Добірка наукової літератури з теми "Ergodic theory"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ergodic theory".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Ergodic theory"

1

Gray, R. M. "Ergodic theory." Proceedings of the IEEE 74, no. 2 (1986): 380. http://dx.doi.org/10.1109/proc.1986.13473.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kida, Yoshikata. "Ergodic group theory." Sugaku Expositions 35, no. 1 (April 7, 2022): 103–26. http://dx.doi.org/10.1090/suga/470.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Moore, Calvin C. "Ergodic theorem, ergodic theory, and statistical mechanics." Proceedings of the National Academy of Sciences 112, no. 7 (February 17, 2015): 1907–11. http://dx.doi.org/10.1073/pnas.1421798112.

Повний текст джерела
Анотація:
This perspective highlights the mean ergodic theorem established by John von Neumann and the pointwise ergodic theorem established by George Birkhoff, proofs of which were published nearly simultaneously in PNAS in 1931 and 1932. These theorems were of great significance both in mathematics and in statistical mechanics. In statistical mechanics they provided a key insight into a 60-y-old fundamental problem of the subject—namely, the rationale for the hypothesis that time averages can be set equal to phase averages. The evolution of this problem is traced from the origins of statistical mechan
Стилі APA, Harvard, Vancouver, ISO та ін.
4

JONES, ROGER L., ROBERT KAUFMAN, JOSEPH M. ROSENBLATT, and MÁTÉ WIERDL. "Oscillation in ergodic theory." Ergodic Theory and Dynamical Systems 18, no. 4 (August 1998): 889–935. http://dx.doi.org/10.1017/s0143385798108349.

Повний текст джерела
Анотація:
In this paper we establish a variety of square function inequalities and study other operators which measure the oscillation of a sequence of ergodic averages. These results imply the pointwise ergodic theorem and give additional information such as control of the number of upcrossings of the ergodic averages. Related results for differentiation and for the connection between differentiation operators and the dyadic martingale are also established.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Boyd, David W., Karma Dajani, and Cor Kraaikamp. "Ergodic Theory of Numbers." American Mathematical Monthly 111, no. 7 (August 2004): 633. http://dx.doi.org/10.2307/4145181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Walters, Peter. "TOPICS IN ERGODIC THEORY." Bulletin of the London Mathematical Society 28, no. 2 (March 1996): 221–23. http://dx.doi.org/10.1112/blms/28.2.221.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sinai, Ya G., and Barry Simon. "Topics in Ergodic Theory." Physics Today 47, no. 10 (October 1994): 74–75. http://dx.doi.org/10.1063/1.2808677.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Barnes, Julie, Lorelei Koss, and Rachel Rossetti. "The Ergodic Theory Café." Math Horizons 26, no. 3 (December 28, 2018): 5–9. http://dx.doi.org/10.1080/10724117.2018.1518099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kozlov, V. V. "Coarsening in ergodic theory." Russian Journal of Mathematical Physics 22, no. 2 (April 2015): 184–87. http://dx.doi.org/10.1134/s1061920815020053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jones, Roger L., Joseph M. Rosenblatt, and Máté Wierdl. "Counting in Ergodic Theory." Canadian Journal of Mathematics 51, no. 5 (October 1, 1999): 996–1019. http://dx.doi.org/10.4153/cjm-1999-044-2.

Повний текст джерела
Анотація:
AbstractMany aspects of the behavior of averages in ergodic theory are a matter of counting the number of times a particular event occurs. This theme is pursued in this article where we consider large deviations, square functions, jump inequalities and related topics.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Ergodic theory"

1

Quas, Anthony Nicholas. "Some problems in ergodic theory." Thesis, University of Warwick, 1993. http://wrap.warwick.ac.uk/58569/.

Повний текст джерела
Анотація:
The thesis consists of a study of problems in ergodic theory relating to one-dimensional dynamical systems, Markov chains and generalizations of Markov chains. It is divided into chapters, three of which have appeared in the literature as papers. Chapter 1 looks at continuous families of circle maps and investigates conditions under which there is a weak*-continuous family of invariant measures. Sufficient conditions are exhibited and the necessity of these conditions is investigated. Chapter 2 is about expanding maps of the interval and the circle, and their relation with g-measures and gener
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bulinski, Kamil. "Interactions between Ergodic Theory and Combinatorial Number Theory." Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17733.

Повний текст джерела
Анотація:
The seminal work of Furstenberg on his ergodic proof of Szemerédi’s Theorem gave rise to a very rich connection between Ergodic Theory and Combinatorial Number Theory (Additive Combinatorics). The former is concerned with dynamics on probability spaces, while the latter is concerned with Ramsey theoretic questions about the integers, as well as other groups. This thesis further develops this symbiosis by establishing various combinatorial results via ergodic techniques, and vice versa. Let us now briefly list some examples of such. A shorter ergodic proof of the following theorem of Magyar is
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Butkevich, Sergey G. "Convergence of Averages in Ergodic Theory." The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu980555965.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Butkevich, Sergey. "Convergence of averages in Ergodic Theory /." The Ohio State University, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488196781735316.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Johnson, Bryan R. "Unconditional convergence of differences in ergodic theory /." The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487945015615412.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jaššová, Alena. "On ergodic theory in non-Archimedean settings." Thesis, University of Liverpool, 2014. http://livrepository.liverpool.ac.uk/2006322/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Meco, Benjamin. "Ergodic Theory and Applications to Combinatorial Problems." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-409810.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Prabaharan, Kanagarajah. "Topics in ergodic theory : existence of invariant elements and ergodic decompositions of Banach lattices /." The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487688973685025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cannizzo, Jan. "Schreier Graphs and Ergodic Properties of Boundary Actions." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31444.

Повний текст джерела
Анотація:
This thesis is broadly concerned with two problems: investigating the ergodic properties of boundary actions, and investigating various properties of Schreier graphs. Our main result concerning the former problem is that, in a variety of situations, the action of an invariant random subgroup of a group G on a boundary of G (e.g. the hyperbolic boundary, or the Poisson boundary) is conservative (there are no wandering sets). This addresses a question asked by Grigorchuk, Kaimanovich, and Nagnibeda and establishes a connection between invariant random subgroups and normal subgroups. We approach
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Raissi-Dehkordi, Ramin. "Ergodic theory of dynamical systems having absolutely continuous spectrum." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627274.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Ergodic theory"

1

Assani, Idris, ed. Ergodic Theory. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/conm/485.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kerr, David, and Hanfeng Li. Ergodic Theory. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49847-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Einsiedler, Manfred, and Thomas Ward. Ergodic Theory. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-021-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nadkarni, M. G. Basic Ergodic Theory. Gurgaon: Hindustan Book Agency, 2013. http://dx.doi.org/10.1007/978-93-86279-53-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nadkarni, M. G. Basic Ergodic Theory. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-8839-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nadkarni, M. G. Basic ergodic theory. 2nd ed. Basel: Birkhauser Verlag, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Silva, César Ernesto. Invitation to ergodic theory. Providence, R.I: American Mathematical Society, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Silva, César Ernesto. Invitation to ergodic theory. Providence, R.I: American Mathematical Society, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sinaĭ, Ya G. Topics in ergodic theory. Princeton, N.J: Princeton University Press, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Idris, Assani, and Chapel Hill Ergodic Theory Workshop (2008 : University of North Carolina at Chapel Hill), eds. Ergodic theory: Chapel Hill Probability and Ergodic Theory Workshops 2007-2008. Providence, R.I: American Mathematical Society, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "Ergodic theory"

1

Parry, William. "Ergodic Theory." In Time Series and Statistics, 73–81. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-20865-4_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yushida, Kôsaku, Shizuo Kakutani, Karl Petersen, W. Parry, Arshag B. Hajian, Yuji Ito, and J. R. Choksi. "Ergodic Theory." In Shizuo Kakutani, 591–754. Boston, MA: Birkhäuser Boston, 1986. http://dx.doi.org/10.1007/978-1-4612-5391-4_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Klenke, Achim. "Ergodic Theory." In Probability Theory, 493–513. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56402-5_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sinai, Ya G. "Ergodic Theory." In Mathematics and Its Applications, 247–50. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-2973-4_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nikolaev, Igor. "Ergodic Theory." In Foliations on Surfaces, 241–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04524-4_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ito, Yuji. "Ergodic Theory." In Kôsaku Yosida Collected Papers, 147–260. Tokyo: Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-65859-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Radin, Charles. "Ergodic theory." In Miles of Tiles, 17–54. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/stml/001/02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Taylor, Michael. "Ergodic theory." In Graduate Studies in Mathematics, 193–205. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/gsm/076/14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Barreira, Luis, and Claudia Valls. "Ergodic Theory." In Dynamical Systems, 181–202. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4835-7_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Knauf, Andreas. "Ergodic Theory." In UNITEXT, 191–214. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-55774-7_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Ergodic theory"

1

Ren, Boxiang, Han Hao, Ziyuan Lyu, Jingchen Peng, Junyuan Wang, and Hao Wu. "Tight Differentiable Relaxation of Sum Ergodic Capacity Maximization for Clustered Cell-Free Networking." In 2024 IEEE International Symposium on Information Theory (ISIT), 2448–53. IEEE, 2024. http://dx.doi.org/10.1109/isit57864.2024.10619648.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ruelle, David. "Ergodic Theory of Chaos." In Optical Bistability. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/obi.1985.wc1.

Повний текст джерела
Анотація:
Determinsistic chaos arises in a variety of nonlinear dynamical systems in physics, and in particular in optics. One has now gained a reasonable understanding of the onset of chaos in terms of the geometry of bifurcations and strange attractors. This geometric approach does not work for attractors of more than two or three dimensions. For these, however, ergodic theory provides new concepts: characteristic exponents, entropy, information dimension, which are reproducibly estimated from physical experiments. The Characteristic exponents measure the rate of divergence of nearby trajectories of a
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nazer, Bobak, Michael Gastpar, Syed Ali Jafar, and Sriram Vishwanath. "Ergodic interference alignment." In 2009 IEEE International Symposium on Information Theory - ISIT. IEEE, 2009. http://dx.doi.org/10.1109/isit.2009.5205270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nakamura, M. "Ergodic theorems for algorithmically random sequences." In IEEE Information Theory Workshop, 2005. IEEE, 2005. http://dx.doi.org/10.1109/itw.2005.1531876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Simeone, Osvaldo, Oren Somekh, Elza Erkip, H. Vincent Poor, and Shlomo Shamai. "Multirelay channel with non-ergodic link failures." In 2009 IEEE Information Theory Workshop on Networking and Information Theory (ITW). IEEE, 2009. http://dx.doi.org/10.1109/itwnit.2009.5158540.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ryabko, Daniil, and Boris Ryabko. "On hypotheses testing for ergodic processes." In 2008 IEEE Information Theory Workshop (ITW). IEEE, 2008. http://dx.doi.org/10.1109/itw.2008.4578669.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bardi, Martino, and Olivier Alvarez. "Some ergodic problems for differential games." In Control Systems: Theory, Numerics and Applications. Trieste, Italy: Sissa Medialab, 2006. http://dx.doi.org/10.22323/1.018.0025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kupiainen, Antti. "Ergodic theory of SDE’s with degenerate noise." In Proceedings of a Satellite Conference of ICM 2006. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812791559_0003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Aggarwal, Vaneet, Lalitha Sankar, A. Robert Calderbank, and H. Vincent Poor. "Ergodic layered erasure one-sided interference channels." In 2009 IEEE Information Theory Workshop. IEEE, 2009. http://dx.doi.org/10.1109/itw.2009.5351176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nasser, Rajai. "Ergodic theory meets polarization I: A foundation of polarization theory." In 2015 IEEE International Symposium on Information Theory (ISIT). IEEE, 2015. http://dx.doi.org/10.1109/isit.2015.7282896.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Ergodic theory"

1

Rupe, Adam. Ergodic Theory and Dynamical Process Modeling. Office of Scientific and Technical Information (OSTI), January 2021. http://dx.doi.org/10.2172/1762707.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mezic, Igor. Nonlinear Dynamics and Ergodic Theory Methods in Control. Fort Belvoir, VA: Defense Technical Information Center, December 2005. http://dx.doi.org/10.21236/ada451673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mezic, Igor. Nonlinear Dynamics and Ergodic Theory Methods in Control. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada418975.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

ALMODARESI, S. A., and Ali BOLOOR. A mathematical modelling for spatio temporal substitution base on Ergodic theorem. Cogeo@oeaw-giscience, September 2011. http://dx.doi.org/10.5242/iamg.2011.0026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Houdre, Christian. On the Spectral SLLN and Pointwise Ergodic Theorem in L alpha. Fort Belvoir, VA: Defense Technical Information Center, July 1990. http://dx.doi.org/10.21236/ada225960.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Stewart, Jonathan, Grace Parker, Joseph Harmon, Gail Atkinson, David Boore, Robert Darragh, Walter Silva, and Youssef Hashash. Expert Panel Recommendations for Ergodic Site Amplification in Central and Eastern North America. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, March 2017. http://dx.doi.org/10.55461/tzsy8988.

Повний текст джерела
Анотація:
The U.S. Geological Survey (USGS) national seismic hazard maps have historically been produced for a reference site condition of VS30 = 760 m/sec (where VS30 is time averaged shear wave velocity in the upper 30 m of the site). The resulting ground motions are modified for five site classes (A-E) using site amplification factors for peak acceleration and ranges of short- and long-oscillator periods. As a result of Project 17 recommendations, this practice is being revised: (1) maps will be produced for a range of site conditions (as represented by VS30 ) instead of a single reference condition;
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Goulet, Christine, Yousef Bozorgnia, Nicolas Kuehn, Linda Al Atik, Robert Youngs, Robert Graves, and Gail Atkinson. NGA-East Ground-Motion Models for the U.S. Geological Survey National Seismic Hazard Maps. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, March 2017. http://dx.doi.org/10.55461/qozj4825.

Повний текст джерела
Анотація:
The purpose of this report is to provide a set of ground motion models (GMMs) to be considered by the U.S. Geological Survey (USGS) for their National Seismic Hazard Maps (NSHMs) for the Central and Eastern U.S. (CEUS). These interim GMMs are adjusted and modified from a set of preliminary models developed as part of the Next Generation Attenuation for Central and Eastern North-America (CENA) project (NGA-East). The NGA-East objective was to develop a new ground-motion characterization (GMC) model for the CENA region. The GMC model consists of a set of GMMs for median and standard deviation of
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Goulet, Christine, Yousef Bozorgnia, Norman Abrahamson, Nicolas Kuehn, Linda Al Atik, Robert Youngs, Robert Graves, and Gail Atkinson. Central and Eastern North America Ground-Motion Characterization - NGA-East Final Report. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, December 2018. http://dx.doi.org/10.55461/wdwr4082.

Повний текст джерела
Анотація:
This document is the final project report of the Next Generation Attenuation for Central and Eastern North America (CENA) project (NGA-East). The NGA-East objective was to develop a new ground-motion characterization (GMC) model for the CENA region. The GMC model consists of a set of new ground-motion models (GMMs) for median and standard deviation of ground motions and their associated weights to be used with logic-trees in probabilistic seismic hazard analyses (PSHA). NGA-East is a large multidisciplinary project coordinated by the Pacific Earthquake Engineering Research Center (PEER), at th
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!