Добірка наукової літератури з теми "Estimation of parameters tool"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Estimation of parameters tool".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Estimation of parameters tool"
Cortés-Benito, I., H. Rodríguez-Cortés, M. Martínez-Ramírez, Y. Tlatelpa-Osorio, and J. G. Romero. "Quadrotor physical parameters online estimation." Memorias del Congreso Nacional de Control Automático 5, no. 1 (October 17, 2022): 133–39. http://dx.doi.org/10.58571/cnca.amca.2022.005.
Повний текст джерелаBalakrishnan, P., and M. F. DeVries. "Sequential Estimation of Machinability Parameters for Adaptive Optimization of Machinability Data Base Systems." Journal of Engineering for Industry 107, no. 2 (May 1, 1985): 159–66. http://dx.doi.org/10.1115/1.3185980.
Повний текст джерелаShamine, D. M., S. W. Hong, and Y. C. Shin. "Experimental Identification of Dynamic Parameters of Rolling Element Bearings in Machine Tools." Journal of Dynamic Systems, Measurement, and Control 122, no. 1 (May 11, 1998): 95–101. http://dx.doi.org/10.1115/1.482432.
Повний текст джерелаRajeev, D., D. Dinakaran, and S. C. E. Singh. "Artificial neural network based tool wear estimation on dry hard turning processes of AISI4140 steel using coated carbide tool." Bulletin of the Polish Academy of Sciences Technical Sciences 65, no. 4 (August 1, 2017): 553–59. http://dx.doi.org/10.1515/bpasts-2017-0060.
Повний текст джерелаPanić, Branislav, Jernej Klemenc, and Marko Nagode. "Improved Initialization of the EM Algorithm for Mixture Model Parameter Estimation." Mathematics 8, no. 3 (March 7, 2020): 373. http://dx.doi.org/10.3390/math8030373.
Повний текст джерелаSantos, Tiago, Florian Lemmerich, and Denis Helic. "Bayesian estimation of decay parameters in Hawkes processes." Intelligent Data Analysis 27, no. 1 (January 30, 2023): 223–40. http://dx.doi.org/10.3233/ida-216283.
Повний текст джерелаKhangura, RajbirKaur, Keya Sircar, and DilpreetSingh Grewal. "Four odontometric parameters as a forensic tool in stature estimation." Journal of Forensic Dental Sciences 7, no. 2 (2015): 132. http://dx.doi.org/10.4103/0975-1475.146367.
Повний текст джерелаZhang, Liang, Wei Yang, Shuaifeng Zhi, and Chen Yang. "Parameter Estimation Processor for K-distribution Clutter Based on Deep Learning." Journal of Physics: Conference Series 2290, no. 1 (June 1, 2022): 012095. http://dx.doi.org/10.1088/1742-6596/2290/1/012095.
Повний текст джерелаSaraerToosi, Ali, and Avery E. Broderick. "Autoencoding Labeled Interpolator, Inferring Parameters from Image and Image from Parameters." Astrophysical Journal 967, no. 2 (May 29, 2024): 140. http://dx.doi.org/10.3847/1538-4357/ad3e76.
Повний текст джерелаElanayar, Sunil, and Yung C. Shin. "Robust Tool Wear Estimation With Radial Basis Function Neural Networks." Journal of Dynamic Systems, Measurement, and Control 117, no. 4 (December 1, 1995): 459–67. http://dx.doi.org/10.1115/1.2801101.
Повний текст джерелаДисертації з теми "Estimation of parameters tool"
Chen, Xiaoming. "The development of a parameter estimation tool towards fault diagnosis." The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1399563299.
Повний текст джерелаValkonen, Laura Elina. "The Sunyaev-Zel'dovich effect in galaxy clusters as a tool for estimating cosmological parameters." Thesis, University of Sussex, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487558.
Повний текст джерелаSokrut, Nikolay. "The Integrated Distributed Hydrological Model, ECOFLOW- a Tool for Catchment Management." Doctoral thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-237.
Повний текст джерелаVerbeek, Benjamin. "Maximum Likelihood Estimation of Hyperon Parameters in Python : Facilitating Novel Studies of Fundamental Symmetries with Modern Software Tools." Thesis, Uppsala universitet, Institutionen för materialvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446041.
Повний текст джерелаMiró, Roig Antoni. "DYNAMIC MATHEMATICAL TOOLS FOR THE IDENTIFICATION OF REGULATORY STRUCTURES AND KINETIC PARAMETERS IN." Doctoral thesis, Universitat Rovira i Virgili, 2014. http://hdl.handle.net/10803/284043.
Повний текст джерелаEn esta tesis presentamos una metodología sistemática que permite caracterizar sistemas biológicos dinámicos a partir de datos de series temporales. Del trabajo desarrollado se desprenden tres publicaciones. En la primera desarrollamos un método de optimización global determinista basado en el outer approximation para la estimación de parámetros en sistemas biológicos dinámicos. Nuestro método se basa en la reformulación de un conjunto de ecuaciones diferenciales ordinarias a su equivalente algebraico mediante el uso de métodos de colocación ortogonal, dando lugar a un problema no convexo de programación no lineal (NLP). Este problema no convexo NLP se descompone en dos niveles jerárquicos: un problema master de programación entera mixta (MILP) que proporciona una cota inferior rigurosa al solución global, y una NLP esclavo de espacio reducido que da un límite superior. El algoritmo itera entre estos dos niveles hasta que un criterio de terminación se satisface. En las publicaciones segunda y tercera desarrollamos un método que es capaz de identificar la estructura regulatoria con los correspondientes parámetros cinéticos a partir de datos de series temporales. En la segunda publicación definimos un problema de optimización dinámica entera mixta (MIDO) donde minimizamos el criterio de información de Akaike. En la tercera publicación adoptamos una perspectiva MIDO multicriterio donde minimizamos el ajuste y complejidad simultáneamente mediante el método del epsilon constraint donde uno de los objetivos se trata como la función objetivo mientras que el resto se convierten en restricciones auxiliares. En ambas publicaciones los problemas MIDO se reformulan a programación entera mixta no lineal (MINLP) mediante la colocación ortogonal en elementos finitos donde las variables binarias se utilizan para modelar la existencia de interacciones regulatorias.
In this thesis we present a systematic methodology to characterize dynamic biological systems from time series data. From the work we derived three publications. In the first we developed a deterministic global optimization method based on the outer approximation for parameter estimation in dynamic biological systems. Our method is based on reformulating the set of ordinary differential equations into an equivalent set of algebraic equations through the use of orthogonal collocation methods, giving rise to a nonconvex nonlinear programming (NLP) problem. This nonconvex NLP is decomposed into two hierarchical levels: a master mixed-integer linear programming problem (MILP) that provides a rigorous lower bound on the optimal solution, and a reduced-space slave NLP that yields an upper bound. The algorithm iterates between these two levels until a termination criterion is satisfied. In the second and third publications we developed a method that is able to identify the regulatory structure and its corresponding kinetic parameters from time series data. In the second publication we defined a mixed integer dynamic optimization problem (MIDO) which minimize the Akaike information criterion. In the third publication, we adopted a multi-criteria MIDO which minimize complexity and fit simultaneously using the epsilon constraint method in which one objective is treated as the objective function while the rest are converted to auxiliary constraints. In both publications MIDO problems were reformulated to mixed integer nonlinear programming (MINLP) through the use of orthogonal collocation on finite elements where binary variables are used to model the existence of regulatory interactions.
Murray, Paul. "Extensions of the hit-or-miss transform for feature detection in noisy images and a novel design tool for estimating its parameters." Thesis, University of Strathclyde, 2012. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=17198.
Повний текст джерелаSahin, Haci Bayram. "Analysing Design Parameters Of Hydroelectric Power Plant Projects To Develop Cost Decision Models By Using Regresion And Neural Network Tools." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12611462/index.pdf.
Повний текст джерелаs world. Ascending of energy consumption due to development of technology and dense population of earth causes greenhouse effect. One of the most valuable energy sources is hydro energy. Because of limited energy sources and excessive energy usage, cost of energy is rising. There are many ways to generate electricity. Among the electricity generation units, hydroelectric power plants are very important, since they are renewable energy sources and they have no fuel cost. Electricity is one of the most expensive input in production. Every hydro energy potential should be considered when making investment on this hydro energy potential. To decide whether a hydroelectric power plant investment is feasible or not, project cost and amount of electricity generation of the investment should be precisely estimated. This study is about cost estimation of hydroelectric power plant projects. Many design parameters and complexity of construction affect the cost of hydroelectric power plant projects. In this thesis fifty four hydroelectric power plant projects are analyzed. The data set is analyzed by using regression analysis and artificial neural network tools. As a result, two cost estimation models have been developed to determine the hydroelectric power plant project cost in early stage of the project.
Guerrero, José-Luis. "Robust Water Balance Modeling with Uncertain Discharge and Precipitation Data : Computational Geometry as a New Tool." Doctoral thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-190686.
Повний текст джерелаModeller är viktiga verktyg för att förstå de hydrologiska processer som bestämmer vattnets transport i landskapet och för prognoser för tider och platser där det saknas mätdata. Graden av tillit till modeller bör emellertid inte överstiga kvaliteten på de data som de matas med. Det övergripande syftet med denna avhandling var att anpassa modelleringsprocessen så att den tar hänsyn till osäkerheten i data och identifierar robusta parametervärden med hjälp av metoder från beräkningsgeometrin. Metoderna var utvecklade och testades på data från Cholutecaflodens avrinningsområde i Honduras. Kvalitetskontrollen i nederbörds- och vattenföringsdata resulterade i att 22 % av de dagliga nederbördsobservationerna måste kasseras liksom alla data från en av sju analyserade vattenföringsstationer. Observationsnätet för nederbörd befanns otillräckligt för att fånga upp den rumsliga och tidsmässiga variabiliteten i den övre delen av Cholutecaflodens avrinningsområde. Vattenföringens tidsvariation utvärderades med en Monte Carlo-skattning av värdet på parametrarna i avbördningskurvan i ett rörligt tidsfönster av vattenföringsmätningar. Alla vattenföringsstationer uppvisade stor tidsvariation i avbördningskurvan som var störst för låga flöden, dock inte med någon gemensam trend. Problemet med den måttliga datakvaliteten bedömdes med hjälp av robusta modellparametervärden som identifierades med hjälp av beräkningsgeometriska metoder. Hypotesen att djupa parametervärdesuppsättningar var robusta testades och verifierades genom två djupfunktioner. Geometriskt djupa parametervärdesuppsättningar verkade ge bättre hydrologiska resultat än ytliga, var mindre känsliga för små ändringar i parametervärden och var bättre lämpade för förflyttning i tiden. Metoder utvecklades för att visualisera multivariata fördelningar av välpresterande parametrar baserade på de rangordnade värdena. Genom att projicera längs en gemensam dimension, kunde multivariata fördelningar av välpresterande parametrar hos modeller med varierande komplexitet jämföras med hjälp av det föreslagna visualiseringsverktyget. Det har alltså potentialen att bistå vid valet av en adekvat modellstruktur som tar hänsyn till osäkerheten i data. Dessa metoder möjliggjorde kvantifiering av observationsosäkerheter. Geometriska metoder har helt nyligen börjat användas inom hydrologin. I studien demonstrerades att de kan användas för att identifiera robusta parametervärdesuppsättningar och några av metodernas potentiella användningsområden belystes.
Sowgath, Md Tanvir. "Neural network based hybrid modelling and MINLP based optimisation of MSF desalination process within gPROMS : development of neural network based correlations for estimating temperature elevation due to salinity, hybrid modelling and MINLP based optimisation of design and operation parameters of MSF desalination process within gPROMS." Thesis, University of Bradford, 2007. http://hdl.handle.net/10454/10998.
Повний текст джерелаBeek, Jaap van de. "Estimation of synchronization parameters." Licentiate thesis, Luleå tekniska universitet, Signaler och system, 1996. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-16971.
Повний текст джерелаGodkänd; 1996; 20080328 (ysko)
Книги з теми "Estimation of parameters tool"
Marlow, A. R. Software performance estimation tool. Manchester: UMIST, 1994.
Знайти повний текст джерелаUllah, A. Nonparametric kernel estimation of econometric parameters. [Urbana, Ill.]: College of Commerce and Business Administration, University of Illinois at Urbana-Champaign, 1987.
Знайти повний текст джерелаMcCallum, Hamish. Population parameters: Estimation for ecological models. Oxford: Blackwell Science, 2000.
Знайти повний текст джерелаIldiz, Faith. Estimation of motion parameters from image sequences. Monterey, Calif: Naval Postgraduate School, 1991.
Знайти повний текст джерелаZakharova, A. I. Estimation of seismicity parameters using a computer. Rotterdam: Balkema, 1986.
Знайти повний текст джерелаHillegers, L. T. M. E. The estimation of parameters in functional relationship models. [Maastricht: L.T.M.E. Hillegers, 1986.
Знайти повний текст джерелаKurt, Hoffmann. Improved estimation of distribution parameters: Stein-type estimators. Stuttgart: B.G. Teubner, 1992.
Знайти повний текст джерелаSeber, G. A. F. The estimation of animal abundance and related parameters. 2nd ed. London: Edward Arnold, 1994.
Знайти повний текст джерелаLind, Rick. Estimation of modal parameters using a wavelet-based approach. Edwards, Calif: National Aeronautics and Space Administration, Dryden Flight Research Center, 1997.
Знайти повний текст джерелаPalaszewski, Bo. On multiple test procedures for finding deviating parameters. Göteborg: University of Göteborg, 1993.
Знайти повний текст джерелаЧастини книг з теми "Estimation of parameters tool"
Ghosal, Sarbajit, Narasimha Acharya, T. Eric Abrahamson, La Moyne Porter, and Hubert W. Schreier. "An Integrated Tool for Estimation of Material Model Parameters." In Application of Imaging Techniques to Mechanics of Materials and Structures, Volume 4, 89–98. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-9796-8_12.
Повний текст джерелаLuo, Ruiyan, Alejandra D. Herrera-Reyes, Yena Kim, Susan Rogowski, Diana White, and Alexandra Smirnova. "Estimation of Time-Dependent Transmission Rate for COVID-19 SVIRD Model Using Predictor–Corrector Algorithm." In Mathematical Modeling for Women’s Health, 213–37. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-58516-6_7.
Повний текст джерелаMöller, Dietmar P. F. "Parameter estimation: an advanced simulation tool in biomedicine." In Advanced Simulation in Biomedicine, 71–82. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4419-8614-6_4.
Повний текст джерелаLastovetsky, Alexey, Vladimir Rychkov, and Maureen O’Flynn. "A Software Tool for Accurate Estimation of Parameters of Heterogeneous Communication Models." In Recent Advances in Parallel Virtual Machine and Message Passing Interface, 43–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87475-1_12.
Повний текст джерелаVan Aert, Sandra. "Statistical Parameter Estimation Theory - A Tool for Quantitative Electron Microscopy." In Handbook of Nanoscopy, 281–308. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527641864.ch8.
Повний текст джерелаOkamura, Hiroyuki, and Tadashi Dohi. "mapfit: An R-Based Tool for PH/MAP Parameter Estimation." In Quantitative Evaluation of Systems, 105–12. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22264-6_7.
Повний текст джерелаNavarro, Danielle, and David Foxcroft. "8. Estimating unknown quantities from a sample." In Learning Statistics with jamovi, 139–64. Cambridge, UK: Open Book Publishers, 2025. https://doi.org/10.11647/obp.0333.08.
Повний текст джерелаKrötz, Christian Alan, Max Feldman, Gustavo Pedroso Cainelli, Gustavo Künzel, Carlos Eduardo Pereira, and Ivan Müller. "Tool and Method for Obtaining End-to-End Reliability Parameters of Wireless Industrial Networks." In Analysis, Estimations, and Applications of Embedded Systems, 77–88. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26500-6_7.
Повний текст джерелаSantarelli, Maria Filomena, Vincenzo Positano, and Luigi Landini. "Dynamic PET Data Generation and Analysis Software Tool for Evaluating the SNR Dependence on Kinetic Parameters Estimation." In IFMBE Proceedings, 204–7. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11128-5_51.
Повний текст джерелаFunabiki, Nobuo, Chihiro Taniguchi, Kyaw Soe Lwin, Khin Khin Zaw, and Wen-Chung Kao. "A Parameter Optimization Tool and Its Application to Throughput Estimation Model for Wireless LAN." In Advances in Intelligent Systems and Computing, 701–10. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61566-0_65.
Повний текст джерелаТези доповідей конференцій з теми "Estimation of parameters tool"
Suchorucov, U. N., and A. G. Derevianchenco. "Intelligent Tool Wear Estimation for Precision Cutting Tools." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1153.
Повний текст джерелаZhong Xionghu, Song Shubiao, and Pei Chengming. "Time-varying Parameters Estimation based on Kalman Particle Filter with Forgetting Factors." In EUROCON 2005 - The International Conference on "Computer as a Tool". IEEE, 2005. http://dx.doi.org/10.1109/eurcon.2005.1630264.
Повний текст джерелаUlsoy, A. Galip. "Estimation of Time Varying Parameters in Discrete Time Dynamic Systems: A Tool Wear Estimation Example." In 1989 American Control Conference. IEEE, 1989. http://dx.doi.org/10.23919/acc.1989.4790168.
Повний текст джерелаSudev, L. J., and H. V. Ravindra. "Tool Wear Estimation in Drilling Using Acoustic Emission Signal by Multiple Regression and GMDH." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66756.
Повний текст джерелаKozlov, E. A., and D. Y. Varivoda. "Dense 3D Residual Moveout Analysis as a Tool for HTI Parameters Estimation." In 65th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2003. http://dx.doi.org/10.3997/2214-4609-pdb.6.p086.
Повний текст джерелаCeleska, Maja, Krste Najdenkoski, Vlatko Stoilkov, Aneta Buchkovska, Zhivko Kokolanski, and Vladimir Dimchev. "Estimation of Weibull parameters from wind measurement data by comparison of statistical methods." In IEEE EUROCON 2015 - International Conference on Computer as a Tool (EUROCON). IEEE, 2015. http://dx.doi.org/10.1109/eurocon.2015.7313684.
Повний текст джерелаXu, Xiaopeng, Xiaochun Zhang, and Hongji Yang. "A Probability Parameter Estimation Tool in C++." In 2022 9th International Conference on Dependable Systems and Their Applications (DSA). IEEE, 2022. http://dx.doi.org/10.1109/dsa56465.2022.00075.
Повний текст джерелаKorzun, Alexander, Evgeni Kukareko, and Anatoly Pashkevich. "Estimation of robot parameters using optical sensors." In Optical Tools for Manufacturing and Advanced Automation, edited by David P. Casasent. SPIE, 1993. http://dx.doi.org/10.1117/12.150211.
Повний текст джерелаBin Li and Hailong Lu. "Methods of reliability estimation for numerical control machine tool based on performance parameters." In 2011 Second International Conference on Mechanic Automation and Control Engineering (MACE). IEEE, 2011. http://dx.doi.org/10.1109/mace.2011.5987916.
Повний текст джерелаChethan, Y. D., Ravindra Holalu Venkatadas, and Y. T. Krishne Gowda. "Estimation of Machine Vision and Acoustic Emission Parameters for Tool Status Monitoring in Turning Using Artificial Neural Network." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50445.
Повний текст джерелаЗвіти організацій з теми "Estimation of parameters tool"
Wang, Yong-Yi. PR-350-154501-R01 Evaluation of Girth Weld Flaws in Vintage Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 2019. http://dx.doi.org/10.55274/r0011600.
Повний текст джерелаBajwa, Abdullah, Tim Kroeger, and Timothy Jacobs. PR-457-17201-R04 Residual Gas Fraction Estimation Based on Measured Engine Parameters - Phase IV. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2021. http://dx.doi.org/10.55274/r0012176.
Повний текст джерелаBajwa, Abdullah, and Timothy Jacobs. PR-457-17201-R02 Residual Gas Fraction Estimation Based on Measured Engine Parameters. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), February 2019. http://dx.doi.org/10.55274/r0011558.
Повний текст джерелаCattaneo, Matias D., Richard K. Crump, Max H. Farrell, and Yingjie Feng. Nonlinear Binscatter Methods. Federal Reserve Bank of New York, August 2024. http://dx.doi.org/10.59576/sr.1110.
Повний текст джерелаBonfil, David J., Daniel S. Long, and Yafit Cohen. Remote Sensing of Crop Physiological Parameters for Improved Nitrogen Management in Semi-Arid Wheat Production Systems. United States Department of Agriculture, January 2008. http://dx.doi.org/10.32747/2008.7696531.bard.
Повний текст джерелаHertel, Thomas, David Hummels, Maros Ivanic, and Roman Keeney. How Confident Can We Be in CGE-Based Assessments of Free Trade Agreements? GTAP Working Paper, June 2003. http://dx.doi.org/10.21642/gtap.wp26.
Повний текст джерелаBajwa, Abdullah, and Timothy Jacobs. PR-457-17201-R03 Residual Gas Fraction Estimation Based on Measured In-Cylinder Pressure - Phase III. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2021. http://dx.doi.org/10.55274/r0011996.
Повний текст джерелаEvans, James, David Kretschmann, and David Green. Procedures for estimation of Weibull parameters. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2019. http://dx.doi.org/10.2737/fpl-gtr-264.
Повний текст джерелаSaltus, Christina, Molly Reif, and Richard Johansen. waterquality for ArcGIS Pro Toolbox. Engineer Research and Development Center (U.S.), October 2021. http://dx.doi.org/10.21079/11681/42240.
Повний текст джерелаSaltus, Christina, Molly Reif, and Richard Johansen. waterquality for ArcGIS Pro Toolbox : user's guide. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45362.
Повний текст джерела