Добірка наукової літератури з теми "Estimation de la qualité des images"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Estimation de la qualité des images".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Estimation de la qualité des images"
Li, Chao, Mingyang Li, Jie Liu, Yingchang Li, and Qianshi Dai. "Comparative Analysis of Seasonal Landsat 8 Images for Forest Aboveground Biomass Estimation in a Subtropical Forest." Forests 11, no. 1 (December 31, 2019): 45. http://dx.doi.org/10.3390/f11010045.
Повний текст джерелаMeng, Hui, Jinsong Chong, Yuhang Wang, Yan Li, and Zhuofan Yan. "Local Azimuth Ambiguity-to-Signal Ratio Estimation Method Based on the Doppler Power Spectrum in SAR Images." Remote Sensing 11, no. 7 (April 9, 2019): 857. http://dx.doi.org/10.3390/rs11070857.
Повний текст джерелаCi Wang, Haoyuan Dong, Zhikai Wu, and Yap-Peng Tan. "Example-based quality estimation for compressed images." IEEE Multimedia 17, no. 3 (2010): 54–61. http://dx.doi.org/10.1109/mmul.2010.5692183.
Повний текст джерелаChaturvedi, Pawan, and Michael F. Insana. "Autoregressive Spectral Estimation in Ultrasonic Scatterer Size Imaging." Ultrasonic Imaging 18, no. 1 (January 1996): 10–24. http://dx.doi.org/10.1177/016173469601800102.
Повний текст джерелаKamaev, A. N., I. P. Urmanov, A. A. Sorokin, D. A. Karmanov, and S. P. Korolev. "IMAGES ANALYSIS FOR AUTOMATIC VOLCANO VISIBILITY ESTIMATION." Computer Optics 42, no. 1 (March 30, 2018): 128–40. http://dx.doi.org/10.18287/2412-6179-2018-42-1-128-140.
Повний текст джерелаChin, Sin Chee, Chee-Onn Chow, Jeevan Kanesan, and Joon Huang Chuah. "A Study on Distortion Estimation Based on Image Gradients." Sensors 22, no. 2 (January 14, 2022): 639. http://dx.doi.org/10.3390/s22020639.
Повний текст джерелаGalvíncio, Josiclêda Domiciano, and Carine Rosa Naue. "Estimation of NDVI with visible images (RGB) obtained with drones." Journal of Hyperspectral Remote Sensing 9, no. 6 (April 21, 2020): 407. http://dx.doi.org/10.29150/jhrs.v9.6.p407-420.
Повний текст джерелаMadhuanand, L., F. Nex, and M. Y. Yang. "DEEP LEARNING FOR MONOCULAR DEPTH ESTIMATION FROM UAV IMAGES." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences V-2-2020 (August 3, 2020): 451–58. http://dx.doi.org/10.5194/isprs-annals-v-2-2020-451-2020.
Повний текст джерелаHashim, Ahmed, Hazim Daway, and Hana kareem. "No reference Image Quality Measure for Hazy Images." International Journal of Intelligent Engineering and Systems 13, no. 6 (December 31, 2020): 460–71. http://dx.doi.org/10.22266/ijies2020.1231.41.
Повний текст джерелаTakezawa, Megumi, Hirofumi Sanada, and Miki Haseyama. "[Paper] Quality Estimation Method for Fractal Compressed Images." ITE Transactions on Media Technology and Applications 1, no. 2 (2013): 178–83. http://dx.doi.org/10.3169/mta.1.178.
Повний текст джерелаДисертації з теми "Estimation de la qualité des images"
Al, Chami Zahi. "Estimation de la qualité des données multimedia en temps réel." Thesis, Pau, 2021. http://www.theses.fr/2021PAUU3066.
Повний текст джерелаOver the past decade, data providers have been generating and streaming a large amount of data, including images, videos, audio, etc. In this thesis, we will be focusing on processing images since they are the most commonly shared between the users on the global inter-network. In particular, treating images containing faces has received great attention due to its numerous applications, such as entertainment and social media apps. However, several challenges could arise during the processing and transmission phase: firstly, the enormous number of images shared and produced at a rapid pace requires a significant amount of time to be processed and delivered; secondly, images are subject to a wide range of distortions during the processing, transmission, or combination of many factors that could damage the images’content. Two main contributions are developed. First, we introduce a Full-Reference Image Quality Assessment Framework in Real-Time, capable of:1) preserving the images’content by ensuring that some useful visual information can still be extracted from the output, and 2) providing a way to process the images in real-time in order to cope with the huge amount of images that are being received at a rapid pace. The framework described here is limited to processing those images that have access to their reference version (a.k.a Full-Reference). Secondly, we present a No-Reference Image Quality Assessment Framework in Real-Time. It has the following abilities: a) assessing the distorted image without having its distortion-free image, b) preserving the most useful visual information in the images before publishing, and c) processing the images in real-time, even though the No-Reference image quality assessment models are considered very complex. Our framework offers several advantages over the existing approaches, in particular: i. it locates the distortion in an image in order to directly assess the distorted parts instead of processing the whole image, ii. it has an acceptable trade-off between quality prediction accuracy and execution latency, andiii. it could be used in several applications, especially these that work in real-time. The architecture of each framework is presented in the chapters while detailing the modules and components of the framework. Then, a number of simulations are made to show the effectiveness of our approaches to solve our challenges in relation to the existing approaches
Cotte, Florian. "Estimation d’objets de très faible amplitude dans des images radiologiques X fortement bruitées." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT112.
Повний текст джерелаIn the field of X-ray radiology for medical diagnostics, progress in computer, electronics and materials industry over the past three decades have led to the development of digital sensors to improve the quality of images. This CIFRE thesis, prepared in collaboration between the Gipsa-Lab laboratory and the company Trixell, manufacturer of digital flat detectors for radiological imaging, takes place in an industrial context for improving the image quality of X-ray sensors. More specifically, various technological causes can generate disturbances, called "artifacts". The fine knowledge of these technological causes (internal or external to the sensor) makes it possible to model these artifacts and to eliminate them from images.The chosen approach models the image as a sum of 3 terms Y = C + S + B : the clinical content, the signal or artifact to be modeled and the noise. The problem is to find the artifact from Y and knowledge about the clinical content and noise. To solve this inverse problem, several Bayesian approaches using various prior knowledge are developed. Unlike existing estimation methods that are specific to a particular artifact, our approach is generic and our models take into account spatially variable shapes and features of artifacts that are locally stationary. They also give us a feedback on the quality of the estimate, validating or invalidating the model. The methods are evaluated and compared on synthetic images for 2 types of artifacts. On real images, these methods are illustrated on the removal of anti-scattering grids. The performances of the developed algorithms are superior to those of the methods dedicated to a given artifact, at the cost of greater complexity. The latest results obtained open interesting perspectives, especially for non-stationary artefacts in space and time
Wang, Liang. "NOVEL DENSE STEREO ALGORITHMS FOR HIGH-QUALITY DEPTH ESTIMATION FROM IMAGES." UKnowledge, 2012. http://uknowledge.uky.edu/cs_etds/4.
Повний текст джерелаBelgued, Youssef. "Amélioration de la qualité géométrique des images spatiales radar : méthodes de localisation et restitution du relief par radargrammétrie." Toulouse, INPT, 2000. http://www.theses.fr/2000INPT019H.
Повний текст джерелаNawarathna, Ruwan D. "Detection of Temporal Events and Abnormal Images for Quality Analysis in Endoscopy Videos." Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc283849/.
Повний текст джерелаHarouna, Seybou Aboubacar. "Analyse d'images couleurs pour le contrôle qualité non destructif." Thesis, Poitiers, 2016. http://www.theses.fr/2016POIT2282/document.
Повний текст джерелаColor is a major criterion for many sectors to identify, to compare or simply to control the quality of products. This task is generally assumed by a human operator who performs a visual inspection. Unfortunately, this method is unreliable and not repeatable due to the subjectivity of the operator. To avoid these limitations, a RGB camera can be used to capture and extract the photometric properties. This method is simple to deploy and permits a high speed control. However, it's very sensitive to the metamerism effects. Therefore, the reflectance measurement is the more reliable solution to ensure the conformity between samples and a reference. Thus in printing industry, spectrophotometers are used to measure uniform color patches printed on a lateral band. For a control of the entire printed surface, multispectral cameras are used to estimate the reflectance of each pixel. However, they are very expensive compared to conventional cameras. In this thesis, we study the use of an RGB camera for the spectral reflectance estimation in the context of printing. We propose a complete spectral description of the reproduction chain to reduce the number of measurements in the training stages and to compensate for the acquisition limitations. Our first main contribution concerns the consideration of the colorimetric limitations in the spectral characterization of a camera. The second main contribution is the exploitation of the spectral printer model in the reflectance estimation methods
Ortiz, Cayón Rodrigo. "Amélioration de la vitesse et de la qualité d'image du rendu basé image." Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4004/document.
Повний текст джерелаTraditional photo-realistic rendering requires intensive manual and computational effort to create scenes and render realistic images. Thus, creation of content for high quality digital imagery has been limited to experts and highly realistic rendering still requires significant computational time. Image-Based Rendering (IBR) is an alternative which has the potential of making high-quality content creation and rendering applications accessible to casual users, since they can generate high quality photo-realistic imagery without the limitations mentioned above. We identified three important shortcomings of current IBR methods: First, each algorithm has different strengths and weaknesses, depending on 3D reconstruction quality and scene content and often no single algorithm offers the best image quality everywhere in the image. Second, such algorithms present strong artifacts when rendering partially reconstructed objects or missing objects. Third, most methods still result in significant visual artifacts in image regions where reconstruction is poor. Overall, this thesis addresses significant shortcomings of IBR for both speed and image quality, offering novel and effective solutions based on selective rendering, learning-based model substitution and depth error prediction and correction
Conze, Pierre-Henri. "Estimation de mouvement dense long-terme et évaluation de qualité de la synthèse de vues. Application à la coopération stéréo-mouvement." Phd thesis, INSA de Rennes, 2014. http://tel.archives-ouvertes.fr/tel-00992940.
Повний текст джерелаDelvit, Jean-Marc. "Évaluation de la résolution d'un instrument optique par une méthode neuronale : application à une image quelconque de télédétection." Toulouse, ENSAE, 2003. http://www.theses.fr/2003ESAE0010.
Повний текст джерелаAkinbola, Akintunde A. "Estimation of image quality factors for face recognition." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4308.
Повний текст джерелаTitle from document title page. Document formatted into pages; contains vi, 56 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 52-56).
Книги з теми "Estimation de la qualité des images"
Jensen, Jørgen Arendt. Medical ultrasound imaging: An estimation based approach. [Lyngby]: Electronics Laboratory, Technical University of Denmark, 1988.
Знайти повний текст джерелаChoi, Jaeyoung, and Gerald Friedland, eds. Multimodal Location Estimation of Videos and Images. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09861-6.
Повний текст джерелаKondo, Kazuhiro. Subjective Quality Measurement of Speech: Its Evaluation, Estimation and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Знайти повний текст джерелаLétourneau, Guy. Description des données brutes de télédétection. Montréal, Qué: Centre Saint-Laurent, Conservation de l'environnement, Environnement Canada, 1996.
Знайти повний текст джерелаPang, Erwin. Parameter estimation and efficient implementation of affine transforms for digital images. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.
Знайти повний текст джерелаNapolitano, Antonio. Fractal Dimension Estimation Methods for Biomedical Images. INTECH Open Access Publisher, 2012.
Знайти повний текст джерелаFriedland, Gerald, and Jaeyoung Choi. Multimodal Location Estimation of Videos and Images. Springer, 2014.
Знайти повний текст джерелаFriedland, Gerald, and Jaeyoung Choi. Multimodal Location Estimation of Videos and Images. Springer, 2016.
Знайти повний текст джерелаFriedland, Gerald, and Jaeyoung Choi. Multimodal Location Estimation of Videos and Images. Springer, 2014.
Знайти повний текст джерелаKondo, Kazuhiro. Subjective Quality Measurement of Speech: Its Evaluation, Estimation and Applications. Springer, 2014.
Знайти повний текст джерелаЧастини книг з теми "Estimation de la qualité des images"
Lee, Sanghoon, Chulhan Lee, and Jaihie Kim. "Model-Based Quality Estimation of Fingerprint Images." In Advances in Biometrics, 229–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11608288_31.
Повний текст джерелаLi, Xin, Ruxin Wang, Mingqiang Li, Chaochao Bai, and Tong Zhao. "A Hybrid Quality Estimation Algorithm for Fingerprint Images." In Biometric Recognition, 214–23. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46654-5_24.
Повний текст джерелаNeverova, Natalia, Damien Muselet, and Alain Trémeau. "Lighting Estimation in Indoor Environments from Low-Quality Images." In Computer Vision – ECCV 2012. Workshops and Demonstrations, 380–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33868-7_38.
Повний текст джерелаNoda, Hideki, Shun Haraguchi, and Michiharu Niimi. "Quality Improvement of Compressed Color Images by Model-Based Chrominance Estimation." In Advances in Multimedia Information Processing - PCM 2009, 1251–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10467-1_127.
Повний текст джерелаShuang, Yang, and Fang Zhen. "Primary Quality Factor Estimation in Double Compressed JPEG Images Using Quantization Error." In Communications in Computer and Information Science, 133–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34595-1_19.
Повний текст джерелаZhu, Anna, Guoyou Wang, and Yangbo Dong. "Robust Text Segmentation in Low Quality Images via Adaptive Stroke Width Estimation and Stroke Based Superpixel Grouping." In Computer Vision - ACCV 2014 Workshops, 119–33. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16631-5_9.
Повний текст джерелаLiu, Hong, Chao Yang, and Zengmei Lan. "Directional Diffusion Filter Bank and Texture Quality Measurement for Robust Orientation Estimation and Enhancement of Fingerprint Images." In Lecture Notes in Electrical Engineering, 343–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91659-0_28.
Повний текст джерелаLi, Qin, and Bin Xie. "Image-Based Air Quality Estimation." In Pattern Recognition and Computer Vision, 161–71. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31726-3_14.
Повний текст джерелаAichinger, Horst, Joachim Dierker, Sigrid Joite-Barfuß, and Manfred Säbel. "Patient Dose Estimation." In Radiation Exposure and Image Quality in X-Ray Diagnostic Radiology, 293–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11241-6_18.
Повний текст джерелаAichinger, Horst, Joachim Dierker, Sigrid Joite-Barfuß, and Manfred Säbel. "Patient Dose Estimation." In Radiation Exposure and Image Quality in X-Ray Diagnostic Radiology, 199–205. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09654-3_17.
Повний текст джерелаТези доповідей конференцій з теми "Estimation de la qualité des images"
Chetouani, Aladine, and Azeddine Beghdadi. "A new image quality estimation approach for JPEG2000 compressed images." In 2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE, 2011. http://dx.doi.org/10.1109/isspit.2011.6151627.
Повний текст джерелаWang, Kang, Yue Wu, and Qiang Ji. "Head Pose Estimation on Low-Quality Images." In 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). IEEE, 2018. http://dx.doi.org/10.1109/fg.2018.00087.
Повний текст джерелаLiu, Kuan-Hsien, Hsin-Hua Liu, Soo-Chang Pei, Tsung-Jung Liu, and Chun-Te Chang. "Age Estimation on Low Quality Face Images." In 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). IEEE, 2019. http://dx.doi.org/10.1109/aicas.2019.8771612.
Повний текст джерелаCanh Doan, Thi Ngoc, Florent Retraint, Thanh Hai Thai, and Cathel Zitzmann. "Quality factor estimation of JPEG compressed images." In 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2016. http://dx.doi.org/10.1109/globalsip.2016.7905812.
Повний текст джерелаLindgren, Erik, and Christopher Zach. "Autoencoder-Based Anomaly Detection in Industrial X-ray Images." In 2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/qnde2021-74428.
Повний текст джерелаPopova, A. K. "Estimation of water quality parameters from space images." In 1st International Workshop on Advanced Information and Computation Technologies and Systems 2020. Crossref, 2021. http://dx.doi.org/10.47350/aicts.2020.17.
Повний текст джерелаMun, Ji-Hun, and Yo-Sung Ho. "Quality preserving depth estimation in sequential stereo images." In 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). IEEE, 2016. http://dx.doi.org/10.1109/apsipa.2016.7820869.
Повний текст джерелаLin, Yijun, Fengge Wu, and Junsuo Zhao. "Learning to Generate High-Quality Images for Homography Estimation." In 2022 IEEE International Conference on Image Processing (ICIP). IEEE, 2022. http://dx.doi.org/10.1109/icip46576.2022.9897392.
Повний текст джерелаXie, Yupeng, Sarah Fachada, Daniele Bonatto, Mehrdad Teratani, and Gauthier Lafruit. "View Synthesis: LiDAR Camera versus Depth Estimation." In WSCG'2021 - 29. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision'2021. Západočeská univerzita, 2021. http://dx.doi.org/10.24132/csrn.2021.3002.35.
Повний текст джерелаXie, Yupeng, Sarah Fachada, Daniele Bonatto, Mehrdad Teratani, and Gauthier Lafruit. "View Synthesis: LiDAR Camera versus Depth Estimation." In WSCG'2021 - 29. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision'2021. Západočeská univerzita v Plzni, 2021. http://dx.doi.org/10.24132/csrn.2021.3101.35.
Повний текст джерелаЗвіти організацій з теми "Estimation de la qualité des images"
Simizu, Hiroaki, and Tomaso Poggio. Direction Estimation of Pedestrian from Images. Fort Belvoir, VA: Defense Technical Information Center, August 2003. http://dx.doi.org/10.21236/ada459729.
Повний текст джерелаSaltus, Christina, Molly Reif, and Richard Johansen. waterquality for ArcGIS Pro Toolbox. Engineer Research and Development Center (U.S.), October 2021. http://dx.doi.org/10.21079/11681/42240.
Повний текст джерелаSaltus, Christina, Molly Reif, and Richard Johansen. waterquality for ArcGIS Pro Toolbox : user's guide. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45362.
Повний текст джерелаRangachar, Ramesh, Tsai-Hong Hong, Martin Herman, and Randall Luck. Analysis of optical flow estimation using epipolar plane images. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.4569.
Повний текст джерелаDELAURENTIS, JOHN M., and ARMIN W. DOERRY. Stereoscopic Height Estimation from Multiple Aspect Synthetic Aperture Radar Images. Office of Scientific and Technical Information (OSTI), August 2001. http://dx.doi.org/10.2172/786639.
Повний текст джерелаDu, Y., P. W. Vachon, and J. Wolfe. Wind direction estimation from SAR images of the ocean using wavelet analysis. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/219819.
Повний текст джерелаWakeford, Daniel. Automated estimation of the DARHT radiographic spot size from spatially modulated images. Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/1841885.
Повний текст джерелаEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak, and Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, July 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Повний текст джерелаAihara, Shimpei, Takara Saki, Tyusei Shibata, Toshiaki Matsubara, Ryosuke Mizukami, Yudai Yoshida, and Akira Shionoya. Deep Learning Model for Integrated Estimation of Wheelchair and Human Poses Using Camera Images. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317545.
Повний текст джерелаNieves, L. A., D. R. Wernette, R. C. Hemphill, S. Mohiudden, and J. Corso. Identification and estimation of socioeconomic impacts resulting from perceived risks and changing images; An annotated bibliography. Office of Scientific and Technical Information (OSTI), February 1990. http://dx.doi.org/10.2172/137872.
Повний текст джерела