Добірка наукової літератури з теми "Energy losse"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Energy losse".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Energy losse"

1

Daniel, Mburamatare, William K. Gboney, Hakizimana Jean de Dieu, Akumuntu Joseph, and Fidele Mutemberezi. "Empirical assessment of drivers of electricity prices in East Africa: Panel data experience of Rwanda, Uganda, Tanzania, Burundi, and Kenya." AIMS Energy 11, no. 1 (2023): 1–30. http://dx.doi.org/10.3934/energy.2023001.

Повний текст джерела
Анотація:
<abstract> <p>Sustainable electricity supply plays a key role in economic development. Cost recovery, profitability and affordability of electricity through power tariff regulation, have become a subject of conflict between private providers and regulators. Consequently, regulators need to balance the interests of all stakeholders. The objective of this study, is to measure to which extent, Electricity Net Consumption (EC), Electricity Net Generation (EG), electricity transmission and distribution losses (Losses), International Average Crude oil prices (FP), Consumer Price Index (CPI), Industry Value Added (IVA) could influence the Average Electricity Prices (EP) in East Africa, especially in Rwanda, Uganda, Tanzania, Burundi, and Kenya. The data are from World Bank Indicators and cover the period from 2000 to 2019. This study adopts a three-stage approach, consisting of panel unit root tests, panel cointegration tests and estimating the long run cointegration relationship of the variables in a panel context. We applied four different panel unit root tests including ADF-Fisher Chi-square, Levin, Lin and Chu (LLC); PP-Fisher Chi-square, and Im, Pesaran, and Shin, (IPS). The results reveal that the variables are non-stationary at "level", stationary at first-differences and integrated with order one denoted as I(1). The Pedroni, Kao and Johansen Fisher co-integration tests were performed. This study uses full modified ordinary least squares (FMOLS) and dynamic ordinary least squares (DOLS) to estimate the long run relationship among the variables. We find that the increase in EG, FP, and CPI increase the Average Electricity Prices (EP); while the increase in Losses, EC, and IVA decreases EP. Therefore, we recommend the promotion of long-term investment policies in renewable sources and efficient policies to reduce technical and commercial losses. In addition, this study suggests that appropriate policies related to subsidized electricity prices would, however, prevent adverse effects related to inefficient over-consumption of electricity.</p> </abstract>
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ha, Ji Soo. "A Study on the Heat Loss Improvement in a Refrigerator Ice Dispenser by Using Reverse Heat Loss Method." Journal of Energy Engineering 22, no. 2 (June 30, 2013): 105–11. http://dx.doi.org/10.5855/energy.2013.22.2.105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Song, Dong-Soo. "Analysis of Loss of HVAC for Nuclear Power Plant." Journal of Energy Engineering 23, no. 1 (March 31, 2014): 90–94. http://dx.doi.org/10.5855/energy.2014.23.1.090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Barnaföldi, G. G., G. Fai, P. Lévai, G. Papp, and B. A. Cole. "Where does the energy loss lose strength?" Journal of Physics G: Nuclear and Particle Physics 35, no. 10 (September 17, 2008): 104066. http://dx.doi.org/10.1088/0954-3899/35/10/104066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ha, Ji-Soo, and Jae-Sung Shim. "A Numerical Analysis of the Reverse Heat Loss Method for a Refrigerator." Journal of Energy Engineering 20, no. 4 (December 31, 2011): 303–8. http://dx.doi.org/10.5855/energy.2011.20.4.303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ha, Ji Soo. "A Study on the Heat Loss Effect of Steel Structure in a Refrigerator Mullion." Journal of Energy Engineering 23, no. 2 (June 30, 2014): 35–41. http://dx.doi.org/10.5855/energy.2014.23.2.035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jeong, Hae-Yong. "Analysis of Loss of Condenser Vacuum Accident using a Conservative Approach with a Best-Estimate Code." Journal of Energy Engineering 24, no. 4 (December 31, 2015): 175–82. http://dx.doi.org/10.5855/energy.2015.24.4.175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Merma Paredes, Herbert Edison. "Merma y tratamiento tributario del impuesto a la renta por pérdidas de energía en distribuidoras peruanas de electricidad." Newman Business Review 8, no. 1 (June 30, 2022): 107–22. http://dx.doi.org/10.22451/3002.nbr2022.vol8.1.10074.

Повний текст джерела
Анотація:
Objetivo: Determinar la relación entre la merma y el tratamiento tributario del Impuesto a la Renta por pérdidas de energía eléctrica en distribuidoras peruanas de electricidad, 1997-2014. Método: El estudio contó con un enfoque de investigación cuantitativo, con un nivel descriptivo y correlacional, de diseño no experimental y que involucró una muestra no probabilística de 22 empresas de distribución de energía eléctrica. Resultados: Como resultado se halló un P valor = 0,08 y coeficiente Rho = -0,572, lo cual demostró que la merma se relaciona en forma inversa con el tratamiento tributario de pérdidas de energía. Conclusión: La falta de distingo de la merma tiene un efecto significativo negativo en el tratamiento tributario que se le da al impuesto a la renta en compañías de distribución eléctrica en el Perú, periodo 1997-2014; por ello, cuanto mayor sea el desconocimiento del tratamiento tributario de la pérdida eléctrica, más deficiente será el tratamiento tributario de pérdidas de energía eléctrica.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shcherba, А. A., and N. I. Suprunovska. "ELECTRIC ENERGY LOSS AT ENERGY EXCHANGE BETWEEN CAPACITORS AS FUNCTION OF THEIR INITIAL VOLTAGES AND CAPACITANCES RATIO." Tekhnichna Elektrodynamika 2016, no. 3 (April 18, 2016): 9–11. http://dx.doi.org/10.15407/techned2016.03.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ha, Ji Soo, and Won Sul Ahn. "A Study on the Heat Loss Reduction of a Refrigerator by Thermal Conductivity Change and Partial Removal of Rubber Magnet." Journal of Energy Engineering 23, no. 4 (December 31, 2014): 240–46. http://dx.doi.org/10.5855/energy.2014.23.4.240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Energy losse"

1

Sharp, Zachary B., and William J. Rahmeyer. "Energy Losses in Cross Junctions." DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/256.

Повний текст джерела
Анотація:
Solving for energy losses in pipe junctions has been a focus of study for many years. Although pipe junctions and fittings are at times considered "minor losses" in relation to other energy losses in a pipe network, there are cases where disregarding such losses in flow calculations will lead to errors. To facilitate these calculations, energy loss coefficients (K-factors) are commonly used to obtain energy losses for elbows, tees, crosses, valves, and other pipe fittings. When accurate K-factors are used, the flow rate and corresponding energy at any location in a pipe network can be calculated. K-factors are well defined for most pipe junctions and fittings; however, the literature documents no complete listings of K-factors for crosses. This study was commissioned to determine the K-factors for a wide range of flow combinations in a single pipe cross and the results provide information previously unavailable to compute energy losses associated with crosses. To obtain the loss coefficients, experimental data were collected in which the flow distribution in each of the four cross legs was varied to quantify the influence of velocity and flow distribution on head loss. For each data point the appropriate K-factors were calculated, resulting in over one thousand experimental K-factors that can be used in the design and analysis of piping systems containing crosses.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Eves, Brian John. "Scanning probe energy loss spectroscopy." Thesis, University of Birmingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251871.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jeong, Yu Seon, Minh Vu Luu, Mary Hall Reno, and Ina Sarcevic. "Tau energy loss and ultrahigh energy skimming tau neutrinos." AMER PHYSICAL SOC, 2017. http://hdl.handle.net/10150/625525.

Повний текст джерела
Анотація:
We consider propagation of high-energy earth-skimming taus produced in interactions of astrophysical tau neutrinos. For astrophysical tau neutrinos, we take generic power-law flux, E-2 and the cosmogenic flux initiated by the protons. We calculate tau energy loss in several approaches, such as dipole models and the phenomenological approach in which parametrization of the F-2 is used. We evaluate the tau neutrino charged-current cross section using the same approaches for consistency. We find that uncertainty in the neutrino cross section and in the tau energy loss partially compensate giving very small theoretical uncertainty in the emerging tau flux for distances ranging from 2 to 100 km and for the energy range between 10(6) and 10(11) GeV, focusing on energies above 10(8) GeV. When we consider uncertainties in the neutrino cross section, inelasticity in neutrino interactions and the tau energy loss, which are not correlated, i.e. they are not all calculated in the same approach, theoretical uncertainty ranges from about 30% and 60% at 10(8) GeV to about factors of 3.3 and 3.8 at 10(11) GeV for the E-2 flux and the cosmogenic flux, respectively, for the distance of 10 km rock. The spread in predictions significantly increases for much larger distances, e.g., similar to 1, 000 km. Most of the uncertainty comes from the treatment of photonuclear interactions of the tau in transit through large distances. We also consider Monte Carlo calculation of the tau propagation and we find that the result for the emerging tau flux is in agreement with the result obtained using analytic approach. Our results are relevant to several experiments that are looking for skimming astrophysical taus, such as the Pierre Auger Observatory, HAWC and Ashra. We evaluate the aperture for the Auger and discuss briefly application to the other two experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lundanes, Ingvild Olsen. "The propagation and energy losses of ultra high energy cosmic rays." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-12654.

Повний текст джерела
Анотація:
This project investigates the propagation of ultra-high energy cosmic raynuclei and protons. A simulation of the propagation subjecting the particlesto energy losses due to cosmological redshift as well as interactions with theextra-galactic background radiation seeks to find the initial conditions at thesource which give the best results on Earth compared to the observations ofthe Pierre Auger Observatory (PAO).The results agree with previous works of the same kind that a chemicalcomposition of medium-weight fits the observed air shower data best. Thestarting conditions which gave the best results for the air shower characteristics and RMS(Xmax) were dN/dE proportional to E^{-alpha} with alpha = 1.6 for an initial chemical composition of 25% nitrogen and 75% silicon. Other combinations of themedium-weight nuclei also yielded similar results.No starting conditions could accommodate both the observed dN/dE and theair shower data simultaneously. Other works indicate that this might beimproved by the implementation of extra-galactic magnetic fields, but it couldalso indicate that the error margins in the observed data are underestimated
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Peña, Manchón Francisco Javier de la. "Advanced methods for Electron Energy Loss Spectroscopy core-loss analysis." Paris 11, 2010. http://www.theses.fr/2010PA112379.

Повний текст джерела
Анотація:
Les microscopes électroniques en transmission modernes sont capables de fournir une grande quantité d'informations sous la forme de jeux de données multi-dimensionnelles. Bien que les procédures développées pour l'analyse des spectres uniques soient utilisables pour le traitement de ces données, le développement de techniques plus avancées est indispensable pour une exploitation optimale de ces informations hautement redondantes. Dans ce contexte, nous avons exploré des alternatives aux méthodes standard de quantification, et cherché à optimiser les acquisitions expérimentales afin d'améliorer la précision des analyses. Cela constitue une réponse aux défis actuels de la spectroscopie de perte d'énergie d'électrons (EELS) dont les facteurs limitants sont souvent liés aux dégâts d'irradiation et à la contamination. La quantification élémentaire par la méthode standard d'intégration est limitée aux cas simples. Nous avons montré que l'utilisation d'une méthode basée sur l'ajustement des courbes expérimentales peut surmonter la plupart des limitations de la méthode standard. Cette nouvelle méthode nous a non seulement permis d'obtenir des cartographies élémentaires mais aussi les premières cartographies des liaisons chimiques à l'échelle nanométrique. Les méthodes quantitatives exigent de connaître à priori la composition de l'échantillon, ce qui constitue une difficulté majeur lors de l'analyse d'échantillons inconnus. Nous avons montré que les méthodes de séparation aveugle des sources permettent une analyse rapide et efficace des données multi-dimensionnelles, sans nécessiter la définition d'un modèle. En conditions optimales, il est ainsi possible d'extraire à partir des données expérimentales les signaux correspondants aux différents constituants chimiques ainsi que leur distribution dans l'échantillon
Modern analytical transmission electron microscopes are able to gather a large amount of information from the sample in the form of multi-dimensional datasets. Although the analytical procedures developed for single spectra can be extended to the analysis of multi-dimensional datasets, for an optimal use of this highly redundant information, more advanced techniques must be deployed. In this context, we investigate alternatives to the standard quantification methods and seek to optimise the experimental acquisition for accurate analysis. This addresses the current challenges facing the electron energy-loss spectroscopy (EELS) community, for whom beam damage and contamination are often the limiting factors. EELS elemental quantification by the standard integration method is limited to well-behaved cases. As an alternative we use curve fitting which, as we show, can overcome most of the limitations of the standard method. Furthermore, we extend the method to obtain, in addition to elemental maps, the first bonding maps at the nanoscale. A major difficulty when analysing multi-dimensional datasets of samples of unknown composition is that the quantitative methods require as an input the composition of the sample. We show that blind source separation methods enable fast and accurate analysis of multi-dimensional datasets without defining a model. In optimal conditions these methods are capable of extracting signals from the dataset corresponding to the different chemical compounds in the sample and their distribution
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pickard, Christopher James. "Ab initio electron energy loss spectroscopy." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chandorkar, Saurabh Arun. "Energy loss mechanisms in micromechanical resonators /." May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Eljarrat, Ascunce Alberto. "Quantitative methods for electron energy loss spectroscopy." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/349214.

Повний текст джерела
Анотація:
This thesis explores the analytical capabilities of low-loss electron energy loss spectroscopy (EELS), applied to disentangle the intimate configuration of advanced semiconductor heterostructures. Modern aberration corrected scanning transmission electron microscopy (STEM) allows extracting spectroscopic information from extremely constrained areas, down to atomic resolution. Because of this, EELS is becoming increasingly popular for the examination of novel semiconductor devices, as the characteristic size of their constituent structures shrinks. Energy-loss spectra contain a high amount of information, and since the electron beam undergoes well-known inelastic scattering processes, we can trace the features in these spectra down to elementary excitations in the atomic electronic configuration. In Chapter 1, the general theoretical framework for low-loss EELS is described. This formulation, the dielectric model of inelastic scattering, takes into account the electrodynamic properties of the fast electron beam and the quantum mechanical description of the materials. Low-loss EELS features are originated both from collective mode (plasmons) and single electron excitations (e.g. band gap), that contain relevant chemical and structural information. The nature of these excitations and the inelastic processes involved has to be taken into account in order to analyze experimental data or to perform simulations. The computational tools required to perform these tasks are presented in Chapter 2. Among them, calibration, deconvolution and Kramers-Kronig analysis (KKA) of the spectrum constitute the most relevant procedures, that ultimately help obtain the dielectric information in the form of a complex dielectric function (CDF). This information may be then compared to the one obtained by optical techniques or with the results from simulations. Additional techniques are explained, focusing first on multivariate analysis (MVA) algorithms that exploit the hyperspectral acquisition of EELS, i.e. spectrum imaging (SI) modes. Finally, an introduction to the density functional theory (DFT) simulations of the energy-loss spectrum is given. In Chapter 3, DFT simulations concerning (Al, Ga, In)N binary and ternary compounds are introduced. The prediction of properties observed in low-loss EELS of these semiconductor materials, such as the band gap energy, is improved in these calculations. Moreover, a super-cell approach allows to obtain the composition dependence of both band gap and plasmon energies from the theoretical dielectric response coefficients of ternary alloys. These results are exploited in the two following chapters, in which we experimentally probe structures based on group-III nitride binary and ternary compounds. In Chapter 4, two distributed Bragg reflector structures are examined (based upon AlN/GaN and InAlN/GaN multilayers, respectively) through different strategies for the characterization of composition from plasmon energy shift. Moreover; HAADF image simulation is used to corroborate he obtained results; plasmon width, band gap energy and other features are measured; and, KKA is performed to obtain the CDF of GaN. In Chapter 5, a multiple InGaN quantum well (QW) structure is examined. In these QWs (indium rich layers of a few nanometers in width), we carry out an analysis of the energy-loss spectrum taking into account delocalization and quantum confinement effects. We propose useful alternatives complementary to the study of plasmon energy, using KKA of the spectrum. Chapters 6 and 7 deal with the analysis of structures that present pure silicon-nanocrystals (Si-NCs) embedded in silicon-based dielectric matrices. Our aim is to study the properties of these nanoparticles individually, but the measured low-loss spectrum always contains mixed signatures from the embedding matrix as well. In this scenario, Chapter 6 proposes the most straightforward solution; using a model-based fit that contains two peaks. Using this strategy, the Si-NCs embedded in an Er-doped SiO2 layer are characterized. Another strategy, presented in Chapter 7, uses computer-vision tools and MVA algorithms in low-loss EELS-SIs to separate the signature spectra of the Si-NCs. The advantages and drawbacks of this technique are revealed through its application to three different matrices (SiO2, Si3N4 and SiC). Moreover, the application of KKA to the MVA results is demonstrated, which allows to extract CDFs for the Si-NCs and surrounding matrices.
Este trabajo explora las posibilidades analíticas que ofrece la técnica de espectroscopia electrónica de bajas pérdidas (low-loss EELS), capaces de revelar la configuración estructural de los más avanzados dispositivos semiconductores. El uso de modernos microscopios electrónicos de transmisión-barrido (STEM) nos permite obtener información espectroscópica a partir de volúmenes reducidos, hasta llegar a resolución atómica. Por ello, EELS es cada vez mas popular para la observación de los dispositivos semiconductores, a medida que los tamaños característicos de sus estructuras constituyentes se miniaturiza. Los espectros de pérdida de energía contienen mucha información: dado que el haz de electrones sufre unos bien conocidos procesos de dispersión inelástica, podemos trazar relaciones entre estos espectros y excitaciones elementales en la configuración atómica de los elementos y compuestos constituyentes de cada material. Se describe un marco teórico para el estudio del low-loss EELS: el modelo dieléctrico de dispersión inelástica, que toma en consideración las propiedades electrodinámicas del haz de electrones y la descripción mecano-cuántica de los materiales. Adicionalmente, se describen en detalle las herramientas utilizadas en el análisis de datos experimentales o la simulación teórica de espectros. Monitorizando las energías de band gap y plasmon en los datos experimentales de low-loss EELS se obtiene información directa sobre propiedades electrónicas de los materiales. Además, usando análisis Kramers-Kronig en los espectros se obtiene información dieléctrica que puede ser comparada con las simulaciones o con otras técnicas (ópticas). Se demuestra el uso de estas herramientas con una serie de estudios sobre estructuras basadas en nitruros del grupo-III. Por otro lado, el uso de algoritmos para el análisis multivariante permite separar las contribuciones individuales que se miden mezcladas en espectros de estructuras complicadas. Hemos utilizado estas avanzadas herramientas para el análisis de estructuras basadas en silicio que contienen nano-cristales embebidos en matrices dieléctricas.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nicholls, Rebecca Jane. "Electron energy loss spectroscopy of fullerene materials." Thesis, University of Oxford, 2006. http://ora.ox.ac.uk/objects/uuid:2fd55ddf-ca30-4b9a-a37f-61b024a3f22f.

Повний текст джерела
Анотація:
This thesis is comprised of two closely related studies of fullerenes. The first part is an investigation of C60 and C70 nanocrystals using both experimental and simulated electron energy loss (EEL) spectra. Through a detailed comparison of particular features in EEL spectra collected from these materials in a transmission electron microscope, with simulated spectra, it is established that differences in spectra from different materials can be linked to particular aspects of the structural models. For example, in the case of C60 differences in experimental spectra from different samples can be linked to differences in the bond lengths within the molecules of different samples. In the case of C70, it is found that features within the spectrum which have previously been attributed to the ten equatorial atoms do not have this origin in a crystal. The second part is an experimental investigation of endohedral fullerenes Nd@C82 and Sc3N@C80. The effect of temperature on the EEL spectrum is investigated and, in the case of Nd@C82, the effect of the presence of different isomers is also investigated. Spectra are successfully obtained from the encapsulated atoms, and the importance of careful experiments in terms of avoiding contamination is highlighted.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Natusch, Michael Kurt Heinrich. "Detection limits in electron energy-loss spectroscopy." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624128.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Energy losse"

1

Ibach, Harald. Electron Energy Loss Spectrometers. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-540-47157-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Brydson, Rik. Electron energy loss spectroscopy. Oxford: Bios in association with the Royal Microscopical Society, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

International, ORTECH. Study of residential ventilation duct energy losses. Ottawa, Ont: Efficiency and Alternative Energy Technology Branch/CANMET, Energy, Mines and Resources Canada, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

International, ORTECH. Study of residential ventilation duct energy losses. Ottawa, Ont: Energy Efficiency Division, Energy Technology Branch/CANMET, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

W, Norbury John, Tripathi Ratikanta, and Langley Research Center, eds. Radiative energy loss by galactic cosmic rays. Hampton, VA: National Aeronautics and Space Administration, Langley Research Center, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mills, Evan. Energy-efficiency options for insurance loss prevention. Berkeley, CA: Environmental Energy Technologies Division, Ernest Orlando Lawrence Berkeley National Laboratory, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Egerton, Ray F. Electron Energy-Loss Spectroscopy in the Electron Microscope. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-6887-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-5099-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-9583-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Egerton, R. F. Electron energy-loss spectroscopy in the electron microscope. New York: Plenum Press, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Energy losse"

1

Branlard, Emmanuel. "Tip-Losses with Focus on Prandlt’s Tip Loss Factor." In Research Topics in Wind Energy, 227–45. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55164-7_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yedidiah, Sam. "Losses of Energy." In Centrifugal Pump User’s Guidebook, 61–74. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1217-8_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Egerton, R. F. "Energy-Loss Instrumentation." In Electron Energy-Loss Spectroscopy in the Electron Microscope, 29–109. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-9583-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Eckstein, Wolfgang. "Inelastic Energy Loss." In Computer Simulation of Ion-Solid Interactions, 63–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-73513-4_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Spohr, Reimar. "Energy-loss phenomena." In Ion Tracks and Microtechnology, 49–92. Wiesbaden: Vieweg+Teubner Verlag, 1990. http://dx.doi.org/10.1007/978-3-322-83103-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Struchtrup, Henning. "Efficiencies and Irreversible Losses." In Thermodynamics and Energy Conversion, 235–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43715-5_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rez, Peter. "Energy Loss Fine Structure." In Transmission Electron Energy Loss Spectrometry in Materials Science and The EELS Atlas, 97–126. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527605495.ch4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Williams, David B., and C. Barry Carter. "Electron Energy-Loss Spectrometers." In Transmission Electron Microscopy, 637–51. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2519-3_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Williams, David B., and C. Barry Carter. "The Energy-Loss Spectrum." In Transmission Electron Microscopy, 653–66. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2519-3_38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Avery, Neil R. "Electron Energy Loss Spectroscopy." In Vibrational Spectroscopy of Molecules on Surfaces, 223–65. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-8759-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Energy losse"

1

Zhang, Yu, Natheer Alatawneh, Ming C. Cheng, and Pragasen Pillay. "Magnetic core losses measurement instrumentations and a dynamic hysteresis loss model." In Energy Conference (EPEC). IEEE, 2009. http://dx.doi.org/10.1109/epec.2009.5420918.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Burkholder, Frank, Michael Brandemuehl, Henry Price, Judy Netter, Chuck Kutscher, and Ed Wolfrum. "Parabolic Trough Receiver Thermal Testing." In ASME 2007 Energy Sustainability Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/es2007-36129.

Повний текст джерела
Анотація:
NREL has fabricated a parabolic trough receiver thermal loss test stand to quantify parabolic receiver off-sun steadystate heat loss. At an operating temperature of 400°C, measurements on Solel UVAC2 and Schott PTR70 receivers suggest off-sun thermal losses of approximately 370 W/m receiver length. For comparison, a receiver from the field with hydrogen in its annulus loses approximately 1000 W/m receiver length. The UVAC2 heat loss results agree within measurement uncertainty to previously published data, while the PTR70 results are somewhat higher than previously published data. The sensitivity of several receiver performance parameters is considered and it is concluded that differences in indoor and outdoor testing cannot account for the difference in PTR70 thermal loss results.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mazumder, Sudip K., and Tirthajyoti Sarkar. "Optical Modulation for High Power Systems: Potential for Electromagnetic-Emission, Loss, and Stress Control by Switching Dynamics Variation of Power Semiconductor Devices." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

de Oliveira, M. E., D. F. A. Boson, and A. Padilha-Feltrin. "A statistical analysis of loss factor to determine the energy losses." In Exposition: Latin America. IEEE, 2008. http://dx.doi.org/10.1109/tdc-la.2008.4641691.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Quattrone, Francesco, and Robert D. Lorenz. "Dynamic modeling of losses in electrical machines for active loss control." In 2012 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2012. http://dx.doi.org/10.1109/ecce.2012.6342413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Maxey, L. C., M. R. Cates, and S. L. Jaiswal. "Efficient Optical Couplings for Fiber-Distributed Solar Lighting." In ASME 2003 International Solar Energy Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/isec2003-44244.

Повний текст джерела
Анотація:
Optical couplings in large core optical waveguides have many similarities with those in conventional optical fibers but pose some unconventional challenges as well. The larger geometry, looser manufacturing tolerances and reduced dimensional stability compound the problems associated with making low-loss couplings in large core waveguides. The individual factors contributing to coupling losses are discussed to develop an understanding of the extant loss mechanisms. Individual methods and materials employed to mitigate the impact of each of the dominant loss mechanisms are discussed in detail. A combination of endface geometry control, axial alignment constraint and refractive index matching are employed to produce highly efficient optical couplings in large core waveguides. The combination of these elements has significantly reduced the insertion losses due to connector couplings. Prior to implementing the current methods losses of 15% and greater were common but these have been reduced to 2%–5% with the current methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Martin, T. H., J. F. Seamen, and D. O. Jobe. "ENERGY LOSSES IN SWITCHES." In Ninth IEEE International Pulsed Power Conference. IEEE, 1993. http://dx.doi.org/10.1109/ppc.1993.513375.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bilbao, J. "Determination of energy losses." In 16th International Conference and Exhibition on Electricity Distribution (CIRED 2001). IEE, 2001. http://dx.doi.org/10.1049/cp:20010887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rajapakse, Athula, Aniruddha Gole, and Rohitha Jayasinghe. "An improved representation of FACTS controller semiconductor losses in EMTP-type programs using accurate loss-power injection into network solution." In Energy Society General Meeting (PES). IEEE, 2009. http://dx.doi.org/10.1109/pes.2009.5275747.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Magar, Sameer, Hong Guo, and Patricia Iglesias. "Estimation of Energy Conservation in Internal Combustion Engine Vehicles Using Ionic Liquid As an Additive." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87002.

Повний текст джерела
Анотація:
Lubricants play a vital role in improving energy efficiency and reducing friction in any type of frictional contact. The automotive industry is facing strict regulations in terms of emissions from the petroleum fuel. Strict government norms are compelling automotive manufacturers to push their technological limits to improve the fuel economy and emissions from their vehicles. Improving the efficiency of the engine will ultimately result in saving fuel thus improving the fuel economy of the engine. Concerning energy consumption; 33% of the fuel energy developed by combustion of fuel is dissipated to overcome the friction losses in the vehicle [1]. Out of this, 11.56% of the total fuel energy is lost in engine system. The distribution of this 11.56% fuel energy lost in engine system includes 3.5% consumed in bearings, 1.16% in pumping and hydraulic viscous losses, 5.2% and 1.73% consumed in piston assembly and valve train respectively [1]. If we consider losses only in bearings, piston assembly and valve train it results in 10.4% energy loss as compared to the total energy generated by the fuel. In the last decade, ionic liquids have shown potential as lubricants and lubricant additives. This study focusses on the use ionic liquids as additives for friction and wear reduction resulting in energy conservation in an internal combustion engine. In this work, the contact between piston ring and cylinder wall was simulated using a ball-on-flat tribometer. Most of the engine oils are based on mineral oils and results showed that adding 1% of the ionic liquid to mineral oil reduced friction loses by 27% [2], which corresponds to conserving 2.8% of fuel energy if just the frictional loss in piston assembly, valve train and bearing are considered. In the United States, there are 253 million vehicles on average consuming 678 gallons of fuel per year [3], the use of ionic liquid can save an estimated 4.8 billion gallons of fuel per year, which results in estimated saving of 11.56 billion dollars.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Energy losse"

1

Vankuik B., C. Gardner, S. Bellavia, A. Rusek, and K. Brown. NSRL Energy Loss Calculator. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/1061842.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Satogata, T. RHIC low energy beam loss projections. Office of Scientific and Technical Information (OSTI), August 2009. http://dx.doi.org/10.2172/970517.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Moore, Winston, J. Enrique Chueca, Veronica R. Prado, Michelle Carvalho Metanias Hallack, and Laura Giles Álvarez. Energy Transition in Barbados: Opportunities for Adaptation of Energy Taxes to Mitigate Loss of Government Revenue. Inter-American Development Bank, November 2022. http://dx.doi.org/10.18235/0004534.

Повний текст джерела
Анотація:
Barbados, through its Barbados National Energy Policy (BNEP) 2019-2030, announced its commitment to achieving 100 percent renewable energy and carbon neutrality by 2030. This commitment creates an opportunity for the GoB to manage the impact of the transition toward renewable clean energy by introducing measures to transform the way revenue from energy is collected thereby avoiding unnecessary fiscal costs. The purpose of this study is to calculate the revenue gap derived from Barbados 2030 energy transition goal of having a revenue-neutral transition and propose and evaluate various policy measures that could help seize opportunities to close that gap. The simulation model suggests that the energy transition would result in an estimated BBD$105 million in revenue losses a year by following the BNEP. Such a reduction would create a significant fiscal gap that would need to be addressed through the introduction of new forms of taxes or changes to current taxes in order to adapt tax collection to revenue creation from the new clean energy economy. A wide range of tax policy options and issues surrounding their effective implementation were discussed such as: increased taxes on fossil fuels, a change in the VAT rate, mileage taxes on electric and hybrid vehicles, and taxes on renewable energy production. Each of these new tax approaches can help address the fiscal gap estimated above.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

none,. Technology Roadmap. Energy Loss Reduction and Recovery in Industrial Energy Systems. Office of Scientific and Technical Information (OSTI), November 2004. http://dx.doi.org/10.2172/1218706.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sheppard, J. Energy Loss and Energy Spread Growth in a Planar Undulator(LCC-0086). Office of Scientific and Technical Information (OSTI), October 2003. http://dx.doi.org/10.2172/826498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Xin-Nian, and Xiao-feng Guo. Multiple parton scattering in nuclei: Parton energy loss. Office of Scientific and Technical Information (OSTI), February 2001. http://dx.doi.org/10.2172/791186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gluckstern, R. Coupling impedance and energy loss with magnet laminations. Office of Scientific and Technical Information (OSTI), November 1985. http://dx.doi.org/10.2172/6144342.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

K.Y. Ng. Coherent parasitic energy loss of the recycler beam. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/825826.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Furman, M., H. Lee, and B. Zotter. Energy loss of bunched beams in rf cavities. Office of Scientific and Technical Information (OSTI), August 1986. http://dx.doi.org/10.2172/7019618.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kesmodel, L. L. High resolution electron energy loss studies of surface vibrations. Office of Scientific and Technical Information (OSTI), May 1992. http://dx.doi.org/10.2172/5231722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії