Добірка наукової літератури з теми "Equation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Equation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Equation"
Karakostas, George L. "Asymptotic behavior of a certain functional equation via limiting equations." Czechoslovak Mathematical Journal 36, no. 2 (1986): 259–67. http://dx.doi.org/10.21136/cmj.1986.102089.
Повний текст джерелаParkala, Naresh, and Upender Reddy Gujjula. "Mohand Transform for Solution of Integral Equations and Abel's Equation." International Journal of Science and Research (IJSR) 13, no. 5 (May 5, 2024): 1188–91. http://dx.doi.org/10.21275/sr24512145111.
Повний текст джерелаDomoshnitsky, Alexander, and Roman Koplatadze. "On Asymptotic Behavior of Solutions of Generalized Emden-Fowler Differential Equations with Delay Argument." Abstract and Applied Analysis 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/168425.
Повний текст джерелаBecker, Leigh, Theodore Burton, and Ioannis Purnaras. "Complementary equations: a fractional differential equation and a Volterra integral equation." Electronic Journal of Qualitative Theory of Differential Equations, no. 12 (2015): 1–24. http://dx.doi.org/10.14232/ejqtde.2015.1.12.
Повний текст джерелаN O, Onuoha. "Transformation of Parabolic Partial Differential Equations into Heat Equation Using Hopf Cole Transform." International Journal of Science and Research (IJSR) 12, no. 6 (June 5, 2023): 1741–43. http://dx.doi.org/10.21275/sr23612082710.
Повний текст джерелаZhao, Wenling, Hongkui Li, Xueting Liu, and Fuyi Xu. "Necessary and Sufficient Conditions for the Existence of a Hermitian Positive Definite Solution of a Type of Nonlinear Matrix Equations." Mathematical Problems in Engineering 2009 (2009): 1–13. http://dx.doi.org/10.1155/2009/672695.
Повний текст джерелаYan, Zhenya. "Complex PT -symmetric nonlinear Schrödinger equation and Burgers equation." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no. 1989 (April 28, 2013): 20120059. http://dx.doi.org/10.1098/rsta.2012.0059.
Повний текст джерелаProkhorova, M. F. "Factorization of the reaction-diffusion equation, the wave equation, and other equations." Proceedings of the Steklov Institute of Mathematics 287, S1 (November 27, 2014): 156–66. http://dx.doi.org/10.1134/s0081543814090156.
Повний текст джерелаShi, Yong-Guo, and Xiao-Bing Gong. "Linear functional equations involving Babbage’s equation." Elemente der Mathematik 69, no. 4 (2014): 195–204. http://dx.doi.org/10.4171/em/263.
Повний текст джерелаMickens, Ronald E. "Difference equation models of differential equations." Mathematical and Computer Modelling 11 (1988): 528–30. http://dx.doi.org/10.1016/0895-7177(88)90549-3.
Повний текст джерелаДисертації з теми "Equation"
Thompson, Jeremy R. (Jeremy Ray). "Physical Motivation and Methods of Solution of Classical Partial Differential Equations." Thesis, University of North Texas, 1995. https://digital.library.unt.edu/ark:/67531/metadc277898/.
Повний текст джерелаHoward, Tamani M. "Hyperbolic Monge-Ampère Equation." Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5322/.
Повний текст джерелаVong, Seak Weng. "Two problems on the Navier-Stokes equations and the Boltzmann equation /." access full-text access abstract and table of contents, 2005. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-ma-b19885805a.pdf.
Повний текст джерела"Submitted to Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy" Includes bibliographical references (leaves 72-77)
Guan, Meijiao. "Global questions for evolution equations Landau-Lifshitz flow and Dirac equation." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/22491.
Повний текст джерелаJumarhon, Bartur. "The one dimensional heat equation and its associated Volterra integral equations." Thesis, University of Strathclyde, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342381.
Повний текст джерелаBanerjee, Paromita. "Numerical Methods for Stochastic Differential Equations and Postintervention in Structural Equation Models." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1597879378514956.
Повний текст джерелаWang, Jun. "Integral Equation Methods for the Heat Equation in Moving Geometry." Thesis, New York University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10618746.
Повний текст джерелаMany problems in physics and engineering require the solution of the heat equation in moving geometry. Integral representations are particularly appropriate in this setting since they satisfy the governing equation automatically and, in the homogeneous case, require the discretization of the space-time boundary alone. Unlike methods based on direct discretization of the partial differential equation, they are unconditonally stable. Moreover, while a naive implementation of this approach is impractical, several efforts have been made over the past few years to reduce the overall computational cost. Of particular note are Fourier-based methods which achieve optimal complexity so long as the time step Δt is of the same order as Δx, the mesh size in the spatial variables. As the time step goes to zero, however, the cost of the Fourier-based fast algorithms grows without bound. A second difficulty with existing schemes has been the lack of efficient, high-order local-in-time quadratures for layer heat potentials.
In this dissertation, we present a new method for evaluating heat potentials that makes use of a spatially adaptive mesh instead of a Fourier series, a new version of the fast Gauss transform, and a new hybrid asymptotic/numerical method for local-in-time quadrature. The method is robust and efficient for any Δt, with essentially optimal computational complexity. We demonstrate its performance with numerical examples and discuss its implications for subsequent work in diffusion, heat flow, solidification and fluid dynamics.
Grundström, John. "The Sustainability Equation." Thesis, Umeå universitet, Arkitekthögskolan vid Umeå universitet, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-133151.
Повний текст джерелаGylys-Colwell, Frederick Douglas. "An inverse problem for the anisotropic time independent wave equation /." Thesis, Connect to this title online; UW restricted, 1993. http://hdl.handle.net/1773/5726.
Повний текст джерелаShedlock, Andrew James. "A Numerical Method for solving the Periodic Burgers' Equation through a Stochastic Differential Equation." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103947.
Повний текст джерелаMaster of Science
Burgers equation is a Partial Differential Equation (PDE) used to model how fluids evolve in time based on some initial condition and viscosity parameter. This viscosity parameter helps describe how the energy in a fluid dissipates. When studying partial differential equations, it is often hard to find a closed form solution to the problem, so we often approximate the solution with numerical methods. As our viscosity parameter approaches 0, many numerical methods develop problems and may no longer accurately compute the solution. Using random variables, we develop an approximation algorithm and test our numerical method on various types of initial conditions with small viscosity coefficients.
Книги з теми "Equation"
Selvadurai, A. P. S. Partial Differential Equations in Mechanics 1: Fundamentals, Laplace's Equation, Diffusion Equation, Wave Equation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.
Знайти повний текст джерелаTam, Kenneth. The earther equation: The fourth equations novel. Waterloo, ON: Iceberg Pub., 2005.
Знайти повний текст джерелаTam, Kenneth. The vengeance equation: The sixth equations novel. Waterloo, Ont: Iceberg, 2007.
Знайти повний текст джерелаTam, Kenneth. The alien equation: The second equations novel. Waterloo, ON: Iceberg Pub., 2004.
Знайти повний текст джерелаTam, Kenneth. The human equation: The first equations novel. Waterloo, ON: Iceberg Pub., 2003.
Знайти повний текст джерелаTam, Kenneth. The genesis equation: The fifth equations novel. Waterloo, ON: Iceberg, 2006.
Знайти повний текст джерелаBejenaru, Ioan. Near soliton evolution for equivariant Schrödinger maps in two spatial dimensions. Providence, Rhode Island: American Mathematical Society, 2013.
Знайти повний текст джерелаDante's equation. London: Orbit, 2003.
Знайти повний текст джерелаBarbeau, Edward J. Pell’s Equation. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/b97610.
Повний текст джерелаDante's equation. London: Orbit, 2004.
Знайти повний текст джерелаЧастини книг з теми "Equation"
Horgmo Jæger, Karoline, and Aslak Tveito. "The Cable Equation." In Differential Equations for Studies in Computational Electrophysiology, 79–91. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30852-9_9.
Повний текст джерелаHorgmo Jæger, Karoline, and Aslak Tveito. "A Simple Cable Equation." In Differential Equations for Studies in Computational Electrophysiology, 47–52. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30852-9_6.
Повний текст джерелаKurasov, Pavel. "The Characteristic Equation." In Operator Theory: Advances and Applications, 97–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-67872-5_5.
Повний текст джерелаKavdia, Mahendra. "Parabolic Differential Equations, Diffusion Equation." In Encyclopedia of Systems Biology, 1621–24. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_273.
Повний текст джерелаSleeman, Brian D. "Partial Differential Equations, Poisson Equation." In Encyclopedia of Systems Biology, 1635–38. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_274.
Повний текст джерелаClayton, Richard H. "Partial Differential Equations, Wave Equation." In Encyclopedia of Systems Biology, 1638–40. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_275.
Повний текст джерелаBrenig, Wilhelm. "Rate Equations (Master Equation, Stosszahlansatz)." In Statistical Theory of Heat, 158–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74685-7_32.
Повний текст джерелаRapp, Christoph. "Basic equations." In Hydraulics in Civil Engineering, 51–69. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54860-4_5.
Повний текст джерелаParker, David F. "Laplace’s Equation and Poisson’s Equation." In Springer Undergraduate Mathematics Series, 55–76. London: Springer London, 2003. http://dx.doi.org/10.1007/978-1-4471-0019-5_4.
Повний текст джерелаGoodair, Daniel, and Dan Crisan. "On the 3D Navier-Stokes Equations with Stochastic Lie Transport." In Mathematics of Planet Earth, 53–110. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-40094-0_4.
Повний текст джерелаТези доповідей конференцій з теми "Equation"
Cohen, Leon. "Phase-space equation for wave equations." In ICA 2013 Montreal. ASA, 2013. http://dx.doi.org/10.1121/1.4800400.
Повний текст джерелаRoy, Subhro, Shyam Upadhyay, and Dan Roth. "Equation Parsing : Mapping Sentences to Grounded Equations." In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2016. http://dx.doi.org/10.18653/v1/d16-1117.
Повний текст джерелаMikhailov, M. S., and A. A. Komarov. "Combining Parabolic Equation Method with Surface Integral Equations." In 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring). IEEE, 2019. http://dx.doi.org/10.1109/piers-spring46901.2019.9017786.
Повний текст джерелаTAKEYAMA, YOSHIHIRO. "DIFFERENTIAL EQUATIONS COMPATIBLE WITH BOUNDARY RATIONAL qKZ EQUATION." In Proceedings of the Infinite Analysis 09. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814324373_0021.
Повний текст джерелаIsserstedt, Philipp, Christian Fischer, and Thorsten Steinert. "QCD’s equation of state from Dyson-Schwinger equations." In FAIR next generation scientists - 7th Edition Workshop. Trieste, Italy: Sissa Medialab, 2023. http://dx.doi.org/10.22323/1.419.0024.
Повний текст джерелаSharifi, J., and H. Momeni. "Optimal control equation for quantum stochastic differential equations." In 2010 49th IEEE Conference on Decision and Control (CDC). IEEE, 2010. http://dx.doi.org/10.1109/cdc.2010.5717172.
Повний текст джерелаFreire, Igor Leite, and Priscila Leal da Silva. "An equation unifying both Camassa-Holm and Novikov equations." In The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Madrid, Spain). American Institute of Mathematical Sciences, 2015. http://dx.doi.org/10.3934/proc.2015.0304.
Повний текст джерелаPang, Subeen, and George Barbastathis. "Robust Transport-of-Intensity Equation with Neural Differential Equations." In Computational Optical Sensing and Imaging. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cosi.2023.cth4d.4.
Повний текст джерелаBui, T. T., and V. Popov. "Radial basis integral equation method for Navier-Stokes equations." In BEM/MRM 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/be090131.
Повний текст джерелаVălcan, Teodor-Dumitru. "From Diofantian Equations To Matricial Equations (Ii) -Generalizations Of The Pythagorean Equation-." In 9th International Conference Education, Reflection, Development. European Publisher, 2022. http://dx.doi.org/10.15405/epes.22032.63.
Повний текст джерелаЗвіти організацій з теми "Equation"
Lettau, Martin, and Sydney Ludvigson. Euler Equation Errors. Cambridge, MA: National Bureau of Economic Research, September 2005. http://dx.doi.org/10.3386/w11606.
Повний текст джерелаBoyd, Zachary M., Scott D. Ramsey, and Roy S. Baty. Symmetries of the Euler compressible flow equations for general equation of state. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1223765.
Повний текст джерелаMickens, Ronald E. Mathematical and Numerical Studies of Nonstandard Difference Equation Models of Differential Equations. Office of Scientific and Technical Information (OSTI), December 2008. http://dx.doi.org/10.2172/965764.
Повний текст джерелаGrinfeld, M. A. Operational Equations of State. 1. A Novel Equation of State for Hydrocode. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada553223.
Повний текст джерелаMenikoff, Ralph. JWL Equation of State. Office of Scientific and Technical Information (OSTI), December 2015. http://dx.doi.org/10.2172/1229709.
Повний текст джерелаGrove, John W. xRage Equation of State. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1304734.
Повний текст джерелаSCIENCE AND TECHNOLOGY CORP HAMPTON VA. Analytic Parabolic Equation Solutions. Fort Belvoir, VA: Defense Technical Information Center, November 1989. http://dx.doi.org/10.21236/ada218588.
Повний текст джерелаFujisaki, Masatoshi. Normed Bellman Equation with Degenerate Diffusion Coefficients and Its Application to Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada190319.
Повний текст джерелаUhlman, J. S., and Jr. An Integral Equation Formulation of the Equations of Motion of an Incompressible Fluid. Fort Belvoir, VA: Defense Technical Information Center, July 1992. http://dx.doi.org/10.21236/ada416252.
Повний текст джерелаGrinfeld, Michael. The Operational Equations of State, 4: The Dulong-Petit Equation of State for Hydrocode. Fort Belvoir, VA: Defense Technical Information Center, July 2012. http://dx.doi.org/10.21236/ada568915.
Повний текст джерела