Добірка наукової літератури з теми "Équations des fluides micropolaires"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Équations des fluides micropolaires".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Équations des fluides micropolaires"
Prud'homme, R. "Solutions aux équations d'interfaces fluides." Journal de Chimie Physique 87 (1990): 1403–24. http://dx.doi.org/10.1051/jcp/1990871403.
Повний текст джерелаGallagher, Isabelle. "Existence globale pour des équations des fluides géostrophiques." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 325, no. 6 (September 1997): 623–26. http://dx.doi.org/10.1016/s0764-4442(97)84772-6.
Повний текст джерелаSerre, D. "Sur le principe variationnel des équations de la mécanique des fluides parfaits." ESAIM: Mathematical Modelling and Numerical Analysis 27, no. 6 (1993): 739–58. http://dx.doi.org/10.1051/m2an/1993270607391.
Повний текст джерелаSaint-Raymond, Laure. "Du modèle BGK de l'équation de Boltzmann aux équations d'Euler des fluides incompressibles." Bulletin des Sciences Mathématiques 126, no. 6 (July 2002): 493–506. http://dx.doi.org/10.1016/s0007-4497(02)01125-9.
Повний текст джерелаGallagher, Isabelle. "Un résultat de stabilité pour les solutions faibles des équations des fluides tournants." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 324, no. 2 (January 1997): 183–86. http://dx.doi.org/10.1016/s0764-4442(99)80341-3.
Повний текст джерелаBusuioc, Valentina, and Dragoş Iftimie. "Existence et unicité globale des solutions pour les équations des fluides de grade 3." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 330, no. 8 (April 2000): 741–44. http://dx.doi.org/10.1016/s0764-4442(00)00237-8.
Повний текст джерелаPomeau, Yves. "Représentation de la ligne de contact mobile dans les équations de la mécanique des fluides." Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics 328, no. 5 (May 2000): 411–16. http://dx.doi.org/10.1016/s1620-7742(00)00043-x.
Повний текст джерелаBRUNEAU, M., J. D. POLACK, P. HERZOG, and J. KERGOMARD. "FORMULATION GÉNÉRALE DES ÉQUATIONS DE PROPAGATION ET DE DISPERSION DES ONDES SONORES DANS LES FLUIDES VISCOTHERMIQUES." Le Journal de Physique Colloques 51, no. C2 (February 1990): C2–17—C2–20. http://dx.doi.org/10.1051/jphyscol:1990204.
Повний текст джерелаFries, P. H., and M. Cosnard. "Résolution des équations intégrales des fluides à potentiels intermoléculaires anisotropes par l'algorithme Général de Minimisation du RESte." Journal de Physique 48, no. 5 (1987): 723–31. http://dx.doi.org/10.1051/jphys:01987004805072300.
Повний текст джерелаYakymchuk, Chris. "Applying Phase Equilibria Modelling to Metamorphic and Geological Processes: Recent Developments and Future Potential." Geoscience Canada 44, no. 1 (April 20, 2017): 27. http://dx.doi.org/10.12789/geocanj.2017.44.114.
Повний текст джерелаДисертації з теми "Équations des fluides micropolaires"
Llerena, Montenegro Henry David. "Sur l'interdépendance des variables dans l'étude de quelques équations de la mécanique des fluides." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM048.
Повний текст джерелаThis thesis is devoted to the study of the relationship between the variables in the micropolar fluids equations. This system, which is based on the Navier-Stokes equations, consists in a coupling of two variables: the velocity field vec{u} and the microrotation field vec{w}. Our aim is to provide a better understanding of how information about one variable influences the behavior of the other. To this end, we have divided this thesis into four chapters, where we will study the local regularity properties of Leray-type weak solutions, and later we will focus on the regularity and uniqueness of weak solutions for the stationary case. The first chapter presents a brief physical derivation of the micropolar equations followed by the construction of the Leray-type weak solutions. In Chapter 2, we begin by proving a gain of integrability for both variables vec{u} and vec{w} whenever the velocity belongs to certain Morrey spaces. This result highlights an effect of domination by the velocity. We then show that this effect can also be observed within the framework of the Caffarelli-Kohn-Nirenberg theory, i.e., under an additional smallness hypothesis only on the gradient of the velocity, we can demonstrate that the solution becomes Hölder continuous. For this, we introduce the notion of a partial suitable solution, which is fundamental in this work and represents one of the main novelties. In the last section of this chapter, we derive similar results in the context of the Serrin criterion. In Chapter 3, we focus on the behavior of the L^3-norm of the velocity vec{u} near possible points where regularity may get lost. More precisely, we establish a blow-up criterion for the L^3 norm of the velocity and we improve this result by presenting a concentration phenomenon. We also verify that the limit point L^infty_t L^3_x of the Serrin criterion remains valid for the micropolar fluids equations. Finally, the problem of existence and uniqueness for the stationary micropolar fluids equations is addressed in Chapter 4. Indeed, we prove the existence of weak solutions (vec{u}, vec{w}) in the natural energy space dot{H}^1(mathbb{R}^3) imes H^1(mathbb{R}^3). Moreover, by using the relationship between the variables, we deduce that these solutions are regular. It is worth noting that the trivial solution may not be unique, and to overcome this difficulty, we develop a Liouville-type theorem. Hence, we demonstrate that by imposing stronger decay at infinity only on vec{u}, we can infer the uniqueness of the trivial solution (vec{u},vec{w})=(0,0)
Martin, Grégoire. "Étude numérique des équations d'un fluide micropolaire." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ51263.pdf.
Повний текст джерелаSandri, Dominique. "Analyse numérique de fluides non newtoniens : fluides viscoélastiques et fluides quasi-newtoniens." Lyon 1, 1991. http://www.theses.fr/1991LYO10095.
Повний текст джерелаDesjardins, Benoît. "Equations de transport et mécanique des fluides." Paris 9, 1997. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1997PA090012.
Повний текст джерелаPaicu, Marius-Gheorghe. "Etude des fluides anisotropes incompressibles : Applications aux fluides tournants." Palaiseau, Ecole polytechnique, 2002. http://www.theses.fr/2002EPXXA002.
Повний текст джерелаBiben, Thierry. "Structure et stabilité des fluides à deux composants : des fluides atomiques aux suspensions colloïdales." Lyon 1, 1993. http://www.theses.fr/1993LYO10007.
Повний текст джерелаMakhlof, Hasan. "Dynamique des Fluides Relativistes : Théorie et Approximation Numérique." Paris 6, 2012. http://www.theses.fr/2012PA066523.
Повний текст джерелаGhidaglia, Jean-Michel. "Attracteurs pour des équations d'ondes et des équations de Schrödinger non linéairesÉtude de quelques équations de la mécanique des fluides." Paris 11, 1987. http://www.theses.fr/1987PA112238.
Повний текст джерелаLn this thesis, we study the long time behavior of the solutions to nonlinear wave equations and nonlinear Schrëdinger equations. We address also some mathematical questions related to the equations of fluid mechanics. This work is divided into three chapters and two annexes. The first chapter is devoted to the study of the attractors of nonlinear hyperbolic equations (including damped wave equations) in the autonomous and nonautonomous (time-periodic) cases. The principal result concerns the dimension of these attractors, which is finite as we show. We also study regularity problems. The second chapter is about nonlinear Schrëdinger equations. Lt is divided into independent works. We consider two dissipation mechanisms for these equations and also a modelling problem. We show similar results concerning the long time behavior of these equations (e. G. That attractors are finite dimensional), in the dissipative case. Althought the techniques are totally different in each case due to the essential features of the structure of the equations and of the dissipative mechanisms. The third chapter is devoted to some mathematical problems related to the equations of mechanics. Lt is made of three independent parts. The first one concerns the regularity of the solutions of certain elliptic systems with divergence free condition. Ln the second, we establish sharp properties concerning the convergence to zero for the solutions of several equations of fluid mechanics. The third part is devoted to the study of the attractors for the penalized Navier-Stokes equations. Finally, in the annexe 1, we generalize a class of collective functional inequalities due to Lieb and Thirring. They allow numerous applications to the estimate of the dimension of attractors. The annexe 2 is devoted to a question of backward uniqueness for linear and nonlinear parabolic problems
Sulaiman, Samira. "Étude qualitative de quelques équations d'évolution non linéaires." Rennes 1, 2012. http://www.theses.fr/2012REN1S059.
Повний текст джерелаThis thesis is devoted to the study of the Cauchy problem for some models nonlinear of mechanic of fluids. It consists of two parts independantes: the fi rst part is devoted to the study of global existence of strong solutions for the incompressible stratified fluids. However, the second part deals with the incompressible limit for the 2D isentropic Euler equations. The first part of the thesis is composed of three chapters. In the first, we prove the existence of solutions for the axisymmetric Euler-Boussinesq model partially viscous. This result formulated for an optimal regularity in Besov type spaces. In the second chapter, we analyze the problem of the inviscid limit for stratified fluids with axisymmetric geometry but in the subcritical case. Note that the convergence results are established in the space of resolution. The objective of the third chapter is to study a 2D Boussinesq model with fractional dissipation and the gravitational force depend on function nonlinear of the temperature. The second part of the thesis discusses the singular limit for the isentropic Euler equations in dimensions two. The problem is posed for ill-prepared initial data with optimal Besovregularity. It is a context doubly critical because of the regularity and Strichartz estimates which have the scaling of the energy
Huard, Martin. "Formulation Hamiltonienne généralisée des équations de la mécanique des fluides." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq25610.pdf.
Повний текст джерелаКниги з теми "Équations des fluides micropolaires"
Cannone, Marco. Ondelettes, paraproduits et Navier-Stokes. Paris: Diderot Editeur, 1995.
Знайти повний текст джерела1943-, Foster Michael R., ed. Partial differential equations in fluid dynamics. Cambridge: Cambridge University Press, 2008.
Знайти повний текст джерелаPeyret, Roger. Computational methods for fluid flow. 3rd ed. New York: Springer-Verlag, 1990.
Знайти повний текст джерелаPeyret, Roger. Computational methods for fluid flow. 2nd ed. New York: Springer-Verlag, 1985.
Знайти повний текст джерелаE, Livne Oren, ed. Multigrid techniques: 1984 guide with applications to fluid dynamics. Philadelphia: Society for Industrial and Applied Mathematics, 2011.
Знайти повний текст джерелаA, Novotný, ed. Singular limits in thermodynamics of viscous fluids. Basel: Birkhäuser, 2009.
Знайти повний текст джерелаW, Hutchinson John. Advances in Applied Mechanics, 32. Burlington: Elsevier, 1996.
Знайти повний текст джерелаPotel, Catherine. Acoustique générale - Équations différentielles et intégrales, solutions en milieux fluides et solides, applications - Niveau B. ELLIPSES, 2006.
Знайти повний текст джерелаHomoginized models of suspension dynamics. Berlin, Germany: EMS Press, 2021.
Знайти повний текст джерелаRannacher, Rolf, Giovanni P. Galdi, Malcolm I. Heywood, and John G. Heywood. Fundamental Directions in Mathematical Fluid Mechanics. Springer Basel AG, 2012.
Знайти повний текст джерелаЧастини книг з теми "Équations des fluides micropolaires"
Danaila, Ionut, Pascal Joly, Sidi Mahmoud Kaber, and Marie Postel. "Projet 12. Mécanique des fluides : résolution des équations de Navier-Stokes 2D." In Introduction au calcul scientifique par la pratique, 246–77. Dunod, 2005. http://dx.doi.org/10.3917/dunod.danai.2005.01.0246.
Повний текст джерела