The thesis aims to adapt ionization and plasma laser interaction models, to develop tools for the analysis of experiments, in order to converge towards a predictive model. Translated with www.DeepL.com/Translator (free version)
Wefers, Marc Michael. "Femtosecond optical pulse shaping and multiple-pulse femtosecond spectroscopy." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/10597.
Повний текст джерелаFernández, González Alma. "Chirped pulse oscillators generating microjoule femtosecond pulses at megahertz repetition rate /." [S.l.] : [s.n.], 2007. http://edoc.ub.uni-muenchen.de/archive/00006967.
Повний текст джерелаFernández, González Alma. "Chirped Pulse Oscillators: Generating microjoule femtosecond pulses at megahertz repetition rate." Diss., lmu, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:19-69673.
Повний текст джерелаBelloni, Valeria. "Spatial and temporal pulse shaping for ultrafast laser materials processing." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCD055.
Повний текст джерелаUltrafast laser processing has gained significant attention in industrial applications due to its ability to achieve precise and high-quality material ablation. However, laser constraints such as pulse energy and repetition rates have limited the throughput of ultrafast laser processes, especially in industrial settings.In this framework, customizing the spatial and temporal profiles of laser beams can enhance the interaction between the laser and the material. Beam shaping techniques play a crucial role in optimizing the performance of ultrafast laser materials processing and reaching previously inaccessible regimes. In parallel, ultrafast lasers operating at GHz repetition rates deliver a significantly higher number of pulses per unit of time compared to conventional laser sources. Splitting a single pulse into several sub-pulses with high repetition rate seems to be an effective method to increase the ablation rate in laser processing.This thesis explores the possibility of ultrafast laser systems with GHz repetition rates and advanced beam shaping techniques to improve ultrafast laser processing. The Bessel beam is particularly beneficial in processing transparent materials thanks to its robustness to non-linear distortions. A high-order Bessel beam is used in this thesis to generate, for the first time, positive nanopillars with a single laser pulse across the surface of sapphire. In addition, a new setup for highly focused Bessel beams has been developed to investigate new opportunities in silicon processing. Finally, a GHz repetition laser source, in a new regime up to 15 GHz, has been used to process silicon. Promising results were obtained with this very high repetition rate with a Gaussian beam and top-hat beam shaping
Chin, Roger S. "Femtosecond laser pulse compression." Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/29799.
Повний текст джерелаScience, Faculty of
Physics and Astronomy, Department of
Graduate
Dooley, Patrick W. Corkum Paul B. "Molecular imaging using femtosecond laser pulses." *McMaster only, 2003.
Знайти повний текст джерелаKafka, Kyle R. P. "Laser-Induced Damage with Femtosecond Pulses." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1483661596059632.
Повний текст джерелаChanal, Margaux. "Space-time study of energy deposition with intense infrared laser pulses for controlled modification inside silicon." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0488/document.
Повний текст джерелаThe modification of bulk-silicon is realized today with infrared nanosecond lasers. However, the interest regime for controlled modifications inside transparent materials is femtosecond pulses. Today, there is no demonstration of a permanent modification in bulk-Si with ultra-short laser pulses (100 fs). To increase our knowledge on the interaction between femtosecond lasers and silicon, we have developedultra-fast infrared microscopy experiments. First, we characterize the microplasma confined inside the bulk, being the generation of free-carriers under nonlinear ionization processes, followed by the complete relaxation of the material. These results, combined with the reconstruction of the beam propagation inside silicon, demonstrate that the energy deposition is strongly limited by nonlinear absorption andpropagation effects. This analysis has been confirmed by a numerical model simulating the nonlinear propagation of the femtosecond pulse. The understanding of this clamping has allowed us the development of new experimental arrangements, leading to the modification of the bulk of Si with short pulses
Bowlan, Pamela. "Measuring the spatiotemporal electric." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28188.
Повний текст джерелаCommittee Chair: Rick Trebino; Committee Member: Jennifer Curtis; Committee Member: John Buck; Committee Member: Mike Chapman; Committee Member: Stephen Ralph.
Книги з теми "Femtosecond pules"
Rullière, Claude, ed. Femtosecond Laser Pulses. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2.
Повний текст джерелаRullière, Claude, ed. Femtosecond Laser Pulses. New York, NY: Springer New York, 2005. http://dx.doi.org/10.1007/b137908.
Повний текст джерелаAkhmanov, S. A. Optics of femtosecond laser pulses. New York: American Institute of Physics, 1992.
Знайти повний текст джерелаMitsuru, Uesaka, ed. Femtosecond beam science. London: Imperial College Press, 2005.
Знайти повний текст джерела1939-, Hannaford Peter, ed. Femtosecond laser spectroscopy. New York, NY: Springer, 2005.
Знайти повний текст джерелаPaul-Henri, Barret, and Palmer Michael 1962-, eds. High power and femtosecond lasers: Properties, materials, and applications. Hauppauge, NY: Nova Science Publishers, 2009.
Знайти повний текст джерелаDiels, Jean-Claude. Ultrashort laser pulse phenomena: Fundamentals, techniques, and applications on a femtosecond time scale. San Diego, Calif: Academic Press, 1995.
Знайти повний текст джерелаSchreiber, Elmar. Femtosecond real-time spectroscopy of small molecules and clusters. New York: Springer, 1998.
Знайти повний текст джерелаSigrid, Avrillier, Tualle Jean-Michel, Society of Photo-optical Instrumentation Engineers., and European Optical Society, eds. Femtosecond laser applications in biology: 29 April 2004, Strasbourg, France. Bellingham, Wash: SPIE, 2004.
Знайти повний текст джерела1956-, Rudolph Wolfgang, ed. Ultrashort laser pulse phenomena: Fundamentals, techniques, and applications on a femtosecond time scale. 2nd ed. Amsterdam: Elsevier / Academic Press, 2006.
Знайти повний текст джерелаЧастини книг з теми "Femtosecond pules"
Hirlimann, C. "Laser Basics." In Femtosecond Laser Pulses, 1–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_1.
Повний текст джерелаBonvalet, A., and M. Joffre. "Terahertz Femtosecond Pulses." In Femtosecond Laser Pulses, 285–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_10.
Повний текст джерелаHirlimann, C. "Pulsed Optics." In Femtosecond Laser Pulses, 25–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_2.
Повний текст джерелаDucasse, A., C. Rullière, and B. Couillaud. "Methods for the Generation of Ultrashort Laser Pulses: Mode-Locking." In Femtosecond Laser Pulses, 53–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_3.
Повний текст джерелаHirlimann, C. "Further Methods for the Generation of Ultrashort Optical Pulses." In Femtosecond Laser Pulses, 83–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_4.
Повний текст джерелаAmand, T., and X. Marie. "Pulsed Semiconductor Lasers." In Femtosecond Laser Pulses, 111–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_5.
Повний текст джерелаSalin, F. "How to Manipulate and Change the Characteristics of Laser Pulses." In Femtosecond Laser Pulses, 159–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_6.
Повний текст джерелаSarger, L., and J. Oberlé. "How to Measure the Characteristics of Laser Pulses." In Femtosecond Laser Pulses, 177–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_7.
Повний текст джерелаRullière, C., T. Amand, and X. Marie. "Spectroscopic Methods for Analysis of Sample Dynamics." In Femtosecond Laser Pulses, 203–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_8.
Повний текст джерелаJoffre, M. "Coherent Effects in Femtosecond Spectroscopy: A Simple Picture Using the Bloch Equation." In Femtosecond Laser Pulses, 261–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03682-2_9.
Повний текст джерелаТези доповідей конференцій з теми "Femtosecond pules"
Gaafar, Mahmoud A., Markus Ludwig, Kai Wang, Thibault Wildi, Thibault Voumard, Milan Sinobad, Jan Lorenzen, et al. "Integrated Femtosecond Pulse Amplifier." In CLEO: Applications and Technology, AM3J.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.am3j.4.
Повний текст джерелаChen, Yi-Hao, Jeffrey Moses, and Frank Wise. "Long-wave-infrared pulse generation in H2-filled hollow-core fiber." In CLEO: Science and Innovations, SM3Q.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sm3q.2.
Повний текст джерелаZacharias, Thomas, Robert Gray, James Williams, Luis Ledezma, and Alireza Marandi. "Femtosecond Pulse Characterization using Nanophotonic Parametric Amplification." In CLEO: Science and Innovations, SM4L.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sm4l.2.
Повний текст джерелаFlöry, T., V. Stummer, J. Pupeikis, B. Willenberg, A. Nussbaum-Lapping, F. Valduga de Almeida Camargo, M. Barkauskas, et al. "Nonlinear time-resolved spectroscopy with extremely high temporal dynamic range." In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.sm2f.2.
Повний текст джерелаBecker, P. C., C. H. Brito Cruz, and A. G. Prosser. "Generation of Sub-100 Femtosecond Pulses Tunable in the 690-750 nm Range." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.pdp2.
Повний текст джерелаShah, Jay D., Tissa C. Gunaratne, Xin Zhu, Vadim Lozovoy, and Marcos Dantus. "Effect of Pulse Shaping on Micromachining Transparent Dielectrics." In Femtosecond Laser Microfabrication. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/lm.2009.lmtua4.
Повний текст джерелаJuodkazis, Saulius, and Hiroaki Misawa. "Three-Dimensional Structuring of Materials by Femtosecond Laser Pulses." In Femtosecond Laser Microfabrication. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/lm.2009.lmtub1.
Повний текст джерелаKnoesen, A., D. R. Yankelevich, A. Dienes, R. W. Schoenlein, and C. V. Shank. "Femtosecond second harmonic generation and autocorrelation applications using nonlinear poled polymeric thin films." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.thmm35.
Повний текст джерелаDubov, M., T. D. P. Allsop, S. R. Natarajan, V. K. Mezentsev, and I. Bennion. "Curvilinear Low-Loss Waveguides in Borosilicate Glass Fabricated by Femtosecond Chirp-pulse Oscillator." In Femtosecond Laser Microfabrication. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/lm.2009.lmtuc6.
Повний текст джерелаOkhrimchuk, Andrey G., Vladimir Mezentsev, Holger Schmitz, Mykhaylo Dubov, and Ian Bennion. "Cascaded nonlinear absorption of laser pulse energy in femtosecond microfabrication. Experiment, numerics, and theory." In Femtosecond Laser Microfabrication. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/lm.2009.lmtua6.
Повний текст джерелаЗвіти організацій з теми "Femtosecond pules"
G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn. Pulse compression in plasma: Generation of femtosecond pulses without CPA. Office of Scientific and Technical Information (OSTI), July 2000. http://dx.doi.org/10.2172/758641.
Повний текст джерелаLukofsky, David, Marc Currie, and Ulf Oesterberg. Water Transmission of 1440-nm Femtosecond Pulses. Fort Belvoir, VA: Defense Technical Information Center, April 2009. http://dx.doi.org/10.21236/ada499941.
Повний текст джерелаIppen, Erich P. Optical Phase Control of Ultrashort Femtosecond Pulse. Fort Belvoir, VA: Defense Technical Information Center, June 1998. http://dx.doi.org/10.21236/ada413214.
Повний текст джерелаAlexander, Dennis R., Jianchao Li, Haifeng Zhang, and David Doerr. Transmission Measurements of Femtosecond Laser Pulses Through Aerosols. Fort Belvoir, VA: Defense Technical Information Center, December 2003. http://dx.doi.org/10.21236/ada419719.
Повний текст джерелаKuska, M. Interferometric second-harmonic-generation autocorrelator for characterizing femtosecond pulses. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/7139136.
Повний текст джерелаBerezhiani, V. I., S. M. Mahajan, and I. G. Murusidze. A photon accelerator -- Large blueshifting of femtosecond pulses in semiconductors. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/481608.
Повний текст джерелаHuang, Z. Femtosecond X-ray Pulses From a frequency chirped SASE FEL. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/826693.
Повний текст джерелаDitmire, Todd. High Intensity Femtosecond XUV Pulse Interactions with Atomic Clusters: Final Report. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1328857.
Повний текст джерелаFainman, Y. Nonlinear Spatio-Temporal Processing of Femtosecond Pulses for Ultrahigh Bandwidth Communication. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada371188.
Повний текст джерелаCampbell, Benjamin, and Jeremy Andrew Palmer. Investigation of temporal contrast effects in femtosecond pulse laser micromachining of metals. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/887259.
Повний текст джерела