Добірка наукової літератури з теми "Epitaxie van der Waals"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Epitaxie van der Waals".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Epitaxie van der Waals"
Mulder, Liesbeth, Daan H. Wielens, Yorick A. Birkhölzer, Alexander Brinkman, and Omar Concepción. "Revisiting the van der Waals Epitaxy in the Case of (Bi0.4Sb0.6)2Te3 Thin Films on Dissimilar Substrates." Nanomaterials 12, no. 11 (May 24, 2022): 1790. http://dx.doi.org/10.3390/nano12111790.
Повний текст джерелаYe, Lianxu, Di Zhang, Juanjuan Lu, Sicheng Xu, Ruixing Xu, Jiyu Fan, Rujun Tang, et al. "Epitaxial (110)-oriented La0.7Sr0.3MnO3 film directly on flexible mica substrate." Journal of Physics D: Applied Physics 55, no. 22 (March 4, 2022): 224002. http://dx.doi.org/10.1088/1361-6463/ac570d.
Повний текст джерелаChen, Hou-Guang, Yung-Hui Shih, Huei-Sen Wang, Sheng-Rui Jian, Tzu-Yi Yang, and Shu-Chien Chuang. "Van der Waals Epitaxial Growth of ZnO Films on Mica Substrates in Low-Temperature Aqueous Solution." Coatings 12, no. 5 (May 20, 2022): 706. http://dx.doi.org/10.3390/coatings12050706.
Повний текст джерелаRen, Fang, Bingyao Liu, Zhaolong Chen, Yue Yin, Jingyu Sun, Shuo Zhang, Bei Jiang, et al. "Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer." Science Advances 7, no. 31 (July 2021): eabf5011. http://dx.doi.org/10.1126/sciadv.abf5011.
Повний текст джерелаWang, S. F., W. K. Fong, W. Wang, K. K. Leung, and C. Surya. "Growth of SnS van der Waals Epitaxies on Layered Substrates." MRS Proceedings 1493 (2013): 213–17. http://dx.doi.org/10.1557/opl.2013.234.
Повний текст джерелаRyu, Huije, Hyunik Park, Joung-Hun Kim, Fan Ren, Jihyun Kim, Gwan-Hyoung Lee, and Stephen J. Pearton. "Two-dimensional material templates for van der Waals epitaxy, remote epitaxy, and intercalation growth." Applied Physics Reviews 9, no. 3 (September 2022): 031305. http://dx.doi.org/10.1063/5.0090373.
Повний текст джерелаUeno, Tetsuji, Hideki Yamamoto, Koichiro Saiki, and Atsushi Koma. "Van der Waals epitaxy of metal dihalide." Applied Surface Science 113-114 (April 1997): 33–37. http://dx.doi.org/10.1016/s0169-4332(96)00770-2.
Повний текст джерелаLang, O., A. Klein, R. Schlaf, T. Löher, C. Pettenkofer, W. Jaegermann, and A. Chevy. "heterointerfaces prepared by Van der Waals epitaxy." Journal of Crystal Growth 146, no. 1-4 (January 1995): 439–43. http://dx.doi.org/10.1016/0022-0248(94)00504-4.
Повний текст джерелаChang, Po-Han, Chia-Shuo Li, Fang-Yu Fu, Kuo-You Huang, Ang-Sheng Chou, and Chih-I. Wu. "Van Der Waals Epitaxy: Ultrasensitive Photoresponsive Devices Based on Graphene/BiI3 van der Waals Epitaxial Heterostructures (Adv. Funct. Mater. 23/2018)." Advanced Functional Materials 28, no. 23 (June 2018): 1870160. http://dx.doi.org/10.1002/adfm.201870160.
Повний текст джерелаLi, Xufan, Ming-Wei Lin, Junhao Lin, Bing Huang, Alexander A. Puretzky, Cheng Ma, Kai Wang, et al. "Two-dimensional GaSe/MoSe2misfit bilayer heterojunctions by van der Waals epitaxy." Science Advances 2, no. 4 (April 2016): e1501882. http://dx.doi.org/10.1126/sciadv.1501882.
Повний текст джерелаДисертації з теми "Epitaxie van der Waals"
Journot, Timotée. "Epitaxie van der Waals de GaN sur graphène pour des applications en photonique." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI078/document.
Повний текст джерелаDue to its outstanding physical properties, GaN is a very attractive material to conceive photonic devices. However its synthesis is very complex and remains an obstacle to its use. For now, heteroepitaxy is the most used technique but the lack of crystalline substrates with properties close to those of GaN leads to the growth of highly defective epitaxial thin films. Although GaN based devices are already functional, an increase in the crystalline quality of the material will improve their performances.Van derWaals (VdW) epitaxy is an alternative that differs from classical epitaxy by the nature of the interaction at the interface between the substrate and the deposited material. The former is then no longer governed by strong forces (covalent bonds, ionic bonds, etc) but by weak forces of VdW type. VdW heteroepitaxy, which might allow a compliant growth interface, thus appears as a beneficial alternative to improve the cristalline quality of the epitaxial layers. This thesis proposes to explore in detail the feasability of the VdW epitaxy in the particular case of the growth of GaN on graphene by MOVPE.The use of a new type of surface with a very low surface energy, to support the GaN epitaxy requires the developpement of a new growth strategy. In this work, a three step process was set up for the nucleation of GaN on graphene. The resultant micronic GaN crystals exhibit high crystalline quality, being free of stress and having a unique cristallographic orientation. An epitaxial relationship can thus be implemented through a weak interface that turns out to be compliant. The feasibility of the VdW epitaxy as well as its advantages is demonstrated experimentally. Specifically, we have highlighted the role of the substrate underlying graphene in the epitaxial relationship - in particular its polar character seems required for a remote epitaxial relationship to exist through the graphene.This study allowed to highlight the full potential of the VdW epitaxy of 3D materials on 2D, to identify some limitations and also to demonstrate the possibilities opened by the formation of new 3D / 2D interfaces
Rudolph, Reiner. "Quasi-van der Waals-Epitaxie von GaSe auf Si und GaAs Struktur und elektronische Eigenschaften /." [S.l. : s.n.], 1999. http://www.diss.fu-berlin.de/1999/65/index.html.
Повний текст джерелаMarsden, Alexander J. "Van der Waals epitaxy in graphene heterostructures." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/77193/.
Повний текст джерелаWisotzki, Elmar. "Quasi-van-der-Waals-Epitaxie von II-VI-Halbleitern auf Schichtgitterchalkogeniden und GaSe-terminierten Si(111)-Oberflächen." [S.l. : s.n.], 2002. http://elib.tu-darmstadt.de/diss/000330.
Повний текст джерелаVergnaud, Céline. "Optimisation de la croissance de MoSe2 - WSe2 par épitaxie de Van der Waals pour la valleytronique." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY038.
Повний текст джерелаThe purpose of this thesis is to optimize growth by molecular beam epitaxy in the van der Waals regime of two-dimensional (2D) semiconductor layers of transition metal diselenides (MoSe2, WSe2) for magneto-optical and electric studies. This optimization involves improving the crystallographic quality of the layers over large areas by adjusting the growth parameters (temperature and flux). In particular, the control of the surface state of the substrate is decisive on the growth mechanisms of these layers. The development of these low-dimensional materials required the use of advanced characterization techniques (Grazing incidence X-ray diffraction, High Resolved Transmission Electronic Microscopy, ect). In this thesis, we focused on two specific substrates : silicon oxide and mica. They both have the particularity of being insulating and inert from an electronic point of view, which is essential to probe the optical and electrical intrinsic properties of 2D layers. Finally, we developed electrical doping (p doping) for microelectronics and magnetic (Mn doping) for valleytronics
Duraz, Jules. "LEDs flexibles exploitant l'épitaxie van der Waals avec les semi-conducteurs nitrures : application aux implants cochléaires optiques." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST101.
Повний текст джерелаThe development of optogenetics is opening up a new field of application for semiconductor-based light sources.Gallium nitride-based LEDs, for example, can be used in prototype implants to restore hearing.There are particular constraints for these applications, with specific emission criteria that must be met for radii of curvature of the order of a millimetre.The aim of this thesis is to produce flexible LEDs capable of achieving these bending radii and to characterise the evolution of the properties of the LEDs produced as a function of their bending. The fabrication of flexible LEDs is mainly based on "van der Waals" epitaxy on a sapphire substrate, but LED structures on silicon are also studied. Various manufacturing and transfer techniques are developed.A measurement bench is designed and assembled to characterise the flexible LEDs in order to meet the needs of the application. The electro-optical properties of the LEDs are measured down to a radius of curvature of 3 mm
Sant, Roberto. "Exploration par rayonnement synchrotron X de la croissance et de la structure de dichalcogénures 2D." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY075.
Повний текст джерелаTwo-dimensional transition metal dichalcogenides (TMDCs) are promising materials for a variety of applications, especially in optoelectronics. However, the lack of understanding of their epitaxy - i.e. growth mechanism, microscopic structure, nature of the 2D layer-substrate interaction, etc. - is still a crucial issue to address. In this PhD thesis we explored a series of epitaxial growths of monolayer and thin film TMDCs grown by molecular beam epitaxy (MBE) on a variety of substrates. We studied their atomic structures and we attempted the modifications of some of them with various in situ methods. Several systems and processes have been investigated: (i) transition metal ditellurides, ZrTe2 , MoTe2 and TiTe2 on InAs(111) substrate, (ii) the intercalation of alkali metal species between single layer MoS2 and its Au(111) substrate, (iii) the growth and the thermal treatments in H2S atmosphere of monolayer PtSe2 on Pt(111). Our work relies on both phenomenological and quantitative methods based on surface X-ray diffraction, often complemented by parallel analysis performed with other probes, e.g. STM, TEM, XPS, ARPES. Most notably, we found that: (i) a metastable orthorhombic phase and a charge density wave phase can be stabilized at room temperature in MoTe2 and TiTe2 owing to the epitaxial strain in the materials; (ii) the intercalation of Cs atoms under MoS2 induces structural and electronic decoupling of the 2D MoS2 layer from its Au(111) substrate; (iii) the sulfurization of PtSe2 promotes the Se-by-S substitution in one (or both) of its two chalcogen layers, leading either to the full conversion of the selenide into a sulfide or even to an ordered Janus alloy
Wagner, Christian. "Potential Energy Minimization as the Driving Force for Order and Disorder in Organic Layers." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-38242.
Повний текст джерелаThema dieser Arbeit ist die strukturelle Charakterisierung von organischen Einfach- und Heterolagen sowie deren theoretische Beschreibung und Modellierung. Es wurden Submonolagen und Monolagen (ML) der polyzyklischen Kohlenwasserstoffe Quaterrylen (QT) und Hexa-peri-hexabenzocoronen (HBC) auf Ag(111) und Au(111) Einkristallen untersucht und ein Übergang von einer ungeordneten, isotropen Phase zu einer geordneten Phase mit steigender Bedeckung beobachtet. Die geordnete Phase wies dabei bedeckungsabhängige Gitterkonstanten auf. Das intermolekulare Potential wurde unter Berücksichtigung von Coulomb und van der Waals Anteilen mittels Kraftfeldmethoden modelliert. Der postulierte repulsive Charakter des Potentials konnte auf die Ladungsverteilung im Molekül und eine Abschwächung des van der Waals Potentials zurückgeführt werden. Weiterhin wurde der Einfluss der variablen HBC Gitterkonstante auf die epitaktische Relation des Gitters zum Metallsubstrat untersucht. Der zweite Teil der Arbeit widmet sich der Untersuchung einer ML 3,4,9,10-Perylenetetracarboxylic dianhydrid (PTCDA) auf einer ML HBC. Dabei wurden, in Abhängigkeit von der HBC Gitterkonstante, insgesamt drei verschiedene Typen von line-on-line bzw. point-on-line Epitaxie nachgewiesen. Im Anschluss an eine Analyse der generellen Eigenschaften solcher epitaktischer Lagen mittels Kraftfeldrechnungen wird eine neue Methode zur Vorhersage der Struktur konkreter Systeme vorgestellt
Ben, Jabra Zouhour. "Study of new heterostructures : silicene on graphene." Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0583.
Повний текст джерелаThe topic of this thesis deals with the study of the growth and properties of silicene (Si-ene) on graphene (Gr) on 6H-SiC(0001) with the final goal of forming free-standing (FS) Si-ene on an insulating or semiconductor substrate. I have described the substrate as a function of the CVD processing conditions. When the proportion of H2 is low it is possible to obtain homogeneous Gr on buffer layer (BL) on SiC. The STM and LEED show the superposition of the Gr mesh and the BL reconstruction representative of the epitaxial Gr. When the proportion of H2 is high, the resulting Gr layer is fully hydrogenated. This is a new result as no hydrogen intercalation process has been able to fully hydrogenate (6x6)Gr samples epitaxial on BL until now. For intermediate proportions of H2/Ar, the coexistence of (6x6)Gr and H-Gr is observed. Depending on the proportion of H2 in the gas mixture, either the SiC surface remains passivated during the entire Gr growth and H-Gr is obtained, or the H2 partially or totally desorbs and either both structures coexist or full plate (6x6)Gr is obtained. I have studied the MBE growth of Si-ene on (6x6)Gr. I have shown that it is possible to form Si-ene puddles for deposit thicknesses <0.5MC. We observe the presence of flat areas of 0.2-0.3nm thickness corresponding to a Si-ene monolayer, surrounded by 3D dendritic islands of Si. The Raman spectra show a peak up to 563cm-1 which is the closest value to Si-ene FS ever obtained. This demonstrates the formation of quasi-FS Si-ene. This work contributes to a better understanding of the CVD growth mechanism of Gr and to the advancement of research in the field of epitaxial growth of 2D materials
Bradford, Jonathan. "Growth and characterisation of two-dimensional materials and their heterostructures on sic." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134400/1/Jonathan_Bradford_Thesis.pdf.
Повний текст джерелаКниги з теми "Epitaxie van der Waals"
Parsegian, V. Adrian. Van der Waals forces. New York: Cambridge University Press, 2005.
Знайти повний текст джерелаHolwill, Matthew. Nanomechanics in van der Waals Heterostructures. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18529-9.
Повний текст джерелаL, Neal Brian, Lenhoff Abraham M, and United States. National Aeronautics and Space Administration., eds. Van der Waals interactions involving proteins. New York: Biophysical Society, 1996.
Знайти повний текст джерелаKipnis, Aleksandr I͡Akovlevich. Van der Waals and molecular sciences. Oxford: Clarendon Press, 1996.
Знайти повний текст джерела1926-, Rowlinson J. S., and I︠A︡velov B. E, eds. Van der Waals and molecular science. Oxford: Clarendon Press, 1996.
Знайти повний текст джерелаHalberstadt, Nadine, and Kenneth C. Janda, eds. Dynamics of Polyatomic Van der Waals Complexes. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-8009-2.
Повний текст джерелаHalberstadt, Nadine. Dynamics of Polyatomic Van der Waals Complexes. Boston, MA: Springer US, 1991.
Знайти повний текст джерелаNATO Advanced Research Workshop on Dynamics of Polyatomic Van der Waals Complexes (1989 Castéra-Verduzan, France). Dynamics of polyatomic Van der Waals complexes. New York: Plenum Press, 1990.
Знайти повний текст джерелаM, Smirnov B. Cluster ions and Van der Waals molecules. Philadelphia: Gordon and Breach Science Publishers, 1992.
Знайти повний текст джерелаKok, Auke. De verrader: Leven en dood van Anton van der Waals. 2nd ed. Amsterdam: Arbeiderspers, 1995.
Знайти повний текст джерелаЧастини книг з теми "Epitaxie van der Waals"
Kim, Hyunseok, Wei Kong, and Jeehwan Kim. "Advanced Epitaxial Growth of LEDs on Van Der Waals Materials." In Series in Display Science and Technology, 87–114. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5505-0_5.
Повний текст джерелаJaegermann, Wolfram, Andreas Klein, and Christian Pettenkofer. "Electronic Properties of Van Der Waals-Epitaxy Films and Interfaces." In Electron Spectroscopies Applied to Low-Dimensional Materials, 317–402. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-47126-4_7.
Повний текст джерелаKoma, Atsushi. "A New Method to Create Artificially Stacked Layered Materials: Van Der Waals Epitaxy." In New Horizons in Low-Dimensional Electron Systems, 85–95. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-3190-2_6.
Повний текст джерелаTiefenbacher, S., C. Pettenkofer, and W. Jaegermann. "Van der Waals Epitaxy of Transition Metal Dichalcogenides Using Metal Organic Precursors (MOVDWE)." In Frontiers in Nanoscale Science of Micron/Submicron Devices, 59–65. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1778-1_6.
Повний текст джерелаLang, O., R. Rudolph, C. Pettenkofer, and W. Jaegermann. "Quantum Well Structures Based on the Layered Compounds InSe and GaSe Grown by Van Der Waals Epitaxy." In Frontiers in Nanoscale Science of Micron/Submicron Devices, 295–301. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1778-1_21.
Повний текст джерелаTsuchiya, Taku. "Van der Waals Force." In Encyclopedia of Earth Sciences Series, 1–2. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_329-1.
Повний текст джерелаTsuchiya, Taku. "Van der Waals Force." In Encyclopedia of Earth Sciences Series, 1473–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_329.
Повний текст джерелаBruylants, Gilles. "Van Der Waals Forces." In Encyclopedia of Astrobiology, 1728–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1647.
Повний текст джерелаZhang, Xiang-Jun. "Van der Waals Forces." In Encyclopedia of Tribology, 3945–47. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_457.
Повний текст джерелаArndt, T. "Van-der-Waals-Kräfte." In Springer Reference Medizin, 2429–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_3207.
Повний текст джерелаТези доповідей конференцій з теми "Epitaxie van der Waals"
Basov, Dmitri N. "Nano-optical probes of Van der Waals interfaces." In Active Photonic Platforms (APP) 2024, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou, 20. SPIE, 2024. http://dx.doi.org/10.1117/12.3027547.
Повний текст джерелаZhou, You. "Nonlinear photonics and excitonics in van der Waals heterostructures." In Low-Dimensional Materials and Devices 2024, edited by Nobuhiko P. Kobayashi, A. Alec Talin, Albert V. Davydov, and M. Saif Islam, 30. SPIE, 2024. http://dx.doi.org/10.1117/12.3029430.
Повний текст джерелаBucher, Tomer, Yaniv Kurman, Kangpeng Wang, Qinghui Yan, Arthur Niedermayr, Ron Ruimy, Harel Nahari, et al. "Dynamics of optical vortices in Van der Waals materials." In Active Photonic Platforms (APP) 2024, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou, 11. SPIE, 2024. http://dx.doi.org/10.1117/12.3028729.
Повний текст джерелаWang, Yue, Isabel Barth, Manuel Deckart, Donato Conteduca, Guilherme S. Arruda, Panaiot G. Zotev, Sam Randerson, et al. "Van der Waals materials for nanophotonics and laser devices." In Active Photonic Platforms (APP) 2024, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou, 43. SPIE, 2024. http://dx.doi.org/10.1117/12.3026846.
Повний текст джерелаTrovatello, Chiara, Carino Ferrante, Birui Yang, Cory Dean, Andrea Marini, Giulio Cerullo, and P. James Schuck. "Quasi phase matching from periodically poled 3R-stacked transition metal dichalcogenides." In CLEO: Science and Innovations, STh3P.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sth3p.6.
Повний текст джерелаWang, S. F., W. K. Fong, and C. Surya. "Investigation of low-frequency noise in van der Waals epitaxies." In 2013 International Conference on Noise and Fluctuations (ICNF). IEEE, 2013. http://dx.doi.org/10.1109/icnf.2013.6579007.
Повний текст джерелаWang, W., K. K. Leung, W. K. Fong, S. F. Wang, Y. Y. Y. Hui, S. P. P. Lau, and C. Surya. "High quality SnS van der Waals epitaxies on graphene buffer layer." In SPIE Solar Energy + Technology, edited by Louay A. Eldada. SPIE, 2012. http://dx.doi.org/10.1117/12.930946.
Повний текст джерелаLeung, K. K., W. Wang, Y. Y. Hui, S. F. Wang, W. K. Fong, S. P. Lau, C. H. Lam, and C. Surya. "MBE growth of van der Waals epitaxy using graphene buffer layer." In 2013 2nd International Symposium on Next-Generation Electronics (ISNE 2013). IEEE, 2013. http://dx.doi.org/10.1109/isne.2013.6512273.
Повний текст джерелаKoma, Atsushi. "Van der Waals Epitaxy -A New Method to Prepare Ultrathin Heterostructures-." In 1985 Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1985. http://dx.doi.org/10.7567/ssdm.1985.a-0-4.
Повний текст джерелаHong, Young Joon. "Remote and van der Waals epitaxy for vertically stacked micro-LED arrays." In Light-Emitting Devices, Materials, and Applications XXVIII, edited by Martin Strassburg, Jong Kyu Kim, and Michael R. Krames. SPIE, 2024. http://dx.doi.org/10.1117/12.2691134.
Повний текст джерелаЗвіти організацій з теми "Epitaxie van der Waals"
O'Hara, D. J. Molecular Beam Epitaxy and High-Pressure Studies of van der Waals Magnets. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1562380.
Повний текст джерелаKlots, C. E. (Physics and chemistry of van der Waals particles). Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6608231.
Повний текст джерелаMak, Kin Fai. Understanding Topological Pseudospin Transport in Van Der Waals' Materials. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1782672.
Повний текст джерелаKim, Philip. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada616377.
Повний текст джерелаSandler, S. I. The generalized van der Waals theory of pure fluids and mixtures. Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/6382645.
Повний текст джерелаSandler, S. I. (The generalized van der Waals theory of pure fluids and mixtures). Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5610422.
Повний текст джерелаMenezes, W. J. C., and M. B. Knickelbein. Metal cluster-rare gas van der Waals complexes: Microscopic models of physisorption. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10132910.
Повний текст джерелаMartinez Milian, Luis. Manipulation of the magnetic properties of van der Waals materials through external stimuli. Office of Scientific and Technical Information (OSTI), May 2024. http://dx.doi.org/10.2172/2350595.
Повний текст джерелаGwo, Dz-Hung. Tunable far infrared laser spectroscopy of van der Waals bonds: Ar-NH sub 3. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/7188608.
Повний текст джерелаFrench, Roger H., Nicole F. Steinmetz, and Yingfang Ma. Long Range van der Waals - London Dispersion Interactions For Biomolecular and Inorganic Nanoscale Assembly. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1431216.
Повний текст джерела