Добірка наукової літератури з теми "ESTIMATES OF CONVERGENCE"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "ESTIMATES OF CONVERGENCE".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "ESTIMATES OF CONVERGENCE"
Heinrichs, Wilhelm. "Strong convergence estimates for pseudospectral methods." Applications of Mathematics 37, no. 6 (1992): 401–17. http://dx.doi.org/10.21136/am.1992.104520.
Повний текст джерелаShen, Xiaotong, and Wing Hung Wong. "Convergence Rate of Sieve Estimates." Annals of Statistics 22, no. 2 (June 1994): 580–615. http://dx.doi.org/10.1214/aos/1176325486.
Повний текст джерелаKang, K. S., and D. Y. Kwak. "Convergence estimates for multigrid algorithms." Computers & Mathematics with Applications 34, no. 9 (November 1997): 15–22. http://dx.doi.org/10.1016/s0898-1221(97)00185-5.
Повний текст джерелаBorwein, J. M., and A. S. Lewis. "Convergence of Best Entropy Estimates." SIAM Journal on Optimization 1, no. 2 (May 1991): 191–205. http://dx.doi.org/10.1137/0801014.
Повний текст джерелаGupta, Vijay. "Convergence Estimates for Gamma Operator." Bulletin of the Malaysian Mathematical Sciences Society 43, no. 3 (June 19, 2019): 2065–75. http://dx.doi.org/10.1007/s40840-019-00791-z.
Повний текст джерелаFalgout, Robert D., Panayot S. Vassilevski, and Ludmil T. Zikatanov. "On two-grid convergence estimates." Numerical Linear Algebra with Applications 12, no. 5-6 (2005): 471–94. http://dx.doi.org/10.1002/nla.437.
Повний текст джерелаSOYBAŞ, DANYAL, and NEHA MALIK. "Convergence Estimates for Gupta-Srivastava Operators." Kragujevac Journal of Mathematics 45, no. 5 (2021): 739–49. http://dx.doi.org/10.46793/kgjmat2105.739s.
Повний текст джерелаTeboulle, M., and I. Vajda. "Convergence of best phi -entropy estimates." IEEE Transactions on Information Theory 39, no. 1 (1993): 297–301. http://dx.doi.org/10.1109/18.179378.
Повний текст джерелаBramble, James H., and Joseph E. Pasciak. "New convergence estimates for multigrid algorithms." Mathematics of Computation 49, no. 180 (1987): 311. http://dx.doi.org/10.1090/s0025-5718-1987-0906174-x.
Повний текст джерелаTheiler, James, and Leonard A. Smith. "Anomalous convergence of Lyapunov exponent estimates." Physical Review E 51, no. 4 (April 1, 1995): 3738–41. http://dx.doi.org/10.1103/physreve.51.3738.
Повний текст джерелаДисертації з теми "ESTIMATES OF CONVERGENCE"
Beckmann, Matthias [Verfasser], and Armin [Akademischer Betreuer] Iske. "Error Estimates and Convergence Rates for Filtered Back Projection Reconstructions / Matthias Beckmann ; Betreuer: Armin Iske." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2018. http://d-nb.info/1161530479/34.
Повний текст джерелаBeckmann, Matthias Verfasser], and Armin [Akademischer Betreuer] [Iske. "Error Estimates and Convergence Rates for Filtered Back Projection Reconstructions / Matthias Beckmann ; Betreuer: Armin Iske." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2018. http://nbn-resolving.de/urn:nbn:de:gbv:18-91742.
Повний текст джерелаVerbitsky, Anton [Verfasser], and W. [Akademischer Betreuer] Reichel. "Positive Solutions for the Discrete Nonlinear Schrödinger Equation: A Priori Estimates and Convergence / Anton Verbitsky. Betreuer: W. Reichel." Karlsruhe : KIT-Bibliothek, 2014. http://d-nb.info/1061069214/34.
Повний текст джерелаSchroeder, Gregory C. "Estimates for the rate of convergence of finite element approximations of the solution of a time-dependent variational inequality." Master's thesis, University of Cape Town, 1993. http://hdl.handle.net/11427/17404.
Повний текст джерелаThe main aim of this thesis is to analyse two types of general finite element approximations to the solution of a time-dependent variational inequality. The two types of approximations considered are the following: 1. Semi-discrete approximations, in which only the spatial domain is discretised by finite elements; 2. fully discrete approximations, in which the spatial domain is again discretised by finite elements and, in addition, the time domain is discretised and the time-derivatives appearing in the variational inequality are approximated by backward differences. Estimates of the error inherent in the above two types of approximations, in suitable Sobolev norms, are obtained; in particular, these estimates express the rate of convergence of successive finite element approximations to the solution of the variational inequality in terms of element size h and, where appropriate, in terms of the time step size k. In addition, the above analysis is preceded by related results concerning the existence and uniqueness of the solution to the variational inequality and is followed by an application in elastoplasticity theory.
Braun, Alina [Verfasser], Michael [Akademischer Betreuer] Kohler, and Volker [Akademischer Betreuer] Betz. "In Theory and Practice - On the Rate of Convergence of Implementable Neural Network Regression Estimates / Alina Braun ; Michael Kohler, Volker Betz." Darmstadt : Universitäts- und Landesbibliothek, 2021. http://d-nb.info/1238783104/34.
Повний текст джерелаMiraglio, Pietro. "Estimates and rigidity for stable solutions to some nonlinear elliptic problems." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/668832.
Повний текст джерелаMi tesis se encaja en el estudio de las EDPs elípticas. Está dividida en dos partes: la primera trata una ecuación no-lineal con el p-Laplaciano, la segunda de un problema no-local. En la primera parte, estudiamos la regularidad de las soluciones estables de una ecuación no lineal con el p-Laplaciano en un dominio acotado. Esta ecuacion es la versión no-lineal de la ámpliamente estudiada ecuacion semilineal con el Laplaciano. Cabré, Figalli, Ros-Oton, y Serra han demostrado recientemente que las soluciones estables de las ecuaciones semilineales son acotadas, y por tanto regulares, hasta la dimensión 9. Este resultado es optimal. En el caso del p-Laplaciano, la regularidad de las soluciones estables se conjetura de ser cierta hasta una dimension critica y, de hecho, se conocen ejemplos de soluciones no acotadas cuando la dimension llega al valor critico. Además, se ha demostrado que en el caso radial o assumiendo hipótesis fuertes sobre la no-linealidad las soluciones estables son acotadas hasta la dimension critica. En el primer capítulo, demostramos que las soluciones estables son acotadas, bajo una nueva condición en n y p, que es optimal en el caso radial, y más restrictiva en el caso general. Esta investigación mejora conocidos resultados del tema y es el primer ejemplo, para el p-Laplaciano, de un método que produce un resultado para el caso general y un resultado optimal en el caso radial. En la primera parte, nos ocupamos también de las desigualdades funcionales del tipo Hardy y Sobolev sobre hipersuperfícies del espacio Euclideo, todas conteniendo un término de curvatura media. Nuestra motivación proviene de varias apliaciones que tienen estas desigualdades en el estudio de estimaciones para las soluciones estables. En detalle, damos una demostración simple de la conocida desigualdad de Michael-Simon y Allard, obtenemos dos formas nuevas de la desigualdad de Hardy sobre hipersuperfícies, y otra desigualdad de Hardy-Poincaré. En la segunda parte, nos ocupamos de un problema de Dirichlet-Neumann que emerge de un modelo para las ondas en el agua. El sistema se describe con una ecuación de difusión en una tira de altura fija, que contiene un parámetro a en (-1,1). La parte superior de la tira es dotada de una condicion 0 de Neumann, mientras en la parte inferior tenemos un dato de Dirichlet y una ecuación con una nonlinearidad regular. Este problema puede ser reformulado como una ecuación no-local sobre la componente dotada del dato de Dirichlet, definiendo un operador de Dirichlet-Neumann apropiado. Primero, demostramos un teorema del tipo Liouville, que garantiza la simetría unidimensional de las soluciones monótonas, asumiendo un control sobre el crecimiento de la energía asociada. Como consecuencia, obtenemos la simetría 1D de las soluciones estables en dimension 2. Para n=3, obtenemos estimaciónes optimales de la energía para las soluciones que minimizan la energía y para las soluciones monótonas. Estas estimaciones nos conducen a la simetría 1D de estas clases de soluciones, aplicando nuestro teorema del tipo Liouville. Relativo a este problema, estudiamos también la naturaleza del operador de Dirichlet-Neumann. Primero, deducimos su expresión como operador de Fourier, que anteriormente solo se conocía para a=0. Este resultado evidencia la naturaleza del operador, que es no-local pero no puramente fraccionaria. Estudiamos en profundidad este comportamiento mixto del operador a través del estudio de la G-convergencia de un funcional energía asociado al operador. Demostramos la G-convergencia de nuestro funcional a un límite que corresponde a una energía de interacción pura cuando a en (0,1) y al perímetro clásico cuando a en (-1,0]. El límite a=0, así como el G-límite para el régimen a en (-1,0], es común a otros problemas no-locales tratados en la literatura. Al contrario, el funcional límite en el régimen puramente no-local es nuevo y diferente a otros funciona
Questa tesi si occupa di equazioni differenziali alle derivate parziali di tipo ellittico. È divisa in due parti: la prima riguarda un’equazione nonlineare per il p-Laplaciano, mentre la seconda è incentrata su un problema nonlocale, che può essere formulato per mezzo di un operatore di Dirichlet-Neumann collegato con il Laplaciano frazionario. Nella prima parte, studiamo la regolarità delle soluzioni stabili dell’equazione nonlineare per il p-Laplaciano dove W è un dominio limitato, p 2 (1,+¥) e f è una nonlinearità C1. Questa equazione è la versione nonlineare dell’equazione semilineare ������������Du = f (u) in un dominio limitato W Rn, che è stata ampiamente studiata in letteratura. Molto recentemente, Cabré, Figalli, Ros-Oton, e Serra [38] hanno dimostrato che le soluzioni stabili delle equazioni semilineari sono limitate, e quindi regolari, in dimensione n 9. Questo risultato è ottimale, dato che esempi di soluzioni illimitate e stabili sono noti in dimensione n 10. Inoltre, i risultati in [38] forniscono una risposta completa ad un annoso problema aperto, proposto da Brezis e Vázquez [25], sulla regolarità delle soluzioni estremali dell’equazione ������������Du = l f (u). Queste ultime sono infatti esempi non banali di soluzioni stabili di equazioni semilineari, che possono essere limitate o illimitate in dipendenza della dimensione n, del dominio W, e della nonlinearità f . In questa tesi studiamo la limitatezza delle soluzioni stabili di (0.4), che si congettura essere vera fino alla dimensione n < p + 4p/(p ������������ 1). Sono infatti noti esempi di soluzioni stabili e illimitate quando n p + 4p/(p ������������ 1), anche quando il dominio è la palla unitaria. Inoltre, nel caso radiale o assumendo ipotesi forti sulla nonlinearità, è stato dimostrato che le soluzioni stabili di (0.4) sono limitate quando n < p + 4p/(p ������������ 1). Nel Capitolo 1 della tesi dimostriamo una nuova stima L¥ a priori per le soluzioni stabili di (0.4), assumendo una nuova condizione su n e p, che è ottimale nel caso radiale e più restrittiva nel caso generale. Il nostro risultato migliora ciò che è noto in letteratura e ed è il primo esempio di tecnica che produce sia un risultato nel caso non radiale sia il risultato ottimale nel caso radiale. Per ottenere questo risultato estendiamo al caso del p-Laplaciano una tecnica sviluppata da Cabré [30] per il caso classico del problema, con p = 2. La strategia si basa su una disuguaglianza di Hardy sugli insiemi di livello della soluzione, combinata con una disuguaglianza di tipo geometrico per le soluzioni stabili di (0.4). Nella prima parte della tesi ci occupiamo anche di disuguaglianze funzionali di tipo Hardy e Sobolev, su ipersuperfici dello spazio euclideo. Nel fare ciò siamo motivati dalle varie applicazioni di questo tipo di risultati allo studio di stime a priori per le soluzioni stabili, sia nel caso semilineare che nel caso nonlineare ...
MIRAGLIO, PIETRO. "ESTIMATES AND RIGIDITY FOR STABLE SOLUTIONS TO SOME NONLINEAR ELLIPTIC PROBLEMS." Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/704717.
Повний текст джерелаThis thesis deals with the study of elliptic PDEs. The first part of the thesis is focused on the regularity of stable solutions to a nonlinear equation involving the p-Laplacian, in a bounded domain of the Euclidean space. The technique is based on Hardy-Sobolev inequalities in hypersurfaces involving the mean curvature, which are also investigated in the thesis. The second part concerns, instead, a nonlocal problem of Dirichlet-to-Neumann type. We study the one-dimensional symmetry of some subclasses of stable solutions, obtaining new results in dimensions n=2, 3. In addition, we carry out the study of the asymptotic behaviour of the operator associated with this nonlocal problem, using Γ-convergence techniques.
Courtès, Clémentine. "Analyse numérique de systèmes hyperboliques-dispersifs." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS467/document.
Повний текст джерелаThe aim of this thesis is to study some hyperbolic-dispersive partial differential equations. A significant part is devoted to the numerical analysis and more precisely to the convergence of some finite difference schemes for the Korteweg-de Vries equation and abcd systems of Boussinesq. The numerical study follows the classical steps of consistency and stability. The main idea is to transpose at the discrete level the weak-strong stability property for hyperbolic conservation laws. We determine the convergence rate and we quantify it according to the Sobolev regularity of the initial datum. If necessary, we regularize the initial datum for the consistency estimates to be always valid. An optimization step is thus necessary between this regularization and the convergence rate of the scheme. A second part is devoted to the existence of traveling waves for the Korteweg-de Vries-Kuramoto-Sivashinsky equation. By classical methods of dynamical systems : extended systems, Lyapunov function, Melnikov integral, for instance, we prove the existence of oscillating small amplitude traveling waves
Bazan, Rodolfo S. Cermeno. "Evaluating convergence with median-unbiased estimators in panel data." The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1277906836.
Повний текст джерелаPieczynski, Wojciech. "Sur diverses applications de la décantation des lois de probabilité dans la théorie générale de l'estimation statistique." Paris 6, 1986. http://www.theses.fr/1986PA066064.
Повний текст джерелаКниги з теми "ESTIMATES OF CONVERGENCE"
Gupta, Vijay, and Ravi P. Agarwal. Convergence Estimates in Approximation Theory. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02765-4.
Повний текст джерелаSenatov, V. V. Qualitative effects in the estimates of the convergence rate in the central limit theorem in multidimensional spaces. Moscow: Maik Nauka/Interperiodica Publishing, 1996.
Знайти повний текст джерелаM, Křížek, Neittaanmäki P, and Stenberg R. 1953-, eds. Finite element methods: Superconvergence, post-processing, and a posteriori estimates. New York: M. Dekker, 1998.
Знайти повний текст джерелаNewey, Whitney K. Convergence rates for series estimators. Cambridge, Mass: Dept. of Economics, Massachusetts Institute of Technology, 1993.
Знайти повний текст джерелаNewey, Whitney K. Convergence rates & asymptotic normality for series estimators. Cambridge, Mass: Dept. of Economics, Massachusetts Institute of Technology, 1995.
Знайти повний текст джерелаFerger, D. On the almost sure convergence of maximum likelihood-type estimators for a change point. Dresden: Technische Universität Dresden, Institut für Mathematische Stochastik, 2004.
Знайти повний текст джерелаJ, Kavanagh Michael, Armstrong Laboratory (U.S.), and State University of New York at Albany., eds. Transferability of skills: Convergent, postdictive, criterion-related, and construct validation of cross-job retraining time estimates. Brooks AFB, TX: U.S. Air Force, Armstrong Laboratory, 1997.
Знайти повний текст джерелаAgarwal, Ravi P., and Vijay Gupta. Convergence Estimates in Approximation Theory. Springer London, Limited, 2014.
Знайти повний текст джерелаAgarwal, Ravi P., and Vijay Gupta. Convergence Estimates in Approximation Theory. Springer, 2016.
Знайти повний текст джерелаConvergence Estimates In Approximation Theory. Springer International Publishing AG, 2014.
Знайти повний текст джерелаЧастини книг з теми "ESTIMATES OF CONVERGENCE"
Heinrich, Bernd. "Error Estimates and Convergence." In Finite Difference Methods on Irregular Networks, 96–149. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7196-9_5.
Повний текст джерелаGupta, Vijay, and Ravi P. Agarwal. "Preliminaries." In Convergence Estimates in Approximation Theory, 1–16. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02765-4_1.
Повний текст джерелаGupta, Vijay, and Ravi P. Agarwal. "Rate of Convergence in Simultaneous Approximation." In Convergence Estimates in Approximation Theory, 313–43. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02765-4_10.
Повний текст джерелаGupta, Vijay, and Ravi P. Agarwal. "Future Scope and Open Problems." In Convergence Estimates in Approximation Theory, 345–47. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02765-4_11.
Повний текст джерелаGupta, Vijay, and Ravi P. Agarwal. "Approximation by Certain Operators." In Convergence Estimates in Approximation Theory, 17–92. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02765-4_2.
Повний текст джерелаGupta, Vijay, and Ravi P. Agarwal. "Complete Asymptotic Expansion." In Convergence Estimates in Approximation Theory, 93–107. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02765-4_3.
Повний текст джерелаGupta, Vijay, and Ravi P. Agarwal. "Linear and Iterative Combinations." In Convergence Estimates in Approximation Theory, 109–39. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02765-4_4.
Повний текст джерелаGupta, Vijay, and Ravi P. Agarwal. "Better Approximation." In Convergence Estimates in Approximation Theory, 141–53. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02765-4_5.
Повний текст джерелаGupta, Vijay, and Ravi P. Agarwal. "Complex Operators in Compact Disks." In Convergence Estimates in Approximation Theory, 155–212. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02765-4_6.
Повний текст джерелаGupta, Vijay, and Ravi P. Agarwal. "Rate of Convergence for Functions of Bounded Variation." In Convergence Estimates in Approximation Theory, 213–47. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02765-4_7.
Повний текст джерелаТези доповідей конференцій з теми "ESTIMATES OF CONVERGENCE"
Paxman, Richard G., and John H. Seldin. "Operational convergence of estimates in phase diversity." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.thtt3.
Повний текст джерелаFang Cai, Jie Xiao, and Zhao-Hong Xiang. "Estimates for convergence rate of nested iterative methods." In 2011 IEEE International Conference on Computer Science and Automation Engineering (CSAE). IEEE, 2011. http://dx.doi.org/10.1109/csae.2011.5953268.
Повний текст джерелаHale, Matthew T., and Magnus Egerstedt. "Convergence rate estimates for consensus over random graphs." In 2017 American Control Conference (ACC). IEEE, 2017. http://dx.doi.org/10.23919/acc.2017.7963087.
Повний текст джерелаPavlov, A., N. van de Wouw, and H. Nijmeijer. "The local output regulation problem: Convergence region estimates." In 2003 European Control Conference (ECC). IEEE, 2003. http://dx.doi.org/10.23919/ecc.2003.7085042.
Повний текст джерелаZhang, Fu, Ehsan Keikha, Behrooz Shahsavari, and Roberto Horowitz. "Adaptive Mismatch Compensation for Rate Integrating Vibratory Gyroscopes With Improved Convergence Rate." In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6053.
Повний текст джерелаMarfurt, Kurt J., and Jamie Rich. "Beyond curvature — volumetric estimates of reflector rotation and convergence." In SEG Technical Program Expanded Abstracts 2010. Society of Exploration Geophysicists, 2010. http://dx.doi.org/10.1190/1.3513118.
Повний текст джерелаChong, Edwin K. P., and Peter J. Ramadge. "Convergence of Recursive Optimization Algorithms using IPA Derivative Estimates." In 1990 American Control Conference. IEEE, 1990. http://dx.doi.org/10.23919/acc.1990.4790894.
Повний текст джерелаSeldin, John H., and Richard G. Paxman. "Operational convergence of estimates from noisy phase-diversity measurements." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/oam.1993.mbbb.6.
Повний текст джерелаBianchi, P., G. Fort, W. Hachem, and J. Jakubowicz. "Convergence of a distributed parameter estimator for sensor networks with local averaging of the estimates." In ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. http://dx.doi.org/10.1109/icassp.2011.5947170.
Повний текст джерелаBrock, Jerry. "Bounded Numerical Error Estimates for Oscillatory Convergence of Simulation Data." In 18th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-4091.
Повний текст джерелаЗвіти організацій з теми "ESTIMATES OF CONVERGENCE"
Zhao, L. C., P. R. Krishnaiah, and X. R. Chen. Almost Sure L(Gamma)-Norm Convergence for Data-Based Histogram Density Estimates. Fort Belvoir, VA: Defense Technical Information Center, August 1987. http://dx.doi.org/10.21236/ada189944.
Повний текст джерелаChen, X. R., and L. C. Zhao. Almost Sure L(1)-Norm Convergence for Data-Based Histogram Density Estimates. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/ada170059.
Повний текст джерелаBai, Z. D., P. R. Krishnaiah, and L. C. Zhao. On Rate of Convergence of Equivariation Linear Prediction Estimates of the Number of Signals and Frequencies of Multiple Sinusoids. Fort Belvoir, VA: Defense Technical Information Center, December 1986. http://dx.doi.org/10.21236/ada186034.
Повний текст джерелаChen, X. R., and L. C. Zhoa. Necessary and Sufficient Conditions for the Convergence of Integrated and Mean-Integrated r-th Order Error of Histogram Density Estimates. Fort Belvoir, VA: Defense Technical Information Center, April 1987. http://dx.doi.org/10.21236/ada186037.
Повний текст джерелаDorr, Adam, and Tony Seba. Rethinking Energy: The Great Stranding: How Inaccurate Mainstream LCOE Estimates are Creating a Trillion-Dollar Bubble in Conventional Energy Assets. RethinkX, February 2021. http://dx.doi.org/10.61322/uuda4616.
Повний текст джерелаMcRae, Shaun D. Residential Electricity Consumption and Adaptation to Climate Change by Colombian Households. Inter-American Development Bank, July 2023. http://dx.doi.org/10.18235/0005017.
Повний текст джерелаTosi, R., R. Codina, J. Principe, R. Rossi, and C. Soriano. D3.3 Report of ensemble based parallelism for turbulent flows and release of solvers. Scipedia, 2022. http://dx.doi.org/10.23967/exaqute.2022.3.06.
Повний текст джерелаLio, Y. L., and W. J. Padgett. Some Convergence Results for Kernel-Type Quantile Estimators under Censoring. Fort Belvoir, VA: Defense Technical Information Center, November 1985. http://dx.doi.org/10.21236/ada162837.
Повний текст джерелаChristensen, Timothy M., and Xiaohong Chen. Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions. IFS, December 2014. http://dx.doi.org/10.1920/wp.cem.2014.4614.
Повний текст джерелаCattaneo, Matias D., Richard K. Crump, and Weining Wang. Beta-Sorted Portfolios. Federal Reserve Bank of New York, July 2023. http://dx.doi.org/10.59576/sr.1068.
Повний текст джерела