Добірка наукової літератури з теми "Extraction des sources"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Extraction des sources".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Extraction des sources"
Rosales-Garcia, Teresa, Cristian Jimenez-Martinez, and Gloria Davila-Ortiz. "Squalene Extraction: Biological Sources and Extraction Methods." International Journal of Environment, Agriculture and Biotechnology 2, no. 4 (2017): 1662–70. http://dx.doi.org/10.22161/ijeab/2.4.26.
Повний текст джерелаTan, Yew Ai, and Ainte Kuntom. "Hydrocarbons m Crude Palm Kernel Oil." Journal of AOAC INTERNATIONAL 77, no. 1 (January 1, 1994): 67–73. http://dx.doi.org/10.1093/jaoac/77.1.67.
Повний текст джерелаJovanovic, Aleksandra, Predrag Petrovic, Verica Ðordjevic, Gordana Zdunic, Katarina Savikin, and Branko Bugarski. "Polyphenols extraction from plant sources." Lekovite sirovine, no. 37 (2017): 45–49. http://dx.doi.org/10.5937/leksir1737045j.
Повний текст джерелаKuber, B. Ramya, D. Sravya, and I. Theja. "INNOVATIVE EMERGING TECHNOLOGIES FOR EXTRACTION OF PHYTOCHEMICALS FROM NATURAL SOURCES." International Journal on Biological Sciences 13, no. 02 (2022): 120–26. http://dx.doi.org/10.53390/ijbs.v13i2.4.
Повний текст джерелаDA, Bansode. "Exploring Diverse Techniques for Phytochemical Extraction from Plant Sources A Comprehensive Review." International Journal of Pharmacognosy & Chinese Medicine 8, no. 1 (February 28, 2024): 1–11. http://dx.doi.org/10.23880/ipcm-16000266.
Повний текст джерелаXiong, Yuecheng, Jingwen Zhou, Pengyi Lu, Jinwen Yin, Yunhao Wang, and Zhanxi Fan. "Electrochemical lithium extraction from aqueous sources." Matter 5, no. 6 (June 2022): 1760–91. http://dx.doi.org/10.1016/j.matt.2022.04.034.
Повний текст джерелаTedmori, Sara, Thomas W. Jackson, and Dino Bouchlaghem. "Locating knowledge sources through keyphrase extraction." Knowledge and Process Management 13, no. 2 (2006): 100–107. http://dx.doi.org/10.1002/kpm.250.
Повний текст джерелаSultana, Hujaifa, Abhinab Chetia, Abhigyan Saikia, and Nekibul Jaman Khan. "An Updated Review on Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts." Scholars Academic Journal of Pharmacy 12, no. 07 (July 3, 2023): 154–71. http://dx.doi.org/10.36347/sajp.2023.v12i07.001.
Повний текст джерелаSusa, Francesca, and Roberto Pisano. "Advances in Ascorbic Acid (Vitamin C) Manufacturing: Green Extraction Techniques from Natural Sources." Processes 11, no. 11 (November 6, 2023): 3167. http://dx.doi.org/10.3390/pr11113167.
Повний текст джерелаLu, Meng-Shan, Long-Li Lai, and Yung-Pin Tsai. "COMPARISON OF OPTIMUM CONDITIONS WHEN EXTRACTING PHAS FROM DIFFERENT WASTE SLUDGE SOURCES." Journal of Environmental Engineering and Landscape Management 26, no. 3 (October 9, 2018): 190–94. http://dx.doi.org/10.3846/16486897.2017.1411271.
Повний текст джерелаДисертації з теми "Extraction des sources"
González-Valentín, Karen M. (Karen Mercedes) 1978. "Extraction of variation sources due to layout practices." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/87206.
Повний текст джерелаIncludes bibliographical references (p. 97).
by Karen M. González-Valentín.
S.M.
Yankova-Doseva, Milena. "TERMS - Text Extraction from Redundant and Multiple Sources." Thesis, University of Sheffield, 2010. http://etheses.whiterose.ac.uk/933/.
Повний текст джерелаLeouffre, Marc. "Extraction de sources d'électromyogrammes et évaluation des tensions musculaires." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENT009/document.
Повний текст джерелаEvaluation of muscle tensions in movement and gait sciences is of great interest in the fields of sports, health or ergonomics. Biomechanics in particular has been looking forward to solving these problems and developed the use of inverse kinematics to compute internal muscle tensions from external physical measures. Muscular redundancy remains however a complex issue, there are more muscles than degrees of freedom and thus more unknown variables which makes inverse kinematics an under-determined problem needing optimization techniques to be solved. In this context using electromyography (EMG), an electro-physiological signal that can be measured on the skin surface, gives an idea of underlying muscle activities. Knowing muscle activities could be additional information to feed the optimization procedures with and could help improving accuracy of estimated muscle tensions during real gestures or gait situation. There are even situations in which measuring external physical variables like forces, positions or accelerations is not feasible because it might require equipment incompatible with the object of the study. It is often the case in ergonomics when equipping the object of the study with sensors is either too expensive or physically too cumbersome. In such cases EMG can become very handy as a non-invasive measure that does not require the environment to be equipped with other sensors. EMG however has its own limits, surface EMG on small and closely located muscles like muscles of the forearm can be subject to “cross-talk”. Cross-talk is the cross contamination of several sensors it is the result of signal propagation of more than one muscle on one sensor. In presence of cross-talk it is not possible to associate an EMG sensor with a given muscle. There are signal processing techniques dealing with this kind of problem. Source separation techniques allow estimation of unknown sources from several sensors recording mixtures of these sources. Applying source separation techniques on EMG can provide EMG source estimations reflecting individual muscle activities without the effect of cross-talk. First the benefits of using surface EMG during an ergonomics study of an innovative human-computer interface are shown. EMG pointed out a relatively high level of muscle co-contraction that can be explained by the need to stabilize the joints for a more accurate control of the device. It seems legitimate to think that using source separation techniques would provide signals that better represent single muscle activities and these would improve the quality of this study. Then the precise experimental conditions for linear instantaneous source separation techniques to work are studied. Validity of the instantaneity hypothesis in particular is tested on real surface EMG signals and its strong dependency on relative sensor locations is shown. Finally a method to improve robustness of linear instantaneous source separation versus instantaneity hypothesis is proposed. This method relies on non-negative matrix factorization of EMG signal envelopes
Dumitrescu, Stefan Daniel. "L' extraction d'information des sources de données non structurées et semi-structurées." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1555/.
Повний текст джерелаThesis objective: In the context of recently developed large scale knowledge sources (general ontologies), investigate possible new approaches to major areas of Information Extraction (IE) and related fields. The thesis overviews the field of Information Extraction and focuses on the task of entity recognition in natural language texts, a required step for any IE system. Given the availability of large knowledge resources in the form of semantic graphs, an approach that treats the sub-tasks of Word Sense Disambiguation and Named Entity Recognition in a unified manner is possible. The first implemented system using this approach recognizes entities (words, both common and proper nouns) from free text and assigns them ontological classes, effectively disambiguating them. A second implemented system, inspired by the semantic information contained in the ontologies, also attempts a new approach to the classic problem of text classification, showing good results
Horton, Bryan. "Rotational motion of pendula systems for wave energy extraction." Thesis, Available from the University of Aberdeen Library and Historic Collections Digital Resources, 2009. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=25873.
Повний текст джерелаFerreira, Lage Sandra. "The neurotoxin β-N-methylamino-L-alanine (BMAA) : Sources, bioaccumulation and extraction procedures". Doctoral thesis, Stockholms universitet, Institutionen för ekologi, miljö och botanik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-132142.
Повний текст джерелаAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.
Xu, Xu. "Nonlinear dynamics of parametric pendulum for wave energy extraction." Thesis, University of Aberdeen, 2005. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=189414.
Повний текст джерелаAlbezzawy, Muhammad Nabil Mustafa. "Advanced signal processing methods for source identification using references." Electronic Thesis or Diss., Lyon, INSA, 2024. http://www.theses.fr/2024ISAL0074.
Повний текст джерелаRank-reduced reference/coherence techniques based on the use of references, i.e. fixed sensors, are widely used to solve the two equivalent problems of source extraction and resynchronization encountered during remote sensing of physical fields, when the number of references surpasses the number of incoherent sources. In such case, the cross-spectral matrix (CSM) becomes ill-conditioned, resulting in the invalidity of the least squares LS solution. Although the truncated singular value decomposition (TSVD) was successfully applied in the literature to solve this problem, its validity is limited only to the case of scalar noise on the references. It is also very difficult to define a threshold, for truncation, when the singular values are gradually decreasing. This thesis proposes a solution based on finding a set of virtual references that is maximally correlated with the field measurements, named the maximally-coherent reference (MCR) Technique. This solution is optimal, especially, in the case of correlated noise on the reference, where TSVD fails. However the technique also includes an eigenvalue truncation step, similar to the one required for the TSVD, which necessitates a priori knowledge or the estimation of the number of incoherent sources, i.e. source enumeration, which is an ill-posed inverse problem, insufficiently investigated in the literature within the framework of reference techniques. In this thesis, after providing a unified formalism for all the reference techniques in the literature, three alternative source enumeration methods, applicable to all the reference techniques, were presented namely; a direct likelihood ratio test (LRT) against the saturated model, a parametric bootstrap technique and a cross-validation approach. A comparative study is performed among the three methods, based on simulated numerical data, real sound experimental data, and real electrical motor data. The results showed two important outcomes. The first is that the number of snapshots (spectral windows), used in the spectral analysis, greatly affects the performance of the three methods, and that, they behave differently for the same number of used snapshots. The second is that parametric bootstrapping turned out to be the best method in terms of both estimation accuracy and robustness with regard to the used number of snapshots. Finally, the MCR technique accompanied with bootstrapping was employed for source extraction and resynchronization of real data from laboratory experiments, and an e-motor, and it returned better results than the LS solution and the TSVD when employed for the same purpose
Syed, Ali Asgher. "Hole extraction layer/perovskite interfacial modification for high performing inverted planar perovskite solar cells." HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/553.
Повний текст джерелаZaman, Tauhid R. "Information extraction with network centralities : finding rumor sources, measuring influence, and learning community structure." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/70410.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 193-197).
Network centrality is a function that takes a network graph as input and assigns a score to each node. In this thesis, we investigate the potential of network centralities for addressing inference questions arising in the context of large-scale networked data. These questions are particularly challenging because they require algorithms which are extremely fast and simple so as to be scalable, while at the same time they must perform well. It is this tension between scalability and performance that this thesis aims to resolve by using appropriate network centralities. Specifically, we solve three important network inference problems using network centrality: finding rumor sources, measuring influence, and learning community structure. We develop a new network centrality called rumor centrality to find rumor sources in networks. We give a linear time algorithm for calculating rumor centrality, demonstrating its practicality for large networks. Rumor centrality is proven to be an exact maximum likelihood rumor source estimator for random regular graphs (under an appropriate probabilistic rumor spreading model). For a wide class of networks and rumor spreading models, we prove that it is an accurate estimator. To establish the universality of rumor centrality as a source estimator, we utilize techniques from the classical theory of generalized Polya's urns and branching processes. Next we use rumor centrality to measure influence in Twitter. We develop an influence score based on rumor centrality which can be calculated in linear time. To justify the use of rumor centrality as the influence score, we use it to develop a new network growth model called topological network growth. We find that this model accurately reproduces two important features observed empirically in Twitter retweet networks: a power-law degree distribution and a superstar node with very high degree. Using these results, we argue that rumor centrality is correctly quantifying the influence of users on Twitter. These scores form the basis of a dynamic influence tracking engine called Trumor which allows one to measure the influence of users in Twitter or more generally in any networked data. Finally we investigate learning the community structure of a network. Using arguments based on social interactions, we determine that the network centrality known as degree centrality can be used to detect communities. We use this to develop the leader-follower algorithm (LFA) which can learn the overlapping community structure in networks. The LFA runtime is linear in the network size. It is also non-parametric, in the sense that it can learn both the number and size of communities naturally from the network structure without requiring any input parameters. We prove that it is very robust and learns accurate community structure for a broad class of networks. We find that the LFA does a better job of learning community structure on real social and biological networks than more common algorithms such as spectral clustering.
by Tauhid R. Zaman.
Ph.D.
Книги з теми "Extraction des sources"
Gabizon, Ariel. Deterministic Extraction from Weak Random Sources. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14903-0.
Повний текст джерелаHarbuck, D. D. Gallium and germanium recovery from domestic sources. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1992.
Знайти повний текст джерелаHarbuck, D. D. Gallium and germanium recovery from domestic sources. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1992.
Знайти повний текст джерелаUrsino, Domenico. Extraction and Exploitation of Intensional Knowledge from Heterogeneous Information Sources. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-70735-2.
Повний текст джерелаWight, G. J., fl. 1862., ed. Map and guide to the Cariboo gold mines of British Columbia: By Jules H. Féry, C.L.C., with notes, observations, directions, and information, gathered from official and other authentic sources by G.J. Wight, counselor at law. San Francisco: F. Truette, 1987.
Знайти повний текст джерелаWight, G. J., fl. 1862., ed. Map and guide to the Cariboo gold mines of British Columbia: By Jules H. Féry, C.L.C., with notes, observations, directions, and information, gathered from official and other authentic sources by C.J. Wight, counselor at law. San Francisco: F. Truette, 1987.
Знайти повний текст джерелаSociété des archives historiques de la région de L'Amiante, ed. 100 ans d'histoire sur les mines d'amiante à travers les archives, 1901-2000. Montréal: Éditions Histoire Québec, 2007.
Знайти повний текст джерелаPoibeau, Thierry, Horacio Saggion, Jakub Piskorski, and Roman Yangarber, eds. Multi-source, Multilingual Information Extraction and Summarization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28569-1.
Повний текст джерела1803-1877, Douglas James Sir, Lytton, Edward George Earle Lytton-Bulwer, Baron, 1803-1873., Newcastle, Henry Pelham Fiennes Pelham Clinton, Duke of, 1811-1864., British Columbia. Governor (1858-1864 : Douglas), and Great Britain Colonial Office, eds. Papers relative to the affairs of British Columbia. London: G.E. Eyre and W. Spottiswoode, 2000.
Знайти повний текст джерелаWisniak, Jaime. Liquid-liquid equilibrium and extraction: A literature source book. Amsterdam: Elsevier, 1985.
Знайти повний текст джерелаЧастини книг з теми "Extraction des sources"
Hollinger, Ralph. "Ion Extraction." In The Physics and Technology of Ion Sources, 61–86. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603956.ch5.
Повний текст джерелаSingh, Jyotika. "Data Sources and Extraction." In Natural Language Processing in the Real World, 35–68. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003264774-2.
Повний текст джерелаRivet, Bertrand, Leonardo T. Duarte, and Christian Jutten. "Blind Extraction of Intermittent Sources." In Latent Variable Analysis and Signal Separation, 402–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15995-4_50.
Повний текст джерелаUnbehauen, Jörg, Sebastian Hellmann, Sören Auer, and Claus Stadler. "Knowledge Extraction from Structured Sources." In Search Computing, 34–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34213-4_3.
Повний текст джерелаHauser-Davis, Rachel Ann. "Titanium Sources and Extraction Processes." In Titanium, 6–10. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003319245-3.
Повний текст джерелаSpädtke, Peter. "Computer Simulation of Extraction." In The Physics and Technology of Ion Sources, 41–60. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603956.ch4.
Повний текст джерелаDodis, Yevgeniy, Ariel Elbaz, Roberto Oliveira, and Ran Raz. "Improved Randomness Extraction from Two Independent Sources." In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 334–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-27821-4_30.
Повний текст джерелаMalhotra, Hitesh, Aditya Ashri, Rajeev K. Singla, and Rupesh K. Gautam. "Eupatilin: Sources, Extraction, Derivatives, and Pharmacological Activity." In Handbook of Dietary Flavonoids, 1–50. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-94753-8_84-1.
Повний текст джерелаMahajan, Palak, Parmjit S. Panesar, and Manab Bandhu Bera. "Extraction Technology of Bioactive Compounds and Nutraceuticals: Factors Influencing its Extraction and Bioactivity." In Bioactive Compounds and Nutraceuticals from Dairy, Marine, and Nonconventional Sources, 61–100. New York: Apple Academic Press, 2024. http://dx.doi.org/10.1201/9781003452768-3.
Повний текст джерелаLudwig, Philipp, Marcus Thiel, and Andreas Nürnberger. "Unsupervised Extraction of Conceptual Keyphrases from Abstracts." In Semantic Keyword-Based Search on Structured Data Sources, 37–48. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53640-8_4.
Повний текст джерелаТези доповідей конференцій з теми "Extraction des sources"
Zhao, Bo, Yanlin Deng, Keqiang Wang, Biao Hu, Hao Zhou, Haiyang Wang, and Tianming Li. "Investigation on Multi-Port Radial Extraction S-Band Relativistic Magnetron." In 2024 Joint International Vacuum Electronics Conference and International Vacuum Electron Sources Conference (IVEC + IVESC), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/ivecivesc60838.2024.10695001.
Повний текст джерелаMourad, Nasser, and James P. Reilly. "Blind extraction of sparse sources." In 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2010. http://dx.doi.org/10.1109/icassp.2010.5496249.
Повний текст джерелаBen-Menahem, Shahar, and David Yu. "A coax ring-sidearm power extraction design." In Pulsed RF sources for linear colliders. AIP, 1995. http://dx.doi.org/10.1063/1.48419.
Повний текст джерелаTinschert, K. "Experiments on Beam Extraction from the CAPRICE ECRIS." In ELECTRON CYCLOTRON RESONANCE ION SOURCES: 16th International Workshop on ECR Ion Sources ECRIS'04. AIP, 2005. http://dx.doi.org/10.1063/1.1893411.
Повний текст джерелаGhaderi, Foad, Bahador Makkiabadi, John G. McWhirter, and Saeid Sanei. "Blind source extraction of cyclostationary sources with common cyclic frequencies." In 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2010. http://dx.doi.org/10.1109/icassp.2010.5495718.
Повний текст джерелаTóth, Szabolcs, Huabao Cao, Mikhail Kalashnikov, vladimir chvykov, and Karoly Osvay. "Cascaded Extraction OPCPA - A Highly Efficient Power Amplifier Design." In Compact EUV & X-ray Light Sources. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/euvxray.2018.jt5a.20.
Повний текст джерелаRobinson, J. "Data extraction from Web data sources." In Proceedings. 15th International Workshop on Database and Expert Systems Applications, 2004. IEEE, 2004. http://dx.doi.org/10.1109/dexa.2004.1333487.
Повний текст джерелаYahaya, Nor, and Rosiza Buang. "Automated Metadata Extraction from Web Sources." In 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops. IEEE, 2006. http://dx.doi.org/10.1109/wi-iatw.2006.49.
Повний текст джерелаJavidi, S., C. Cheong Took, C. Jahanchahi, N. Le Bihan, and D. P. Mandic. "Blind extraction of improper quaternion sources." In ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. http://dx.doi.org/10.1109/icassp.2011.5947156.
Повний текст джерелаCavenago, M. "Extraction layer models for negative ion sources." In FIFTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4995712.
Повний текст джерелаЗвіти організацій з теми "Extraction des sources"
Skone, Timothy J. Natural Gas Extraction, Other Venting Point Sources. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1509091.
Повний текст джерелаKamperschroer, J. H., L. R. Grisham, R. A. Newman, T. E. O`Connor, T. N. Stevenson, A. von Halle, M. D. Williams, and K. E. Wright. Low Z impurity ion extraction from TFTR ion sources. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/10144103.
Повний текст джерелаKamperschroer, J. H., L. R. Grisham, R. A. Newman, T. E. O'Connor, T. N. Stevenson, A. von Halle, M. D. Williams, and K. E. Wright. Low Z impurity ion extraction from TFTR ion sources. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/6867280.
Повний текст джерелаOlsen, D. K., R. J. Raridon, and J. H. Whealton. Results from a double Vlasov model for negative ion extraction from volume sources. Office of Scientific and Technical Information (OSTI), July 1998. http://dx.doi.org/10.2172/638208.
Повний текст джерелаLeece, A., and C. Jiang. A preliminary techno-economic assessment of lithium extraction from flowback and produced water from unconventional shale and tight hydrocarbon operations in Western Canada. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331879.
Повний текст джерелаCrouch, Rebecca, Jared Smith, Bobbi Stromer, Christian Hubley, Samuel Beal, Guilherme Lotufo, Afrachanna Butler, et al. Preparative, extraction, and analytical methods for simultaneous determination of legacy and insensitive munition (IM) constituents in aqueous, soil or sediment, and tissue matrices. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41480.
Повний текст джерелаAlBakri, Aref, Auswaf Ahsan, Manoj Vengal, KR Ashir, Abdul Majeed, and Hanan Siddiq. Antibiotic Prophylaxis before Invasive Dental Procedures for Patients at High-Risk of Infective Endocarditis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, July 2022. http://dx.doi.org/10.37766/inplasy2022.7.0011.
Повний текст джерелаZio, Enrico, and Nicola Pedroni. Uncertainty characterization in risk analysis for decision-making practice. Fondation pour une culture de sécurité industrielle, May 2012. http://dx.doi.org/10.57071/155chr.
Повний текст джерелаKingston, A. W., C. Jiang, X. Wang, and T. E. Hobbs. Chemical compositions of flowback and produced water from the Duvernay shale and Montney tight reservoir developments in Western Canada: potential for lithium resources from wastewater. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331878.
Повний текст джерелаPoverenov, Elena, Tara McHugh, and Victor Rodov. Waste to Worth: Active antimicrobial and health-beneficial food coating from byproducts of mushroom industry. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7600015.bard.
Повний текст джерела