Добірка наукової літератури з теми "Equation laplace"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Equation laplace".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Equation laplace"

1

Zaki, Ahmad, Syafruddin Side, and N. Nurhaeda. "Solusi Persamaan Laplace pada Koordinat Bola." Journal of Mathematics, Computations, and Statistics 2, no. 1 (May 12, 2020): 82. http://dx.doi.org/10.35580/jmathcos.v2i1.12462.

Повний текст джерела
Анотація:
Penelitian ini mengkaji mengenai persamaan Laplace pada koordinat bola dan menerapkan metode pemisahan variabel dalam menentukan solusi persamaan Laplace Persamaan Laplace merupakan salah satu jenis persamaan diferensial parsial yang banyak digunakan untuk memodelkan permasalahan dalam bidang sains. Bentuk umum persamaan Laplace pada dimensi tiga dimana adalah fungsi skalar dengan menggunakan metode pemisahan variable diperoleh persamaan Laplace dimensi tiga pada koordinat bola. Hasil penelitian ini mendapatkan penyelesaian persamaan Laplace pada koordinat bola dalam bentuk variabel terpisah dengan tidak menggunakan nilai batas. Hubungan koordinat kartesian dan koordinat bola pada persamaan Laplace dapat ditentukan dalam persamaan Laplace dan memperoleh solusi dengan menggunakan koordinat bola.Kata Kunci: Koordinat Bola, Pemisahan Variabel, dan Persamaan Laplace. This study examines Laplace equations on spherical coordinates and applies variable separation methods in determining Laplace equation solutions Laplace equations are one type of partial differential equation that is widely used to model problems in the field of science. The general form of the Laplace equation in the third dimension in which u is a scalar function using the separation method of the variable is obtained by the third dimension Laplace equation on spherical coordinates. The result of this research get solution of Laplace equation on spherical coordinate in the form of separate variable by not using boundary value. The relationship of cartesian coordinates and spherical coordinates to the Laplace equation can be determined in the Laplace equation and obtain solutions using spherical coordinates.Keywords: Spherical Coordinat Variabel Separation, and Laplace Equation.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sanusi, Wahidah, Syafruddin Side, and Beby Fitriani. "Solusi Persamaan Transport dengan Menggunakan Metode Dekomposisi Adomian Laplace." Journal of Mathematics, Computations, and Statistics 2, no. 2 (May 12, 2020): 173. http://dx.doi.org/10.35580/jmathcos.v2i2.12580.

Повний текст джерела
Анотація:
Abstrak. Penelitian ini mengkaji terbentuknya persamaan Transport dan menerapkan metode Dekomposisi Adomian Laplace dalam menentukan solusi persamaan Transport. Persamaan transport merupakan salah satu bentuk dari persamaan diferensial parsial. Bentuk umum persamaan Transport yaitu: Metode Dekomposisi Adomian Laplace merupakan kombinasi antara dua metode yaitu metode dekomposisi adomian dan transformasi laplace. Penyelesaian persamaan Transport dengan metode Dekomposisi Adomian Laplace dilakukan dengan cara menggunakan tranformasi Laplace, mensubstitusi nilai awal, menyatakan solusi dalam bentuk deret tak hingga dan menggunakan invers transformasi laplace . Metode ini juga merupakan metode semi analitik untuk menyelesaikan persamaan diferensial nonlinier. Berdasarkan hasil perhitungan, metode dekomposisi Adomian Laplace dapat menghampiri penyelesaian persamaan diferensial biasa nonlinear.Kata Kunci: Metode Dekomposisi Adomian Laplace, Persamaan Diferensial Parsial, Persamaan Transport.This research discusses the solving of Transport equation applying Laplace Adomian Decomposition Method. Transport equation is one form of partial differential equations. General form of Transport equation is: Laplace Adomian Decomposition Method that combine between Laplace transform and Adomian Decomposition Method. The steps used to solve Transport equation are applying Laplace transform, initial value substitution, defining a solution as infinite series, then using the inverse Laplace transform. This method is a semi analytical method to solve for nonlinear ordinary differential equation. Based on the calculation results, the Laplace Adomian decomposition method can solve the solution of nonlinear ordinary differential equation.Keywords: Laplace Adomian Decomposition Method, Partial Differential Equation, Transport Equation.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shabestari, R. Mastani, and R. Ezzati. "The Fuzzy Double Laplace Transforms and their Properties with Applications to Fuzzy Wave Equation." New Mathematics and Natural Computation 17, no. 02 (April 23, 2021): 319–38. http://dx.doi.org/10.1142/s1793005721500174.

Повний текст джерела
Анотація:
The main focus of this paper is develop of the fuzzy double Laplace transform to solve a fuzzy wave equation. In this scheme, a fuzzy wave equation can be solved without converting it to two crisp equations. Some properties of the fuzzy Laplace transform and the fuzzy double Laplace transform are proved. The superiority and accuracy of the fuzzy double Laplace transform to wave equation are illustrated through some examples.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Abdy, Muhammad, Syafruddin Side, and Reza Arisandi. "Penerapan Metode Dekomposisi Adomian Laplace Dalam Menentukan Solusi Persamaan Panas." Journal of Mathematics, Computations, and Statistics 1, no. 2 (May 19, 2019): 206. http://dx.doi.org/10.35580/jmathcos.v1i2.9243.

Повний текст джерела
Анотація:
Abstrak. Artikel ini membahas tentang penerapan Metode Dekomposisi Adomian Laplace (LADM) dalam menentukan solusi persamaan panas. Metode Dekomposisi Adomian Laplace merupakan metode semi analitik untuk menyelesaikan persamaan diferensial nonlinier yang mengkombinasikan antara tranformasi Laplace dan metode dekomposisi Adomian. Berdasarkan hasil perhitungan, metode dekomposisi Adomian Laplace dapat menghampiri penyelesaian persamaan diferensial biasa nonlinear.Kata kunci: Metode Dekomposisi Adomian Laplace, Persamaan Diferensial Parsial, Persamaan PanasAbstract. This study discusses the application of Adomian Laplace Decomposition Method (ALDM) in determining the solution of heat equation. Adomian Laplace Decomposition Method is a semi analytical method to solve nonlinear differential equations that combine Laplace transform and Adomian decomposition method. Based on the calculation result, Adomian Laplace decomposition method can approach the settlement of ordinary nonlinear differential equations.Keywords: Adomian Laplace Decomposition Method, Partial Differential Equation, Heat Equation.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nathiya, N., and C. Amulya Smyrna. "Infinite Schrödinger networks." Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki 31, no. 4 (December 2021): 640–50. http://dx.doi.org/10.35634/vm210408.

Повний текст джерела
Анотація:
Finite-difference models of partial differential equations such as Laplace or Poisson equations lead to a finite network. A discretized equation on an unbounded plane or space results in an infinite network. In an infinite network, Schrödinger operator (perturbed Laplace operator, $q$-Laplace) is defined to develop a discrete potential theory which has a model in the Schrödinger equation in the Euclidean spaces. The relation between Laplace operator $\Delta$-theory and the $\Delta_q$-theory is investigated. In the $\Delta_q$-theory the Poisson equation is solved if the network is a tree and a canonical representation for non-negative $q$-superharmonic functions is obtained in general case.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rozumniuk, V. I. "About general solutions of Euler’s and Navier-Stokes equations." Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, no. 1 (2019): 190–93. http://dx.doi.org/10.17721/1812-5409.2019/1.44.

Повний текст джерела
Анотація:
Constructing a general solution to the Navier-Stokes equation is a fundamental problem of current fluid mechanics and mathematics due to nonlinearity occurring when moving to Euler’s variables. A new transition procedure is proposed without appearing nonlinear terms in the equation, which makes it possible constructing a general solution to the Navier-Stokes equation as a combination of general solutions to Laplace’s and diffusion equations. Existence, uniqueness, and smoothness of the solutions to Euler's and Navier-Stokes equations are found out with investigating solutions to the Laplace and diffusion equations well-studied.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kamran, Sharif Ullah Khan, Salma Haque, and Nabil Mlaiki. "On the Approximation of Fractional-Order Differential Equations Using Laplace Transform and Weeks Method." Symmetry 15, no. 6 (June 7, 2023): 1214. http://dx.doi.org/10.3390/sym15061214.

Повний текст джерела
Анотація:
Differential equations of fractional order arising in engineering and other sciences describe nature sufficiently in terms of symmetry properties. In this article, a numerical method based on Laplace transform and numerical inverse Laplace transform for the numerical modeling of differential equations of fractional order is developed. The analytic inversion can be very difficult for complex forms of the transform function. Therefore, numerical methods are used for the inversion of the Laplace transform. In general, the numerical inverse Laplace transform is an ill-posed problem. This difficulty has led to various numerical methods for the inversion of the Laplace transform. In this work, the Weeks method is utilized for the numerical inversion of the Laplace transform. In our proposed numerical method, first, the fractional-order differential equation is converted to an algebraic equation using Laplace transform. Then, the transformed equation is solved in Laplace space using algebraic techniques. Finally, the Weeks method is utilized for the inversion of the Laplace transform. Weeks method is one of the most efficient numerical methods for the computation of the inverse Laplace transform. We have considered five test problems for validation of the proposed numerical method. Based on the comparison between analytical results and the Weeks method results, the reliability and effectiveness of the Weeks method for fractional-order differential equations was confirmed.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kogoj, Alessia E., and Ermanno Lanconelli. "On semilinear -Laplace equation." Nonlinear Analysis: Theory, Methods & Applications 75, no. 12 (August 2012): 4637–49. http://dx.doi.org/10.1016/j.na.2011.10.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lu, Guozhen, and Peiyong Wang. "Inhomogeneous infinity Laplace equation." Advances in Mathematics 217, no. 4 (March 2008): 1838–68. http://dx.doi.org/10.1016/j.aim.2007.11.020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shokhanda, Rachana, Pranay Goswami, Ji-Huan He, and Ali Althobaiti. "An Approximate Solution of the Time-Fractional Two-Mode Coupled Burgers Equation." Fractal and Fractional 5, no. 4 (November 4, 2021): 196. http://dx.doi.org/10.3390/fractalfract5040196.

Повний текст джерела
Анотація:
In this paper, we consider the time-fractional two-mode coupled Burgers equation with the Caputo fractional derivative. A modified homotopy perturbation method coupled with Laplace transform (He-Laplace method) is applied to find its approximate analytical solution. The method is to decompose the equation into a series of linear equations, which can be effectively and easily solved by the Laplace transform. The solution process is illustrated step by step, and the results show that the present method is extremely powerful for fractional differential equations.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Equation laplace"

1

Ubostad, Nikolai Høiland. "The Infinity Laplace Equation." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-20686.

Повний текст джерела
Анотація:
In this thesis, we prove that the Infinity-Laplace equation has a unique solution in the viscosity sense. We prove existence by approximating the equation by the p-Laplace equation, and uniqueness will be shown by use of the Theorem on Sums. We will also show that the viscosity solutions of the Infinity-Laplace equation enjoys comparison with cones, and vice versa.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fejne, Frida. "The p-Laplace equation – general properties and boundary behaviour." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-359721.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mansour, Gihane. "Méthode de décomposition de Domaine pour les équations de Laplace et de Helmholtz : Equation de Laplace non linéaire." Paris 13, 2009. http://www.theses.fr/2009PA132013.

Повний текст джерела
Анотація:
L'objectif de ce travail est double : D'une part, la résolution à l'aide de la méthode de décomposition de domaine, de l'équation de Poisson et de l'équation de Helmholtz, avec donnée de Dirichlet homogène au bord. D'autre part, l'étude de l'équation de Laplace, avec donnée non linéaire g au bord en se basant sur la méthode du Min-Max. Dans la première partie, nous introduisons les outils indispensables sur lesquels nous nous sommes appuyés pour aborder les équations à résoudre et nous présentons deux méthodes indirectes de résolution de l'équation de Poisson: l'algorithme de Dirichlet-Neumann pénalisé barycentriquement et l'algorithme de Dirichlet-Neumann symétrisé, donné par le problème couplé. Le premier schéma a été proposé et démontré convergent par A. Quarteroni et A. Valli. Nous élaborons dans ce mémoire une nouvelle démonstration de convergence de l'algorithme. Le second schéma est nouveau : la condition de Dirichlet-Neumann est symétrisé. Nous montrons la convergence de cet algorithme vers le problème global. Les études théoriques ont montré que les deux méthodes discrétisées convergent et des estimations d'erreur portant sur l'ordre de la convergence ont été établies. Les résultats déjà trouvés ont été validés par les essais numériques, en utilisant le logiciel Comsol pour le maillage, avec le solveur de Matlab. Notons que l'algorithme symétrisé converge plus rapidement que celui pénalisé. Nous étudions ensuite le problème de Helmholtz avec données mixtes sur le bord actif, qui fournit le cadre du travail nécessaire pour examiner l'algorithme introduit par M. Balabane. Nous analysons les résultats théoriques obtenus et nous testons l'algorithme numériquement. Les essais décèlent une saturation de cette méthode pour le maillage considéré. De plus, cette méthode converge très lentement dans un voisinage de la fréquence résonnante. Une dégradation de la convergence est relevée quand la géométrie du domaine est complexe. Dans la deuxième partie, nous exposons une généralisation de l'étude faite par K. Medville et A. Vogelius, pour la résolution de l'équation de Laplace avec donnée non linéaire au bord. Dans le cas où la fonction est sous-linéaire, nous montrons que le problème admet au moins une solution. L'unicité est obtenue en imposant une condition de monotonie sur la fonction sous-linéaire. Dans le cas sur-linéaire, le nombre de solutions du problème dépend du signe du coefficient multipliant la fonction
This work is divided into two parts : First, a domain decomposition method for the resolution of the Poisson equation and the Helmholtz equation in a bounded domain,with Dirich let boundary condition. Second, The study of the Laplace equation, with non linear boundary condition g. Using the Min-Max method. First, we elaborate some essential tools to introduce our equations, then we present two indirect methods for solving the Poisson equation : there laxed barycentric Dirichlet-Neumann algorithm and the symmetric Dirichlet-Neumann algorithm. The first algorithm was introduced and studied by A. Quarteroni, A. Valli. We present in this work a new proof of its convergence. The second scheme presented is new : we give asymmetric version of the Dirichlet-Neumann condition. We prove that this algorithm is convergent. The theoretical results show that both of the discretization methods are convergent and estimation son the error of convergence are given. We test the two methods numerically, using Comsol with Matlab solver. We notice that the symmetric method converges faster than the barycentric one
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rockstroh, Parousia. "Boundary value problems for the Laplace equation on convex domains with analytic boundary." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273939.

Повний текст джерела
Анотація:
In this thesis we study boundary value problems for the Laplace equation on do mains with smooth boundary. Central to our analysis is a relation, known as the global relation, that couples the boundary data for a given BVP. Previously, the global re lation has primarily been applied to elliptic PDEs defined on polygonal domains. In this thesis we extend the use of the global relation to domains with smooth boundary. This is done by introducing a new transform, denoted by F_p, that is an analogue of the Fourier transform on smooth convex curves. We show that the F_p-transform is a bounded and invertible integral operator. Following this, we show that the F_p-transform naturally arises in the global relation for the Laplace equation on domains with smooth boundary. Using properties of the F_p-transform, we show that the global relation defines a continuously invertible map between the Dirichlet and Neumann data for a given BVP for the Laplace equation. Following this, we construct a numerical method that uses the global relation to find the Neumann data, given the Dirichlet data, for a given BVP for the Laplace equation on a domain with smooth boundary.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Masur, Gökce Tuba. "An Adaptive Surface Finite Element Method for the Laplace-Beltrami Equation." Thesis, KTH, Numerisk analys, NA, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202764.

Повний текст джерела
Анотація:
In this thesis, we present an adaptive surface finite element method for the Laplace-Beltrami equation. The equation is known as the manifold equivalent of the Laplace equation. A surface finite element method is formulated for this partial differential equation which is implemented in FEniCS, an open source software project for automated solutions of differential equations. We formulate a goal-oriented adaptive mesh refinement method based on a posteriori error estimates which are established with the dual-weighted residual method. Some computational examples are provided and implementation issues are discussed.
I den här rapporten presenterar vi en adaptiv finite elementmetod för Laplace-Beltrami ekvationen. Ekvationen är känd som Laplace ekvation på ytor. En finita elementmetod för ytor formuleras för denna partiella differentialekvation vilken implementeras i FEniCS, en open source mjukvara för automatiserad lösning av differentialekvationer. Vi formulerar en mål-orienterad adaptiv nätförfinings-metod baserad på a posteriori feluppskattningar etablerade med hjälp av metoden för dual-viktad residual. Beräkningsexempel presenteras och implementeringen diskuteras
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ricciotti, Diego. "Regularity of solutions of the p-Laplace equation in the Heisenberg group." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5708/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Correia, Joaquim, Costa Fernando da, Sackmone Sirisack, and Khankham Vongsavang. "Burgers' Equation and Some Applications." Master's thesis, Edited by Thepsavanh Kitignavong, Faculty of Natural Sciences, National University of Laos, 2017. http://hdl.handle.net/10174/26615.

Повний текст джерела
Анотація:
In this thesis, I present Burgers' equation and some of its applications. I consider the inviscid and the viscid Burgers' equations and present different analytical methods for their study: the Method of Characteristics for the inviscid case, and the Cole-Hopf Transformation for theviscid one. Two applications of Burgers' equations are given: one in simple models of Traffic Flow (which have been introduced independently by Lighthill-Whitham and Richards) and another in Coagulation theory (in which we use Laplace Transform to obtain Burgers' equations from the original coagulation integro-differential equation). In both applications we consider only analytical methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Consiglio, Armando. "Time-fractional diffusion equation and its applications in physics." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13704/.

Повний текст джерела
Анотація:
In physics, process involving the phenomena of diffusion and wave propagation have great relevance; these physical process are governed, from a mathematical point of view, by differential equations of order 1 and 2 in time. By introducing a fractional derivatives of order $\alpha$ in time, with $0 < \alpha < 1$ or $1 <= \alpha <= 2$, we lead to process in mathematical physics which we may refer to as fractional phenomena; this is not merely a phenomenological procedure providing an additional fit parameter. The aim of this thesis is to provide a description of such phenomena adopting a mathematical approach to the fractional calculus. The use of Fourier-Laplace transform in the analysis of the problem leads to certain special functions, scilicet transcendental functions of the Wright type, nowadays known as M-Wright functions. We will distinguish slow-diffusion processes ($0 < \alpha < 1$) from intermediate processes ($1 <=\alpha <= 2$), and we point out the attention to the applications of fractional calculus in certain problems of physical interest, such as the Neuronal Cable Theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chin, P. W. M. (Pius Wiysanyuy Molo). "Contribution to qualitative and constructive treatment of the heat equation with domain singularities." Thesis, University of Pretoria, 2011. http://hdl.handle.net/2263/28554.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pichon, Eric. "Novel Methods for Multidimensional Image Segmentation." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7504.

Повний текст джерела
Анотація:
Artificial vision is the problem of creating systems capable of processing visual information. A fundamental sub-problem of artificial vision is image segmentation, the problem of detecting a structure from a digital image. Examples of segmentation problems include the detection of a road from an aerial photograph or the determination of the boundaries of the brain's ventricles from medical imagery. The extraction of structures allows for subsequent higher-level cognitive tasks. One of them is shape comparison. For example, if the brain ventricles of a patient are segmented, can their shapes be used for diagnosis? That is to say, do the shapes of the extracted ventricles resemble more those of healthy patients or those of patients suffering from schizophrenia? This thesis deals with the problem of image segmentation and shape comparison in the mathematical framework of partial differential equations. The contribution of this thesis is threefold: 1. A technique for the segmentation of regions is proposed. A cost functional is defined for regions based on a non-parametric functional of the distribution of image intensities inside the region. This cost is constructed to favor regions that are homogeneous. Regions that are optimal with respect to that cost can be determined with limited user interaction. 2. The use of direction information is introduced for the segmentation of open curves and closed surfaces. A cost functional is defined for structures (curves or surfaces) by integrating a local, direction-dependent pattern detector along the structure. Optimal structures, corresponding to the best match with the pattern detector, can be determined using efficient algorithms. 3. A technique for shape comparison based on the Laplace equation is proposed. Given two surfaces, one-to-one correspondences are determined that allow for the characterization of local and global similarity measures. The local differences among shapes (resulting for example from a segmentation step) can be visualized for qualitative evaluation by a human expert. It can also be used for classifying shapes into, for example, normal and pathological classes.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Equation laplace"

1

Medková, Dagmar. The Laplace Equation. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74307-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Homer, Matthew Stuart. The Laplace tidal wave equation. Birmingham: University of Birmingham, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lindqvist, Peter. Notes on the Infinity Laplace Equation. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31532-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ricciotti, Diego. p-Laplace Equation in the Heisenberg Group. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23790-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lindqvist, Peter. Notes on the Stationary p-Laplace Equation. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14501-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

L, Miller Gary, and Langley Research Center, eds. Graph embeddings and Laplacian eigenvalues. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

L, Miller Gary, and Langley Research Center, eds. Graph embeddings and Laplacian eigenvalues. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Institute for Computer Applications in Science and Engineering., ed. Graph embeddings, symmetric real matrices, and generalized inverses. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Institute for Computer Applications in Science and Engineering., ed. Graph embeddings, symmetric real matrices, and generalized inverses. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

T, Leighton, Miller Gary L, and Institute for Computer Applications in Science and Engineering., eds. The path resistance method for bounding the smallest nontrivial eigenvalue of a Laplacian. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Equation laplace"

1

Bassanini, Piero, and Alan R. Elcrat. "Laplace Equation." In Theory and Applications of Partial Differential Equations, 103–211. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1875-8_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Keaton, Jeffrey R. "Laplace Equation." In Selective Neck Dissection for Oral Cancer, 1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-12127-7_184-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Keaton, Jeffrey R. "Laplace Equation." In Encyclopedia of Earth Sciences Series, 580–81. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73568-9_184.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Salsa, Sandro. "The Laplace Equation." In UNITEXT, 115–78. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15093-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

DiBenedetto, Emmanuele. "The Laplace Equation." In Partial Differential Equations, 51–115. Boston, MA: Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4899-2840-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

DiBenedetto, Emmanuele. "The Laplace Equation." In Partial Differential Equations, 37–86. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4552-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Salsa, Sandro, and Gianmaria Verzini. "The Laplace Equation." In UNITEXT, 81–147. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15416-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Epstein, Marcelo. "The Laplace Equation." In Partial Differential Equations, 239–52. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55212-5_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Salsa, Sandro. "The Laplace Equation." In UNITEXT, 115–78. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31238-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Salsa, Sandro, Federico M. G. Vegni, Anna Zaretti, and Paolo Zunino. "The Laplace Equation." In UNITEXT, 109–38. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-2862-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Equation laplace"

1

Valenta, Václav, Václav Šátek, Jiří Kunovský, and Patricia Humenná. "Adaptive solution of Laplace equation." In 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4825996.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Baoquan Geng. "Flow field's Laplace equation and analysis." In 2011 International Conference on Electronics and Optoelectronics (ICEOE). IEEE, 2011. http://dx.doi.org/10.1109/iceoe.2011.6013277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pichon, Eric, Delphine Nain, and Marc Niethammer. "A Laplace equation approach for shape comparison." In Medical Imaging, edited by Kevin R. Cleary and Robert L. Galloway, Jr. SPIE, 2006. http://dx.doi.org/10.1117/12.651135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

MATSUURA, T., S. SAITOH, and M. YAMAMOTO. "NUMERICAL CAUCHY PROBLEMS FOR THE LAPLACE EQUATION." In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0131.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhou, Bin, Chun-Lai Mu, and Xiao-Lin Yang. "Image Segmentation with a p-Laplace Equation Model." In 2009 2nd International Congress on Image and Signal Processing (CISP). IEEE, 2009. http://dx.doi.org/10.1109/cisp.2009.5303947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

MEDKOVÁ, D. "THE OBLIQUE DERIVATIVE PROBLEM FOR THE LAPLACE EQUATION." In Proceedings of the 3rd ISAAC Congress. World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812794253_0132.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Majeed, Muhammad Usman, Chadia Zayane-Aissa, and Taous Meriem Laleg-Kirati. "Cauchy problem for Laplace equation: An observer based approach." In 2013 3rd International Conference on Systems and Control (ICSC). IEEE, 2013. http://dx.doi.org/10.1109/icosc.2013.6750929.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bui, K., I. Akkutlu, and B. Li. "Capillary Pressure in Nanopores: Deviation from Young- Laplace Equation." In 79th EAGE Conference and Exhibition 2017 - SPE EUROPEC. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201701569.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Bo, Khoa Bui, and I. Yucel Akkutlu. "Capillary Pressure in Nanopores: Deviation from Young-Laplace Equation." In SPE Europec featured at 79th EAGE Conference and Exhibition. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/185801-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cristofaro, Andrea, Roberto Giambo, and Fabio Giannoni. "Lyapunov Stability Results for the Parabolic p-Laplace Equation." In 2018 17th European Control Conference (ECC). IEEE, 2018. http://dx.doi.org/10.23919/ecc.2018.8550122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Equation laplace"

1

Çitil, Hülya. Solutions of Fuzzy Differential Equation with Fuzzy Number Coefficient by Fuzzy Laplace Transform. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, September 2020. http://dx.doi.org/10.7546/crabs.2020.09.01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gray, L. J. Program for solving the 3-dimensional LaPlace equation via the boundary element method. [D3LAPL]. Office of Scientific and Technical Information (OSTI), September 1986. http://dx.doi.org/10.2172/5065235.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Greengard, L., and V. Rokhlin. A New Version of the Fast Multipole Method for the Laplace Equation in Three Dimensions. Fort Belvoir, VA: Defense Technical Information Center, September 1996. http://dx.doi.org/10.21236/ada316161.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Blumberg, L. N. Analysis of magnetic measurement data by least squares fit to series expansion solution of 3-D Laplace equation. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/10185838.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mane S. R. SOLUTIONS OF LAPLACES EQUATION AND MULTIPOLE EXPANSIONS WITH A CURVED LONGITUDINAL AXIS. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/1151263.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Babuska, I., T. Strouboulis, C. S. Upadhyay, and S. K. Gangaraj. Study of Superconvergence by a Computer-Based Approach. Superconvergence of the Gradient in Finite Element Solutions of Laplace's and Poisson's Equations. Fort Belvoir, VA: Defense Technical Information Center, November 1993. http://dx.doi.org/10.21236/ada277537.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Babuska, I., T. Strouboulis, S. K. Gangaraj, and C. S. Upadhyay. Eta%-Superconvergence in the Interior of Locally Refined Meshes of Quadrilaterals: Superconvergence of the Gradient in Finite Element Solutions of Laplace's and Poisson's Equations. Fort Belvoir, VA: Defense Technical Information Center, January 1994. http://dx.doi.org/10.21236/ada277242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії