Добірка наукової літератури з теми "Epitaxie van der Waals"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Epitaxie van der Waals".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Epitaxie van der Waals"

1

Mulder, Liesbeth, Daan H. Wielens, Yorick A. Birkhölzer, Alexander Brinkman, and Omar Concepción. "Revisiting the van der Waals Epitaxy in the Case of (Bi0.4Sb0.6)2Te3 Thin Films on Dissimilar Substrates." Nanomaterials 12, no. 11 (May 24, 2022): 1790. http://dx.doi.org/10.3390/nano12111790.

Повний текст джерела
Анотація:
Ultrathin films of the ternary topological insulator (Bi0.4Sb0.6)2Te3 are fabricated by molecular beam epitaxy. Although it is generally assumed that the ternary topological insulator tellurides grow by van der Waals epitaxy, our results show that the influence of the substrate is substantial and governs the formation of defects, mosaicity, and twin domains. For this comparative study, InP (111)A, Al2O3 (001), and SrTiO3 (111) substrates were selected. While the films deposited on lattice-matched InP (111)A show van der Waals epitaxial relations, our results point to a quasi-van der Waals epitaxy for the films grown on substrates with a larger lattice mismatch.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ye, Lianxu, Di Zhang, Juanjuan Lu, Sicheng Xu, Ruixing Xu, Jiyu Fan, Rujun Tang, et al. "Epitaxial (110)-oriented La0.7Sr0.3MnO3 film directly on flexible mica substrate." Journal of Physics D: Applied Physics 55, no. 22 (March 4, 2022): 224002. http://dx.doi.org/10.1088/1361-6463/ac570d.

Повний текст джерела
Анотація:
Abstract Manufacture and characterizations of perovskite-mica van der Waals epitaxy heterostructures are a critical step to realize the application of flexible devices. However, the fabrication and investigation of the van der Waals epitaxy architectures grown on mica substrates are mainly limited to (111)-oriented perovskite functional oxide thin films up to now and buffer layers are highly needed. In this work, we directly grew La0.7Sr0.3MnO3 (LSMO) thin films on mica substrates without using any buffer layer. By the characterizations of x-ray diffractometer and scanning transmission electron microscopy, we demonstrate the epitaxial growth of the (110)-oriented LSMO thin film on the mica substrate. The LSMO thin film grown on the mica substrate via van der Waals epitaxy adopts domain matching epitaxy instead of conventional lattice matching epitaxy. Two kinds of domain matching relationships between the LSMO thin film and mica substrate are sketched by Visualization for Electronic and STructural Analysis software and discussed. A decent ferromagnetism retains in the (110)-oriented LSMO thin film. Our work demonstrates a new pathway to fabricate (110)-oriented functional oxide thin films on flexible mica substrates directly.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chen, Hou-Guang, Yung-Hui Shih, Huei-Sen Wang, Sheng-Rui Jian, Tzu-Yi Yang, and Shu-Chien Chuang. "Van der Waals Epitaxial Growth of ZnO Films on Mica Substrates in Low-Temperature Aqueous Solution." Coatings 12, no. 5 (May 20, 2022): 706. http://dx.doi.org/10.3390/coatings12050706.

Повний текст джерела
Анотація:
In this article, we demonstrate the van der Waals (vdW) epitaxial growth of ZnO layers on mica substrates through a low-temperature hydrothermal process. The thermal pretreatment of mica substrates prior to the hydrothermal growth of ZnO is essential for growing ZnO crystals in epitaxy with the mica substrates. The addition of sodium citrate into the growth solution significantly promotes the growth of ZnO crystallites in a lateral direction to achieve fully coalesced, continuous ZnO epitaxial layers. As confirmed through transmission electron microscopy, the epitaxial paradigm of the ZnO layer on the mica substrate was regarded as an incommensurate van der Waals epitaxy. Furthermore, through the association of the Mist-CVD process, the high-density and uniform distribution of ZnO seeds preferentially occurred on mica substrates, leading to greatly improving the epitaxial qualities of the hydrothermally grown ZnO layers and obtaining flat surface morphologies. The electrical and optoelectrical properties of the vdW epitaxial ZnO layer grown on mica substrates were comparable with those grown on sapphire substrates through conventional solution-based epitaxy techniques.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ren, Fang, Bingyao Liu, Zhaolong Chen, Yue Yin, Jingyu Sun, Shuo Zhang, Bei Jiang, et al. "Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer." Science Advances 7, no. 31 (July 2021): eabf5011. http://dx.doi.org/10.1126/sciadv.abf5011.

Повний текст джерела
Анотація:
Van der Waals epitaxy provides a fertile playground for the monolithic integration of various materials for advanced electronics and optoelectronics. Here, a previously unidentified nanorod-assisted van der Waals epitaxy is developed and nearly single-crystalline GaN films are first grown on amorphous silica glass substrates using a graphene interfacial layer. The epitaxial GaN-based light-emitting diode structures, with a record internal quantum efficiency, can be readily lifted off, becoming large-size flexible devices. Without the effects of the potential field from a single-crystalline substrate, we expect this approach to be equally applicable for high-quality growth of nitrides on arbitrary substrates. Our work provides a revolutionary technology for the growth of high-quality semiconductors, thus enabling the hetero-integration of highly mismatched material systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, S. F., W. K. Fong, W. Wang, K. K. Leung, and C. Surya. "Growth of SnS van der Waals Epitaxies on Layered Substrates." MRS Proceedings 1493 (2013): 213–17. http://dx.doi.org/10.1557/opl.2013.234.

Повний текст джерела
Анотація:
ABSTRACTIn this paper we present systematic investigations on the growth of SnS van der Waals epitaxies (vdWEs) on different substrates, including crystalline and layered substrates, by molecular beam epitaxy (MBE). Experimental growth of SnS on conventional 3D substrates, such as GaAs, indicates strong interaction between the SnS layer and the substrate resulting in poor crystallinity in general. Substantial improvement in the film crystallinity can be obtained when the deposition is made on layered substrates, with saturated surface bonds, as observed in SnS films deposited on mica and crystalline substrates with a graphene buffer layer. Crystal size as large as one micron and rocking curve FWHM of 0.118° was observed despite the large lattice mismatches. This represents significant improvement over the reported value of ∼3°. Several symmetric growth orientations are observed for films grown on mica substrates. The results indicate that weak vdW interactions between the saturated bonds of the substrate surface and the SnS unit layer which is an important factor for achieving high quality epitaxy layered materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ryu, Huije, Hyunik Park, Joung-Hun Kim, Fan Ren, Jihyun Kim, Gwan-Hyoung Lee, and Stephen J. Pearton. "Two-dimensional material templates for van der Waals epitaxy, remote epitaxy, and intercalation growth." Applied Physics Reviews 9, no. 3 (September 2022): 031305. http://dx.doi.org/10.1063/5.0090373.

Повний текст джерела
Анотація:
Epitaxial growth, a crystallographically oriented growth induced by the chemical bonding between crystalline substrate and atomic building blocks, has been a key technique in the thin-film and heterostructure applications of semiconductors. However, the epitaxial growth technique is limited by different lattice mismatch and thermal expansion coefficients of dissimilar crystals. Two-dimensional (2D) materials with dangling bond-free van der Waals surfaces have been used as growth templates for the hetero-integration of highly mismatched materials. Moreover, the ultrathin nature of 2D materials also allows for remote epitaxial growth and confinement growth of quasi-2D materials via intercalation. Here, we review the hetero-dimensional growth on 2D substrates: van der Waals epitaxy (vdWE), quasi vdWE, and intercalation growth. We discuss the growth mechanism and fundamental challenges for vdWE on 2D substrates. We also examine emerging vdWE techniques that use epitaxial liftoff and confinement epitaxial growth in detail. Finally, we give a brief review of radiation effects in 2D materials and contrast the damage induced with their 3D counterparts.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ueno, Tetsuji, Hideki Yamamoto, Koichiro Saiki, and Atsushi Koma. "Van der Waals epitaxy of metal dihalide." Applied Surface Science 113-114 (April 1997): 33–37. http://dx.doi.org/10.1016/s0169-4332(96)00770-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lang, O., A. Klein, R. Schlaf, T. Löher, C. Pettenkofer, W. Jaegermann, and A. Chevy. "heterointerfaces prepared by Van der Waals epitaxy." Journal of Crystal Growth 146, no. 1-4 (January 1995): 439–43. http://dx.doi.org/10.1016/0022-0248(94)00504-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chang, Po-Han, Chia-Shuo Li, Fang-Yu Fu, Kuo-You Huang, Ang-Sheng Chou, and Chih-I. Wu. "Van Der Waals Epitaxy: Ultrasensitive Photoresponsive Devices Based on Graphene/BiI3 van der Waals Epitaxial Heterostructures (Adv. Funct. Mater. 23/2018)." Advanced Functional Materials 28, no. 23 (June 2018): 1870160. http://dx.doi.org/10.1002/adfm.201870160.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Li, Xufan, Ming-Wei Lin, Junhao Lin, Bing Huang, Alexander A. Puretzky, Cheng Ma, Kai Wang, et al. "Two-dimensional GaSe/MoSe2misfit bilayer heterojunctions by van der Waals epitaxy." Science Advances 2, no. 4 (April 2016): e1501882. http://dx.doi.org/10.1126/sciadv.1501882.

Повний текст джерела
Анотація:
Two-dimensional (2D) heterostructures hold the promise for future atomically thin electronics and optoelectronics because of their diverse functionalities. Although heterostructures consisting of different 2D materials with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) epitaxy, constructing heterostructures from layered semiconductors with large lattice misfits remains challenging. We report the growth of 2D GaSe/MoSe2heterostructures with a large lattice misfit using two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe2heterostructures exhibit vdW epitaxy with well-aligned lattice orientation between the two layers, forming a periodic superlattice. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe2crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe2monolayer domains in lateral GaSe/MoSe2heterostructures, GaSe monolayers are found to overgrow MoSe2during CVD, forming a stripe of vertically stacked vdW heterostructures at the crystal interface. Such vertically stacked vdW GaSe/MoSe2heterostructures are shown to formp-njunctions with effective transport and separation of photogenerated charge carriers between layers, resulting in a gate-tunable photovoltaic response. These GaSe/MoSe2vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Epitaxie van der Waals"

1

Journot, Timotée. "Epitaxie van der Waals de GaN sur graphène pour des applications en photonique." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI078/document.

Повний текст джерела
Анотація:
De par ses propriétés physiques remarquables, le GaN est un matériau très attrayant pour la fabrication de composants photoniques. Sa synthèse est en revanche très complexe et reste un obstacle à son utilisation. L’hétéroépitaxie est, pour l’heure, la technique de synthèse la plus employée mais l’absence de substrats cristallins aux propriétés proches de celles du GaN conduit à l’élaboration de couches minces épitaxiées très défectueuses. Bien que les dispositifs à base de GaN soient d’ores et déjà fonctionnels, une augmentation de la qualité cristalline du matériau permettra une amélioration de leurs performances.L’épitaxie Van der Waals (VdW) est une alternative qui se différencie de l’épitaxie classique par la nature de l’interaction à l’interface entre substrat et matériau déposé. Cette dernière n’est alors plus régie par des forces fortes (liaisons covalente, ionique, etc) mais par des forces faibles, de type VdW. L’hétéroépitaxie VdW qui prône une interface de croissance compliante, apparait ainsi comme une méthode de synthèse alternative judicieuse pour l’amélioration de la qualité cristalline des couches épitaxiées. Ces travaux de thèse proposent d’explorer, en détail, la faisabilité de l’épitaxie VdW dans le cas particulier de la croissance de GaN sur graphène par EPVOM.L’utilisation d’un nouveau type de surface de très basse énergie pour supporter l’épitaxie du GaN nécessite le développement d’une nouvelle stratégie de croissance. Dans ce travail, un procédé en trois étapes a été mis en place pour la germination du GaN sur le graphène. Les cristaux microniques qui en résultent présentent une qualité cristalline remarquable, sont entièrement relaxés et adoptent une orientation cristallographique commune. Une relation d’épitaxie peut ainsi être mise en place à travers une interface faible qui est alors une interface d’épitaxie compliante. La faisabilité et les atouts de l’épitaxie VdW de GaN sur graphène sont donc démontrés expérimentalement. Plus précisément, nous avons démontré le rôle du substrat sous-jacent au graphène dans larelation d’épitaxie. Son caractère polaire, en particulier, semble indispensable pour qu’une relation d’épitaxie à distance puisse exister à travers le graphène.Cette étude exploratoire a à la fois permis d’illustrer tout le potentiel de l’épitaxie VdW de matériaux 3D sur 2D, d’en identifier certaines limites mais aussi de démontrer les possibilités liées à la création de nouvelles interfaces d’épitaxie 3D / 2D
Due to its outstanding physical properties, GaN is a very attractive material to conceive photonic devices. However its synthesis is very complex and remains an obstacle to its use. For now, heteroepitaxy is the most used technique but the lack of crystalline substrates with properties close to those of GaN leads to the growth of highly defective epitaxial thin films. Although GaN based devices are already functional, an increase in the crystalline quality of the material will improve their performances.Van derWaals (VdW) epitaxy is an alternative that differs from classical epitaxy by the nature of the interaction at the interface between the substrate and the deposited material. The former is then no longer governed by strong forces (covalent bonds, ionic bonds, etc) but by weak forces of VdW type. VdW heteroepitaxy, which might allow a compliant growth interface, thus appears as a beneficial alternative to improve the cristalline quality of the epitaxial layers. This thesis proposes to explore in detail the feasability of the VdW epitaxy in the particular case of the growth of GaN on graphene by MOVPE.The use of a new type of surface with a very low surface energy, to support the GaN epitaxy requires the developpement of a new growth strategy. In this work, a three step process was set up for the nucleation of GaN on graphene. The resultant micronic GaN crystals exhibit high crystalline quality, being free of stress and having a unique cristallographic orientation. An epitaxial relationship can thus be implemented through a weak interface that turns out to be compliant. The feasibility of the VdW epitaxy as well as its advantages is demonstrated experimentally. Specifically, we have highlighted the role of the substrate underlying graphene in the epitaxial relationship - in particular its polar character seems required for a remote epitaxial relationship to exist through the graphene.This study allowed to highlight the full potential of the VdW epitaxy of 3D materials on 2D, to identify some limitations and also to demonstrate the possibilities opened by the formation of new 3D / 2D interfaces
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rudolph, Reiner. "Quasi-van der Waals-Epitaxie von GaSe auf Si und GaAs Struktur und elektronische Eigenschaften /." [S.l. : s.n.], 1999. http://www.diss.fu-berlin.de/1999/65/index.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Marsden, Alexander J. "Van der Waals epitaxy in graphene heterostructures." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/77193/.

Повний текст джерела
Анотація:
Graphene — a two-dimensional sheet of carbon atoms — has surged into recent interest with its host of remarkable properties and its ultimate thinness. However, graphene combined with other materials is starting to attract more attention. These heterostructures can be important for production routes, incorporating graphene into existing technologies, or for modifying its intrinsic properties. This thesis aims to examine the role of van der Waals epitaxy within these heterostructures. First, the graphene-copper interaction during chemical vapour deposition of graphene is investigated. Graphene is found to grow with a mismatch epitaxy of 8 relative to the [001] direction of the Cu(100) surface, despite a mismatch in symmetry and lattice parameter between two. Further, the electronic structure of both graphene and copper is unchanged by the interaction. This highlights the weak interaction between the two, owing to its van der Waals nature. Functionalised graphene is another important heterostructure, and is intensively studied for both graphene production routes and for altering graphene’s properties. Here, it is the change to the homogeneous graphene surface that makes it interesting for van der Waals epitaxy. The effect of functionalisation of graphene with atomic oxygen and nitrogen is presented next. In both cases, only small amounts of functionalisation ( 5 at%) is sufficient to significantly deteriorate the -band structure of the graphene through localisation. For small amounts of nitrogen functionalisation, and greater amounts of oxygen functionalisation, extended topological defects are formed in the graphene lattice. Unlike epoxide oxygen groups, these disruptions to the pristine graphene are found to be irreversible by annealing. Next, the interaction between graphene and the organic semiconducting molecule vanadyl-phthalocyanine (VOPc) is presented. As a result of the van der Waals nature of the graphene surface, VOPc molecules can form crystals microns in size when deposited onto a substrate with an elevated temperature of 155 C; at ambient temperatures, the crystals are only tens of nanometres across. In contrast, the functionalised graphene oxide surface prevents large crystal growth, even at elevated temperatures, because surface functionalities inhibit molecule diffusion. This highlights the importance of graphene as a substrate for molecular crystal growth, even when the growth is not epitaxial. Finally, the supramolecular assembly of trimesic acid (TMA) and terephthalic acid (TPA) is presented. Despite their chemical similarity they display different behaviour as they transition from monolayers to three-dimensional structures: for TMA, the epitaxial chicken wire structure seen at a monolayer templates up through the layers as molecules stack, until a thickness of 20 nm, when random in-plane orientations appear; on the other hand, TPA forms a brickwork structure at the monolayer, which quickly transitions to fibre-like crystals with a bulk structure for the thin films. However, the TPA orientation is still determined by the epitaxy with the graphene substrate, although this is significantly weaker than for TMA.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wisotzki, Elmar. "Quasi-van-der-Waals-Epitaxie von II-VI-Halbleitern auf Schichtgitterchalkogeniden und GaSe-terminierten Si(111)-Oberflächen." [S.l. : s.n.], 2002. http://elib.tu-darmstadt.de/diss/000330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vergnaud, Céline. "Optimisation de la croissance de MoSe2 - WSe2 par épitaxie de Van der Waals pour la valleytronique." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY038.

Повний текст джерела
Анотація:
Cette thèse a pour objet l’optimisation de la croissance par épitaxie par jets moléculaires dans le régime de van der Waals de couches semi-conductrices bidimensionnelles (2D) de diséléniures de métaux de transition (MoSe2, WSe2) pour les études magnéto-optiques et électriques. Cette optimisation passe par l’amélioration de la qualité cristallographique des couches sur de grandes surfaces en ajustant les paramètres de croissances (température et flux). En particulier, la maîtrise de l’état de surface du substrat est déterminante sur les mécanismes de croissance de ces couches. L’élaboration de ces matériaux de basse dimensionnalité a nécessité l’utilisation de techniques de caractérisation avancées (Diffraction de rayons X en incidence rasante, Microscopie électronique en transmission en mode haute résolution, ect). Dans cette thèse, nous nous sommes concentrés sur deux substrats particuliers : l’oxyde de silicium et le mica. Ils présentent tous les deux la particularité d’être isolants et inertes d’un point de vue électronique, ce qui est indispensable pour sonder les propriétés optiques et électriques intrinsèques des couches 2D. Finalement, nous avons développé les dopages électrique (dopage p) pour la microélectronique et magnétique (dopage Mn) pour la valleytronique
The purpose of this thesis is to optimize growth by molecular beam epitaxy in the van der Waals regime of two-dimensional (2D) semiconductor layers of transition metal diselenides (MoSe2, WSe2) for magneto-optical and electric studies. This optimization involves improving the crystallographic quality of the layers over large areas by adjusting the growth parameters (temperature and flux). In particular, the control of the surface state of the substrate is decisive on the growth mechanisms of these layers. The development of these low-dimensional materials required the use of advanced characterization techniques (Grazing incidence X-ray diffraction, High Resolved Transmission Electronic Microscopy, ect). In this thesis, we focused on two specific substrates : silicon oxide and mica. They both have the particularity of being insulating and inert from an electronic point of view, which is essential to probe the optical and electrical intrinsic properties of 2D layers. Finally, we developed electrical doping (p doping) for microelectronics and magnetic (Mn doping) for valleytronics
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Duraz, Jules. "LEDs flexibles exploitant l'épitaxie van der Waals avec les semi-conducteurs nitrures : application aux implants cochléaires optiques." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST101.

Повний текст джерела
Анотація:
Le développement de l'optogénétique ouvre un nouveau champ d'application aux sources lumineuses à base de semiconducteurs.Les LEDs à base de nitrure de gallium peuvent, par exemple, être employées dans la réalisation de prototypes d'implants pour restaurer l'audition.Des contraintes particulières apparaissent pour ces applications, avec notamment des critères spécifiques liés à l'émission devant être respectés pour des rayons de courbure de l'ordre du millimètre.L'objectif de cette thèse est de réaliser des LEDs flexibles pouvant atteindre ces rayons de courbure ainsi que de caractériser l'évolution des propriétés des LEDs fabriquées en fonction de leur courbure. La fabrication des LEDs flexibles est principalement basée sur l'épitaxie « van der Waals » sur substrat de saphir mais des structures LED sur silicium sont également étudiées. Différentes techniques de fabrication et report sont développées.Un banc de mesure est conçu et assemblé pour caractériser les LEDs flexibles en vue de répondre aux besoins de l'application. Les propriétés électro-optiques des LEDs sont ainsi mesurées jusqu'à 3 mm de rayon de courbure
The development of optogenetics is opening up a new field of application for semiconductor-based light sources.Gallium nitride-based LEDs, for example, can be used in prototype implants to restore hearing.There are particular constraints for these applications, with specific emission criteria that must be met for radii of curvature of the order of a millimetre.The aim of this thesis is to produce flexible LEDs capable of achieving these bending radii and to characterise the evolution of the properties of the LEDs produced as a function of their bending. The fabrication of flexible LEDs is mainly based on "van der Waals" epitaxy on a sapphire substrate, but LED structures on silicon are also studied. Various manufacturing and transfer techniques are developed.A measurement bench is designed and assembled to characterise the flexible LEDs in order to meet the needs of the application. The electro-optical properties of the LEDs are measured down to a radius of curvature of 3 mm
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sant, Roberto. "Exploration par rayonnement synchrotron X de la croissance et de la structure de dichalcogénures 2D." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY075.

Повний текст джерела
Анотація:
Les dichalcogenures de métaux de transition bidimensionnels (2D) suscitent un grand intérêt pour des applications variées, principalement en optoelectronique. Toutefois, la faible compréhension des mécanismes liés à leur épitaxie, de leur microstructure et de la nature de leur interaction avec le substrat représentent encore des problèmes ouverts. Nous avons exploré un certain nombre de croissances épitaxiales des dichalcogenures 2D préparés par épitaxie à jets moléculaires sur des substrats différents. Nous en avons examiné la structure atomique et essayé d’en modifier certains in situ. Plusieurs systèmes et processus ont été étudiés: (i) des tellurures de métaux de transition, ZrTe2, MoTe2 et TiTe2, épitaxiés sur un substrat de InAs(111), (ii) l’intercalation d’espèces atomique alcalines entre une monocouche de MoS2 et son substrat d’Au(111), (iii) la croissance et le traitement thermique sous atmosphère de H2S d’une monocouche de PtSe2 sur Pt(111). Notre travail s’appuie sur des approches à la fois phénoménologiques et quantitatives de diffraction de rayons X de surface, souvent complétées par ses analyses effectuées à l’aide d’autres techniques (STM, TEM, XPS et ARPES). Les principaux résultats sont que: (i) une phase orthorhombique et une onde de densité de charge sont stabilisées à température ambiante dans les couches de MoTe2 et TiTe2 par un effet de déformation induite par l’épitaxie; (ii) l’intercalation de césium (Cs) au-dessous du MoS2 induit un découplage structurel mais aussi électronique de la monocouche de son substrat; (iii) la sulfurisation de PtSe2 à chaud en conditions contrôlées permet de substituer des atomes de Se par des atomes de S dans la couche supérieure du dichalcogenure, formant ainsi un alliage ordonné de SPtSe, structure de type Janus
Two-dimensional transition metal dichalcogenides (TMDCs) are promising materials for a variety of applications, especially in optoelectronics. However, the lack of understanding of their epitaxy - i.e. growth mechanism, microscopic structure, nature of the 2D layer-substrate interaction, etc. - is still a crucial issue to address. In this PhD thesis we explored a series of epitaxial growths of monolayer and thin film TMDCs grown by molecular beam epitaxy (MBE) on a variety of substrates. We studied their atomic structures and we attempted the modifications of some of them with various in situ methods. Several systems and processes have been investigated: (i) transition metal ditellurides, ZrTe2 , MoTe2 and TiTe2 on InAs(111) substrate, (ii) the intercalation of alkali metal species between single layer MoS2 and its Au(111) substrate, (iii) the growth and the thermal treatments in H2S atmosphere of monolayer PtSe2 on Pt(111). Our work relies on both phenomenological and quantitative methods based on surface X-ray diffraction, often complemented by parallel analysis performed with other probes, e.g. STM, TEM, XPS, ARPES. Most notably, we found that: (i) a metastable orthorhombic phase and a charge density wave phase can be stabilized at room temperature in MoTe2 and TiTe2 owing to the epitaxial strain in the materials; (ii) the intercalation of Cs atoms under MoS2 induces structural and electronic decoupling of the 2D MoS2 layer from its Au(111) substrate; (iii) the sulfurization of PtSe2 promotes the Se-by-S substitution in one (or both) of its two chalcogen layers, leading either to the full conversion of the selenide into a sulfide or even to an ordered Janus alloy
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wagner, Christian. "Potential Energy Minimization as the Driving Force for Order and Disorder in Organic Layers." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-38242.

Повний текст джерела
Анотація:
The topic of this work is the structural characterization and theoretical modeling of organic single and heterolayers. The growth of sub-monolayers and monolayers (ML) of the two polycyclic aromatic hydrocarbons quaterrylene (QT) and hexa-peri-hexabenzocoronene (HBC) on Ag(111) and Au(111) was investigated. A transition from a disordered, isotropic phase to an ordered phase with increasing coverage was found. The lattice of the ordered phase turned out to be coverage dependent. The intermolecular potential was modeled including Coulomb and van der Waals interaction by a force-field approach. The postulated repulsive character of the potential could be connected to the non-uniform intramolecular charge distribution and to a screening of the van der Waals forces. Furthermore, the influence of the variable lattice constant on the epitaxial growth of HBC was studied. The second part of this work deals with a ML of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on a ML of HBC. In dependency on the initial lattice constant of HBC, a total of three line-on-line (LOL) and point-on-line coincident phases of PTCDA (with respect to HBC) was found. Following an analysis of the general properties of LOL coincident systems via force-field calculations, a new method to predict the structure of such systems is introduced
Thema dieser Arbeit ist die strukturelle Charakterisierung von organischen Einfach- und Heterolagen sowie deren theoretische Beschreibung und Modellierung. Es wurden Submonolagen und Monolagen (ML) der polyzyklischen Kohlenwasserstoffe Quaterrylen (QT) und Hexa-peri-hexabenzocoronen (HBC) auf Ag(111) und Au(111) Einkristallen untersucht und ein Übergang von einer ungeordneten, isotropen Phase zu einer geordneten Phase mit steigender Bedeckung beobachtet. Die geordnete Phase wies dabei bedeckungsabhängige Gitterkonstanten auf. Das intermolekulare Potential wurde unter Berücksichtigung von Coulomb und van der Waals Anteilen mittels Kraftfeldmethoden modelliert. Der postulierte repulsive Charakter des Potentials konnte auf die Ladungsverteilung im Molekül und eine Abschwächung des van der Waals Potentials zurückgeführt werden. Weiterhin wurde der Einfluss der variablen HBC Gitterkonstante auf die epitaktische Relation des Gitters zum Metallsubstrat untersucht. Der zweite Teil der Arbeit widmet sich der Untersuchung einer ML 3,4,9,10-Perylenetetracarboxylic dianhydrid (PTCDA) auf einer ML HBC. Dabei wurden, in Abhängigkeit von der HBC Gitterkonstante, insgesamt drei verschiedene Typen von line-on-line bzw. point-on-line Epitaxie nachgewiesen. Im Anschluss an eine Analyse der generellen Eigenschaften solcher epitaktischer Lagen mittels Kraftfeldrechnungen wird eine neue Methode zur Vorhersage der Struktur konkreter Systeme vorgestellt
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ben, Jabra Zouhour. "Study of new heterostructures : silicene on graphene." Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0583.

Повний текст джерела
Анотація:
Le but de ce travail est la croissance du silicène sur Gr. J'ai décrit le substrat en fonction des conditions d’élaboration par CVD. Lorsque la proportion de H2 est faible il est possible d’obtenir du Gr homogène sur couche tampon (BL) sur SiC. Le STM et LEED montrent la superposition de la maille du Gr et de la reconstruction de la BL représentatif du Gr épitaxié. Lorsque la proportion de H2 est élevée la couche de Gr obtenue est totalement hydrogénée. Ceci est un résultat nouveau car aucun procédé d’intercalation d’hydrogène n’avait permis jusqu’à présent d’hydrogéner totalement les échantillons de (6x6)Gr épitaxié sur BL. Pour des proportions intermédiaires de H2/Ar, la coexistence de (6x6)Gr et H-Gr est observée. En fonction de la proportion de H2 dans le mélange gazeux, soit la surface du SiC reste passivée pendant toute la croissance du Gr et on obtient du H-Gr, soit le H2 désorbe partiellement, ou totalement et on obtient soit la coexistence des deux structures soit du (6x6)Gr pleine plaque. J’ai étudié la croissance par MBE de Si-ene sur (6x6)Gr. J’ai démontré qu'il est possible de former des flaques de Si-ene pour des épaisseurs de dépôt <0.5MC. Nous observons la présence de zones planes d’une épaisseur de 0.2-0.3nm correspondant à une monocouche de Si-ene, entourées d’îlots dendritiques 3D de Si. Les spectres Raman mettent en évidence un pic allant jusqu’à 563cm-1 ce qui est la valeur la plus proche du Si-ene FS jamais obtenue. Ces démontrent la formation de Si-ene quasi-FS. Ce travail contribue à une meilleure compréhension du mécanisme de croissance CVD du Gr et à l’avancement des recherches dans le domaine de la croissance épitaxiale des matériaux 2D
The topic of this thesis deals with the study of the growth and properties of silicene (Si-ene) on graphene (Gr) on 6H-SiC(0001) with the final goal of forming free-standing (FS) Si-ene on an insulating or semiconductor substrate. I have described the substrate as a function of the CVD processing conditions. When the proportion of H2 is low it is possible to obtain homogeneous Gr on buffer layer (BL) on SiC. The STM and LEED show the superposition of the Gr mesh and the BL reconstruction representative of the epitaxial Gr. When the proportion of H2 is high, the resulting Gr layer is fully hydrogenated. This is a new result as no hydrogen intercalation process has been able to fully hydrogenate (6x6)Gr samples epitaxial on BL until now. For intermediate proportions of H2/Ar, the coexistence of (6x6)Gr and H-Gr is observed. Depending on the proportion of H2 in the gas mixture, either the SiC surface remains passivated during the entire Gr growth and H-Gr is obtained, or the H2 partially or totally desorbs and either both structures coexist or full plate (6x6)Gr is obtained. I have studied the MBE growth of Si-ene on (6x6)Gr. I have shown that it is possible to form Si-ene puddles for deposit thicknesses <0.5MC. We observe the presence of flat areas of 0.2-0.3nm thickness corresponding to a Si-ene monolayer, surrounded by 3D dendritic islands of Si. The Raman spectra show a peak up to 563cm-1 which is the closest value to Si-ene FS ever obtained. This demonstrates the formation of quasi-FS Si-ene. This work contributes to a better understanding of the CVD growth mechanism of Gr and to the advancement of research in the field of epitaxial growth of 2D materials
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bradford, Jonathan. "Growth and characterisation of two-dimensional materials and their heterostructures on sic." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134400/1/Jonathan_Bradford_Thesis.pdf.

Повний текст джерела
Анотація:
Atomically thin two-dimensional materials and their hybrids represent an elegant approach to designing and synthesizing functional nanomaterials and are expected to find applications across a broad range of new technologies. This project explored scalable synthesis of various two-dimensional layered materials and their hybrid counterparts on silicon carbide, an industrially relevant device substrate. It demonstrates the integration of graphene, hexagonal boron nitride and transition metal dichalcogenide layers which were characterised by high resolution scanning probe microscopy and electron spectroscopy. The procedures developed in this work are expected to facilitate a route towards large-scale synthesis of novel nanoscale devices directly on-chip.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Epitaxie van der Waals"

1

Parsegian, V. Adrian. Van der Waals forces. New York: Cambridge University Press, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Holwill, Matthew. Nanomechanics in van der Waals Heterostructures. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18529-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

L, Neal Brian, Lenhoff Abraham M, and United States. National Aeronautics and Space Administration., eds. Van der Waals interactions involving proteins. New York: Biophysical Society, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kipnis, Aleksandr I͡Akovlevich. Van der Waals and molecular sciences. Oxford: Clarendon Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

1926-, Rowlinson J. S., and I︠A︡velov B. E, eds. Van der Waals and molecular science. Oxford: Clarendon Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Halberstadt, Nadine, and Kenneth C. Janda, eds. Dynamics of Polyatomic Van der Waals Complexes. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-8009-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Halberstadt, Nadine. Dynamics of Polyatomic Van der Waals Complexes. Boston, MA: Springer US, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

NATO Advanced Research Workshop on Dynamics of Polyatomic Van der Waals Complexes (1989 Castéra-Verduzan, France). Dynamics of polyatomic Van der Waals complexes. New York: Plenum Press, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

M, Smirnov B. Cluster ions and Van der Waals molecules. Philadelphia: Gordon and Breach Science Publishers, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kok, Auke. De verrader: Leven en dood van Anton van der Waals. 2nd ed. Amsterdam: Arbeiderspers, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Epitaxie van der Waals"

1

Kim, Hyunseok, Wei Kong, and Jeehwan Kim. "Advanced Epitaxial Growth of LEDs on Van Der Waals Materials." In Series in Display Science and Technology, 87–114. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5505-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jaegermann, Wolfram, Andreas Klein, and Christian Pettenkofer. "Electronic Properties of Van Der Waals-Epitaxy Films and Interfaces." In Electron Spectroscopies Applied to Low-Dimensional Materials, 317–402. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-47126-4_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Koma, Atsushi. "A New Method to Create Artificially Stacked Layered Materials: Van Der Waals Epitaxy." In New Horizons in Low-Dimensional Electron Systems, 85–95. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-3190-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tiefenbacher, S., C. Pettenkofer, and W. Jaegermann. "Van der Waals Epitaxy of Transition Metal Dichalcogenides Using Metal Organic Precursors (MOVDWE)." In Frontiers in Nanoscale Science of Micron/Submicron Devices, 59–65. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1778-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lang, O., R. Rudolph, C. Pettenkofer, and W. Jaegermann. "Quantum Well Structures Based on the Layered Compounds InSe and GaSe Grown by Van Der Waals Epitaxy." In Frontiers in Nanoscale Science of Micron/Submicron Devices, 295–301. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1778-1_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tsuchiya, Taku. "Van der Waals Force." In Encyclopedia of Earth Sciences Series, 1–2. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_329-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tsuchiya, Taku. "Van der Waals Force." In Encyclopedia of Earth Sciences Series, 1473–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bruylants, Gilles. "Van Der Waals Forces." In Encyclopedia of Astrobiology, 1728–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1647.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Xiang-Jun. "Van der Waals Forces." In Encyclopedia of Tribology, 3945–47. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_457.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Arndt, T. "Van-der-Waals-Kräfte." In Springer Reference Medizin, 2429–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_3207.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Epitaxie van der Waals"

1

Basov, Dmitri N. "Nano-optical probes of Van der Waals interfaces." In Active Photonic Platforms (APP) 2024, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou, 20. SPIE, 2024. http://dx.doi.org/10.1117/12.3027547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhou, You. "Nonlinear photonics and excitonics in van der Waals heterostructures." In Low-Dimensional Materials and Devices 2024, edited by Nobuhiko P. Kobayashi, A. Alec Talin, Albert V. Davydov, and M. Saif Islam, 30. SPIE, 2024. http://dx.doi.org/10.1117/12.3029430.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bucher, Tomer, Yaniv Kurman, Kangpeng Wang, Qinghui Yan, Arthur Niedermayr, Ron Ruimy, Harel Nahari, et al. "Dynamics of optical vortices in Van der Waals materials." In Active Photonic Platforms (APP) 2024, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou, 11. SPIE, 2024. http://dx.doi.org/10.1117/12.3028729.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Yue, Isabel Barth, Manuel Deckart, Donato Conteduca, Guilherme S. Arruda, Panaiot G. Zotev, Sam Randerson, et al. "Van der Waals materials for nanophotonics and laser devices." In Active Photonic Platforms (APP) 2024, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou, 43. SPIE, 2024. http://dx.doi.org/10.1117/12.3026846.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Trovatello, Chiara, Carino Ferrante, Birui Yang, Cory Dean, Andrea Marini, Giulio Cerullo, and P. James Schuck. "Quasi phase matching from periodically poled 3R-stacked transition metal dichalcogenides." In CLEO: Science and Innovations, STh3P.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sth3p.6.

Повний текст джерела
Анотація:
Here we demonstrate broadband quasi phase matching in a periodically poled van der Waals semiconductor (3R-MoS2). This work opens up the new and unexplored field of phase-matched nonlinear optics with microscopic van der Waals crystals.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, S. F., W. K. Fong, and C. Surya. "Investigation of low-frequency noise in van der Waals epitaxies." In 2013 International Conference on Noise and Fluctuations (ICNF). IEEE, 2013. http://dx.doi.org/10.1109/icnf.2013.6579007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, W., K. K. Leung, W. K. Fong, S. F. Wang, Y. Y. Y. Hui, S. P. P. Lau, and C. Surya. "High quality SnS van der Waals epitaxies on graphene buffer layer." In SPIE Solar Energy + Technology, edited by Louay A. Eldada. SPIE, 2012. http://dx.doi.org/10.1117/12.930946.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Leung, K. K., W. Wang, Y. Y. Hui, S. F. Wang, W. K. Fong, S. P. Lau, C. H. Lam, and C. Surya. "MBE growth of van der Waals epitaxy using graphene buffer layer." In 2013 2nd International Symposium on Next-Generation Electronics (ISNE 2013). IEEE, 2013. http://dx.doi.org/10.1109/isne.2013.6512273.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Koma, Atsushi. "Van der Waals Epitaxy -A New Method to Prepare Ultrathin Heterostructures-." In 1985 Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1985. http://dx.doi.org/10.7567/ssdm.1985.a-0-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hong, Young Joon. "Remote and van der Waals epitaxy for vertically stacked micro-LED arrays." In Light-Emitting Devices, Materials, and Applications XXVIII, edited by Martin Strassburg, Jong Kyu Kim, and Michael R. Krames. SPIE, 2024. http://dx.doi.org/10.1117/12.2691134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Epitaxie van der Waals"

1

O'Hara, D. J. Molecular Beam Epitaxy and High-Pressure Studies of van der Waals Magnets. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1562380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Klots, C. E. (Physics and chemistry of van der Waals particles). Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6608231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mak, Kin Fai. Understanding Topological Pseudospin Transport in Van Der Waals' Materials. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1782672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kim, Philip. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada616377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sandler, S. I. The generalized van der Waals theory of pure fluids and mixtures. Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/6382645.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sandler, S. I. (The generalized van der Waals theory of pure fluids and mixtures). Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5610422.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Menezes, W. J. C., and M. B. Knickelbein. Metal cluster-rare gas van der Waals complexes: Microscopic models of physisorption. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10132910.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Martinez Milian, Luis. Manipulation of the magnetic properties of van der Waals materials through external stimuli. Office of Scientific and Technical Information (OSTI), May 2024. http://dx.doi.org/10.2172/2350595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gwo, Dz-Hung. Tunable far infrared laser spectroscopy of van der Waals bonds: Ar-NH sub 3. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/7188608.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

French, Roger H., Nicole F. Steinmetz, and Yingfang Ma. Long Range van der Waals - London Dispersion Interactions For Biomolecular and Inorganic Nanoscale Assembly. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1431216.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії