Добірка наукової літератури з теми "Ergodic Diffusion Processe"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ergodic Diffusion Processe".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Ergodic Diffusion Processe"
Corradi, Valentina. "Comovements Between Diffusion Processes." Econometric Theory 13, no. 5 (October 1997): 646–66. http://dx.doi.org/10.1017/s0266466600006113.
Повний текст джерелаKamarianakis, Yiannis. "Ergodic control of diffusion processes." Journal of Applied Statistics 40, no. 4 (April 2013): 921–22. http://dx.doi.org/10.1080/02664763.2012.750440.
Повний текст джерелаWong, Bernard. "On Modelling Long Term Stock Returns with Ergodic Diffusion Processes: Arbitrage and Arbitrage-Free Specifications." Journal of Applied Mathematics and Stochastic Analysis 2009 (September 23, 2009): 1–16. http://dx.doi.org/10.1155/2009/215817.
Повний текст джерелаSwishchuk, Anatoliy, and M. Shafiqul Islam. "Diffusion Approximations of the Geometric Markov Renewal Processes and Option Price Formulas." International Journal of Stochastic Analysis 2010 (December 19, 2010): 1–21. http://dx.doi.org/10.1155/2010/347105.
Повний текст джерелаKutoyants, Yury A., and Nakahiro Yoshida. "Moment estimation for ergodic diffusion processes." Bernoulli 13, no. 4 (November 2007): 933–51. http://dx.doi.org/10.3150/07-bej1040.
Повний текст джерелаKiessler, Peter C. "Statistical Inference for Ergodic Diffusion Processes." Journal of the American Statistical Association 101, no. 474 (June 1, 2006): 846. http://dx.doi.org/10.1198/jasa.2006.s98.
Повний текст джерелаChen, Mu Fa. "Ergodic theorems for reaction-diffusion processes." Journal of Statistical Physics 58, no. 5-6 (March 1990): 939–66. http://dx.doi.org/10.1007/bf01026558.
Повний текст джерелаMagdziarz, Marcin, and Aleksander Weron. "Ergodic properties of anomalous diffusion processes." Annals of Physics 326, no. 9 (September 2011): 2431–43. http://dx.doi.org/10.1016/j.aop.2011.04.015.
Повний текст джерелаBel, Golan, and Ilya Nemenman. "Ergodic and non-ergodic anomalous diffusion in coupled stochastic processes." New Journal of Physics 11, no. 8 (August 12, 2009): 083009. http://dx.doi.org/10.1088/1367-2630/11/8/083009.
Повний текст джерелаDi Masp, G. B., and Ł. Stettner. "Bayesian ergodic adaptive control of diffusion processes." Stochastics and Stochastic Reports 60, no. 3-4 (April 1997): 155–83. http://dx.doi.org/10.1080/17442509708834104.
Повний текст джерелаДисертації з теми "Ergodic Diffusion Processe"
Wasielak, Aramian. "Various Limiting Criteria for Multidimensional Diffusion Processes." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/195115.
Повний текст джерелаMaillet, Raphaël. "Analyse statistique et probabiliste de systèmes diffusifs en présence de bruit." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD025.
Повний текст джерелаThis thesis deals with the long-time behavior of stochastic Fokker-Planck equations with additive common noise and presents statistical methods for estimating the invariant measure of multidimensional ergodic diffusion processes from noisy data. In the first part, we analyze stochastic Fokker-Planck Partial Differential Equations (SPDEs), obtained as the mean-field limit of interacting particle systems influenced by both idiosyncratic and common Brownian noises. We establish conditions under which the addition of common noise restores uniqueness if the invariant measure. The main challenge arises from the finite-dimensional nature of the common noise, while the state variable — interpreted as the conditional marginal law of the system given the common noise — operates within an infinite-dimensional space. We demonstrate that uniqueness is restored if the mean field interaction term attracts the system towards its conditional mean given the common noise, particularly when the intensity of the idiosyncratic noise is small. In the second part, we develop a new statistical methodology using kernel density estimation to effectively approximate the invariant measure from noisy observations, highlighting the crucial role of the underlying Markov structure in the denoising process. This method involves a pre-averaging technique that proficiently reduces the intensity of the noise while maintaining the analytical characteristics and asymptotic properties of the underlying signal. We investigate the convergence rate of our estimator, which depends on the anisotropic regularity of the density and the intensity of the noise. We establish noise intensity conditions that allow for convergence rates comparable to those in noise-free environments. Additionally, we demonstrate a Bernstein concentration inequality for our estimator, leading to an adaptive procedure for selecting the kernel bandwidth
Aeckerle-Willems, Cathrine [Verfasser], and Claudia [Akademischer Betreuer] Strauch. "Nonparametric statistics for scalar ergodic diffusion processes / Cathrine Aeckerle-Willems ; Betreuer: Claudia Strauch." Mannheim : Universitätsbibliothek Mannheim, 2019. http://d-nb.info/1202012035/34.
Повний текст джерелаSera, Toru. "Functional limit theorem for occupation time processes of intermittent maps." Kyoto University, 2020. http://hdl.handle.net/2433/259719.
Повний текст джерелаMélykúti, Bence. "Theoretical advances in the modelling and interrogation of biochemical reaction systems : alternative formulations of the chemical Langevin equation and optimal experiment design for model discrimination." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:d368c04c-b611-41b2-8866-cde16b283b0d.
Повний текст джерелаKadlec, Karel. "Optimální řízení stochastických rovnic s Lévyho procesy v Hilbertových proctorech." Doctoral thesis, 2020. http://www.nusl.cz/ntk/nusl-437018.
Повний текст джерелаКниги з теми "Ergodic Diffusion Processe"
S, Borkar Vivek, and Ghosh Mrinal K. 1956-, eds. Ergodic control of diffusion processes. Cambridge: Cambridge University Press, 2011.
Знайти повний текст джерелаKutoyants, Yury A. Statistical Inference for Ergodic Diffusion Processes. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2.
Повний текст джерелаHerrmann, Samuel. Stochastic resonance: A mathematical approach in the small noise limit. Providence, Rhode Island: American Mathematical Society, 2014.
Знайти повний текст джерелаBorkar, Vivek S., Ari Arapostathis, and Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2011.
Знайти повний текст джерелаBorkar, Vivek S., Ari Arapostathis, and Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2011.
Знайти повний текст джерелаBorkar, Vivek S., Ari Arapostathis, and Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2013.
Знайти повний текст джерелаBorkar, Vivek S., Ari Arapostathis, and Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2011.
Знайти повний текст джерелаKutoyants, Yury A. Statistical Inference for Ergodic Diffusion Processes. Springer London, Limited, 2013.
Знайти повний текст джерелаStatistical Inference for Ergodic Diffusion Processes. Springer, 2003.
Знайти повний текст джерелаKutoyants, Yury A. Statistical Inference for Ergodic Diffusion Proces. Springer London, 2010.
Знайти повний текст джерелаЧастини книг з теми "Ergodic Diffusion Processe"
Kutoyants, Yury A. "Diffusion Processes and Statistical Problems." In Statistical Inference for Ergodic Diffusion Processes, 17–110. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_2.
Повний текст джерелаKutoyants, Yury A. "Introduction." In Statistical Inference for Ergodic Diffusion Processes, 1–16. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_1.
Повний текст джерелаKutoyants, Yury A. "Parameter Estimation." In Statistical Inference for Ergodic Diffusion Processes, 111–226. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_3.
Повний текст джерелаKutoyants, Yury A. "Special Models." In Statistical Inference for Ergodic Diffusion Processes, 227–307. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_4.
Повний текст джерелаKutoyants, Yury A. "Nonparametric Estimation." In Statistical Inference for Ergodic Diffusion Processes, 309–419. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_5.
Повний текст джерелаKutoyants, Yury A. "Hypotheses Testing." In Statistical Inference for Ergodic Diffusion Processes, 421–60. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_6.
Повний текст джерелаArnold, Ludwig, and Hans Crauel. "Iterated Function Systems and Multiplicative Ergodic Theory." In Diffusion Processes and Related Problems in Analysis, Volume II, 283–305. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0389-6_13.
Повний текст джерелаKutoyants, Yury A., and Li Zhou. "Asymptotically Parameter-Free Tests for Ergodic Diffusion Processes." In Statistical Models and Methods for Reliability and Survival Analysis, 161–75. Hoboken, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118826805.ch11.
Повний текст джерелаColonius, Fritz, and Wolfgang Kliemann. "Remarks on Ergodic Theory of Stochastic Flows and Control Flows." In Diffusion Processes and Related Problems in Analysis, Volume II, 203–39. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0389-6_9.
Повний текст джерелаKutoyants, Yu A. "On Parameter Estimation by Contaminated Observations of Ergodic Diffusion Processes." In Statistics for Industry and Technology, 461–72. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8206-4_28.
Повний текст джерелаТези доповідей конференцій з теми "Ergodic Diffusion Processe"
Piera, Francisco J., and Ravi R. Mazumdar. "An ergodic result for queue length processes of state-dependent queueing networks in the heavy-traffic diffusion limit." In 2008 46th Annual Allerton Conference on Communication, Control, and Computing. IEEE, 2008. http://dx.doi.org/10.1109/allerton.2008.4797600.
Повний текст джерела