Добірка наукової літератури з теми "Energy distributions of desorbates"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Energy distributions of desorbates".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Energy distributions of desorbates"

1

Georgiou, S., A. Koubenakis, P. Kontoleta, and M. Syrrou. "A Comparative Study of the UV Laser Ablation of Van Der Waals Films of Benzene Derivatives." Laser Chemistry 17, no. 2 (January 1, 1997): 73–95. http://dx.doi.org/10.1155/1997/45930.

Повний текст джерела
Анотація:
Ablation of thick (≈ 15 μm) films of C6H6, C6H5CH3 and C6H5CI at 248 nm and 193 nm is studied by means of time-of-flight quadrupole mass spectrometry. The dependence of the desorbate most probable translational energies on laser fluence is determined over the ≈20–200 mJ/cm2 range. In all cases, the corresponding diagrams are found to exhibit “plateaus”, in accord with the report by Braun and Hess [J. Chem. Phys. 99 (1993) 8330]. However, no specific correlation with the thermodynamic properties of the compounds is observed, thereby questioning the attribution of the “plateaus” to phase transformation of the films under ablation conditions. A high sensitivity of the distributions and intensities on the rate of deposition and the irradiation history of the films is observed, indicating the importance of the matrix “structure” for the distribution of the absorbed energy. On the other hand, the analysis of the total translational energies of the desorbates suggests that during ablation, efficient energy transfer occurs in the film. This possibility is further demonstrated by the observation of high translational energies and sputtering yields for C6H12(nonabsorbing at 248 nm) condensed in thickness of ≈ I μm on top of C6H5CH3 films. These observations can be qualitatively explained in terms of the collisional sequence model. Alternatively, a photothermal model may be applicable under the provision that energy distribution in the films is limited due to imperfections introducing barriers (bottlenecks) to its ‘flow’.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

KOŁASIŃSKI, KURT W. "DYNAMICS OF HYDROGEN INTERACTIONS WITH Si(100) AND Si(111) SURFACES." International Journal of Modern Physics B 09, no. 21 (September 30, 1995): 2753–809. http://dx.doi.org/10.1142/s0217979295001038.

Повний текст джерела
Анотація:
Experimental and theoretical work probing the dynamics of dissociative adsorption and recombinative desorption of hydrogen at Si(100) and Si (111) surfaces is reviewed. Whereas molecular beam experiments demonstrate that molecular excitations do aid in overcoming a substantial activation barrier toward adsorption, desorbed molecules are found to have a total energy content only slightly above the equilibrium expectation at the surface temperature. A consistent interpretation of the ad/desorption dynamics is arrived at which requires neither a violation of microscopic reversibility nor defect-mediated processes. An essential element of this model is that surface atom relaxations play an essential role in the dynamics such that different portions of the potential energy hypersurface govern the results of adsorption and desorption experiments. The ‘lost’ energy, i.e. that portion of the activation energy not evident in the total energy of the desorbed molecules, is deposited in the surface coordinates where it is inaccessible to experiments that probe the desorbates final state.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Impey, C. D., and G. Neugebauer. "Energy distributions of blazars." Astronomical Journal 95 (February 1988): 307. http://dx.doi.org/10.1086/114638.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stankovic, Ljubisa, Ervin Sejdic, and Milos Dakovic. "Vertex-Frequency Energy Distributions." IEEE Signal Processing Letters 25, no. 3 (March 2018): 358–62. http://dx.doi.org/10.1109/lsp.2017.2764884.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kurucz, Robert L. "Theoretical Stellar Energy Distributions." Highlights of Astronomy 7 (1986): 827–31. http://dx.doi.org/10.1017/s1539299600007358.

Повний текст джерела
Анотація:
SummaryWe are working hard to improve model atmospheres because existing models have numerical errors, an unphysical treatment of convection, an inadequate or non-existant treatment of statistical equilibrium, an arbitrarily chosen microturbulent velocity, an arbitrarily chosen helium abundance, and a greatly underestimated line opacity for iron group elements.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

González-Dávila, J. C. "Energy of generalized distributions." Differential Geometry and its Applications 49 (December 2016): 510–28. http://dx.doi.org/10.1016/j.difgeo.2016.09.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Poland, Douglas. "Energy distributions of gallium nanoclusters." Journal of Chemical Physics 123, no. 2 (July 8, 2005): 024707. http://dx.doi.org/10.1063/1.1992479.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Berta, S., D. Lutz, P. Santini, S. Wuyts, D. Rosario, D. Brisbin, A. Cooray, et al. "Panchromatic spectral energy distributions ofHerschelsources." Astronomy & Astrophysics 551 (March 2013): A100. http://dx.doi.org/10.1051/0004-6361/201220859.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Impey, Chris, and Loretta Gregorini. "Energy distributions of radio galaxies." Astronomical Journal 105 (March 1993): 853. http://dx.doi.org/10.1086/116477.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Elvis, Martin, Belinda J. Wilkes, Jonathan C. McDowell, Richard F. Green, Jill Bechtold, S. P. Willner, M. S. Oey, Elisha Polomski, and Roc Cutri. "Atlas of quasar energy distributions." Astrophysical Journal Supplement Series 95 (November 1994): 1. http://dx.doi.org/10.1086/192093.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Energy distributions of desorbates"

1

Del, Fré Samuel. "Études théoriques de la photodésorption d'analogues de glaces moléculaires interstellaires : application au monoxyde de carbone." Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILR039.

Повний текст джерела
Анотація:
Des quantités inhabituelles de molécules en phase gazeuse sont détectées dans les régions froides (environ 10 K) du milieu interstellaire (ISM), principalement attribuées à la désorption non thermique de molécules depuis les glaces déposées sur les grains de poussière. En particulier, la désorption induite par les rayons ultraviolets du vide (photodésorption VUV) est considérée comme étant une voie de désorption majoritaire dans les régions de l'ISM dominées par les photons. Les investigations expérimentales ont révélé que dans les glaces pures de monoxyde de carbone (CO), espèce omniprésente dans l'ISM, la photodésorption VUV peut suivre un mécanisme indirect de désorption induite par transition électronique (DIET) pour les photons dont l'énergie est comprise entre 7 et 10 eV. Néanmoins, la compréhension des mécanismes moléculaires sous-jacents reste un sujet de débat scientifique. Dans ce contexte astrochimique, nous présentons une étude théorique combinée utilisant la dynamique moléculaire ab initio (AIMD) basée sur la théorie de la fonctionnelle de la densité (DFT) et des potentiels machine learning (PML) construits avec des réseaux de neurones artificiels (ANN), afin d'étudier la dernière partie du mécanisme DIET dans les glaces amorphes de CO. Ici, une molécule CO hautement excitée vibrationnellement (v = 40) au centre d'un agrégat composé de 50 molécules de CO, initialement optimisé puis thermalisé à 15 K, déclenche, la désorption indirecte de molécules de surface. Nos résultats théoriques révèlent que le processus de désorption consiste en 3 étapes fondamentales qui commence par une attraction mutuelle entre la molécule excitée vibrationnellement et une ou deux molécules voisines, activée par l'étirement de la liaison CO et favorisée par l'effet stérique des molécules environnantes. Cela est suivi par une séquence de transferts d'énergie initiée par une collision, se concluant en la désorption de molécules CO vibrationnellement froides dans 88% des trajectoires AIMD. De plus, les distributions théoriques de l'énergie interne et translationnelle des molécules désorbées concordent remarquablement avec les résultats expérimentaux, ce qui soutient le rôle crucial de la relaxation vibrationnelle dans le processus de désorption. Enfin, les premiers PML construits à partir des simulations AIMD, sont capables d'ajuster avec précision la surface d'énergie potentielle multidimensionnelle du système, permettant de prédire efficacement les énergies des agrégats et les forces atomiques. Les simulations de dynamique moléculaire classique utilisant ces potentiels sont plus de 1800 fois plus rapides que celles basées sur l'AIMD, tout en offrant des précisions similaires à ceux de la DFT
Unusual amounts of gas-phase molecules are detected in the cold regions (around 10 K) of the interstellar medium (ISM), primarily attributed to the non-thermal desorption of molecules from ices deposited on dust grains. In particular, vacuum ultraviolet (VUV) photon-induced desorption (photodesorption) is considered a major desorption pathway in photon-dominated regions of the ISM. Experimental investigations have revealed that in pure carbon monoxide (CO) ices, a ubiquitous species in the ISM, VUV photodesorption can follow an indirect mechanism of desorption induced by electronic transitions (DIET) for photons with energy between 7 and 10 eV. Nevertheless, the understanding of the underlying molecular mechanisms remains a topic of scientific debate. In this astrochemical context, we present a combined theoretical study using ab initio molecular dynamics (AIMD) based on density functional theory (DFT) and machine learning potentials (PML) constructed with artificial neural networks (ANN) to study the final part of the DIET mechanism in amorphous CO ices. Here, a highly vibrationally excited CO molecule (v = 40) at the center of an aggregate initially composed of 50 CO molecules, optimized and then thermalized at 15 K, triggers the indirect desorption of surface molecules. Our theoretical results reveal that the desorption process consists of three fundamental steps, beginning with a mutual attraction between the vibrationally excited molecule and one or two neighboring molecules, activated by CO bond stretching and facilitated by the steric effect of surrounding molecules. This is followed by a sequence of energy transfers initiated by a collision, resulting in the desorption of vibrationally cold CO molecules in 88% of the AIMD trajectories. Additionally, the theoretical distributions of the internal and translational energy of desorbed molecules remarkably match experimental results, supporting the crucial role of vibrational relaxation in the desorption process. Finally, the first PML constructed from AIMD simulations accurately fit the multidimensional potential energy surface of the system, allowing efficient prediction of aggregate energies and atomic forces. Classical molecular dynamics simulations using these potentials are over 1800 times faster than those based on AIMD while offering precision comparable to DFT
Стилі APA, Harvard, Vancouver, ISO та ін.
2

MacKenzie, Todd. "New methods for deblending spectral energy distributions in confused imaging." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/56192.

Повний текст джерела
Анотація:
The submillimetre band is ideal for studying high-redshift star-forming galaxies, but such studies are hampered by the poor resolution of single-dish telescopes. Interferometric follow-up has shown that many sources are in fact comprised of multiple sources. For many such targets, confusion-limited Herschel observations that target the peak of their far-infrared emission are also available. Many methods for analysing these data have been developed, but most follow the traditional approach of extracting fluxes before model spectral energy distributions are fit, which erases degeneracies among fitting parameters and glosses over the intricacies of confusion noise. We have developed a forward-modelling method in order to tackle this problem in a more statistically rigorous way, which combines source deblending and spectral energy distribution fitting into the same procedure. We adapt our method to three independent projects, all of which benefit from our improved methodology. We investigate a "giant submillimetre arc" behind a massive foreground cluster and uncover seven multiply imaged galaxies, of which six are found to be at a redshift of z~2.9, and possibly constitute an interacting galaxy group. Using our new method, we disentangle the arc into its contributing components and constrain their far-IR properties. Using confusion limited Herschel-SPIRE imaging, the far-IR properties LABOCA detected submillimetre sources can be constrained. Despite such sources often breaking up in high-resolution ALMA imaging, existing studies have implemented traditional fitting methods. We apply our new forward modelling method to re-derive constraints on the far-infrared properties of these sources, exploring selection effects on this sample, while highlighting the benefits of our fitting approach. Finally, we present SCUBA-2 follow-up of 51 candidate proto-cluster fields undergoing enhanced star-formation. With the accompanying Herschel-SPIRE observations and a realistic dust temperature prior, we provide photometric redshift and far-IR luminosity estimates for 172 SCUBA-2 selected sources within the Planck overdensity fields. We find a redshift distribution similar to sources found in cosmological surveys, although our fields are enhanced in both density of sources and star formation rate density over a wide range of redshifts.
Science, Faculty of
Physics and Astronomy, Department of
Graduate
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hornsey, Richard Ian. "Factors affecting ion energy distributions in liquid metal ion sources." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236154.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Turrell, Arthur Edward. "Processes driving non-Maxwellian distributions in high energy density plasmas." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/18083.

Повний текст джерела
Анотація:
The purpose of this thesis is to explore the driving of non-Maxwellian distributions of particles in high energy density plasmas in a few select cases, with particular reference to efforts to produce a net gain in energy via inertial confinement fusion (ICF). Non-Maxwellian distributions are typically short-lived, as distributions are forced toward equilibrium by collisions, and are rarely static as a net transfer of energy must occur to sustain them. This makes non-Maxwellian distributions challenging to study with conventional approaches to plasma physics. The strategy adopted in this work to understand their evolution, and their effects, is a kinetic approach in which particles are individually accounted for. The specific cases presented are that of degenerate electrons during the heating of the cold fuel shell in hotspot ignition schemes, ion-ion inverse bremsstrahlung absorption of laser radiation, and large-angle Coulomb collisions. New computational algorithms based on the Monte Carlo technique are presented, and are capable of modelling the salient aspects of the phenomena explored. Important results which form part of this thesis include that conventional models underestimate degenerate electron temperatures long after the plasma ceases to be degenerate, that it may be possible to induce temperatures of keV in light-ion species with high power, short pulse lasers, and that consideration of large-angle collisions changes interactions in a plasma in several significant ways. Of most interest are the ability of large-angle collisions to decrease equilibration times, drive athermal tails on distribution functions, and increase the overall yield from fusion reactions relative to small-angle only simulations.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yang, Guangyuan. "The Energy Goodness-of-fit Test for Univariate Stable Distributions." Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1339476355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Stins, O. W. M. "A Retarding Field Energy Analyser to measure the Energy Distributions of Liquid Metal Ion Sources." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-32306.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Stins, O. W. M. "A Retarding Field Energy Analyser to measure the Energy Distributions of Liquid Metal Ion Sources." Forschungszentrum Rossendorf, 1994. https://hzdr.qucosa.de/id/qucosa%3A22057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Horwat, Stephen M. "Continuous distributions of non-dilatonic branes." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=31235.

Повний текст джерела
Анотація:
In this thesis we construct new supergravity solutions representing continuous distributions of D3, M2, and M5-branes. These solutions are completely specified by the harmonic function H , which is determined by solving 12H=0 in carefully chosen coordinate systems with SO( n) x SO(D⊥ - n) symmetry. Afterwards, we calculate the corresponding charge distributions using a generalized Gauss's law type argument. These solutions are asymtoptically AdS in the near horizon limit.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fretwell, Tracey Ann. "Monte Carlo simulation of energy intensity distributions for electron beam lithography." Thesis, University of Manchester, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.576984.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dahlgren, David. "Monte Carlo simulations of Linear Energy Transfer distributions in radiation therapy." Thesis, Uppsala universitet, Högenergifysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446550.

Повний текст джерела
Анотація:
In radiotherapy, a quantity asked for by clinics when calculating a treatment plan, along withdose, is linear energy transfer. Linear energy transfer is defined as the absorbed energy intissue per particle track length and has been shown to increase with relative biologicaleffectiveness untill the overkilling effect. In this master thesis the dose averaged linear energytransfer from proton and carbon ion beams was simulated using the FLUKA multi purposeMonte Carlo code. The simulated distributions have been compared to algorithms fromRaySearch Laboratories AB in order to investigate the agreement between the computationmethods. For the proton computation algorithm improvements to the current scoring algorithmwere also implemented. A first version of the linear energy transfer validation code was alsoconstructed. Scoring of linear energy transfer in the RaySearch algorithm was done with theproton Monte Carlo dose engine and the carbon pencil beam dose engine. The results indicatedthat the dose averaged linear energy transfer from RaySearch Laboratories agreed well for lowenergies for both proton and carbon beams. For higher energies shape differences were notedwhen using both a small and large field size. The protons, the RaySearch algorithm initiallyoverestimates the linear energy transfer which could result from fluence differences in FLUKAcompared to the RaySearch algorithm. For carbon ions, the difference could stem from someloss of information in the tables used to calculate the linear energy transfer in the RaySearchalgorithm. From validation γ-tests the proton linear energy transfer passed for (3%/3mm) and(1%/1mm) with no voxels out of tolerance. γ-tests for the carbon linear energy transfer passedwith no voxels out of tolerance for (5%/5mm) and a fail rate of 2.92% for (3%/3mm).
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Energy distributions of desorbates"

1

Kay, M. J. Ion energy distributions. Manchester: UMIST, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fretwell, Tracey Ann. Monte Carlo simulation of energy intensity distributions for electron beam lithography. Manchester: University of Manchester, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hodge, Bri-Mathias. Solar ramping distributions over multiple timescales and weather patterns. Golden, Colo: National Renewable Energy Laboratory, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

J, Shainsky Lauri, ed. Biomass and nutrient distributions in central Oregon second-growth Ponderosa pine ecosystems. Portland, OR (333 S.W. First Avenue, P.O. Box 3890, Portland 97208-3890): U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

C, Popescu Cristina, Tuffs Richard J, and SED2004 International Workshop on the Spectral Energy Distributions of Gas-Rich Galaxies (2004 : Heidelberg, Germany), eds. The spectral energy distributions of gas-rich galaxies: Confronting models with data : international workshop, Heidelberg, Germany, 4 - 8 October 2004. Melville, N.Y: American Institute of Physics, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

SED, 2004 (2004 Heidelberg Germany). The spectral energy distributions of gas-rich galaxies: Confronting models with data : international workshop, Heidelberg, Germany, 4-8 October 2004 : SED 2004 Heidelberg. [Melville, N.Y.]: American Institute of Physics, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Andreo, P. Tables of charge and energy deposition distributions in elemental materials irradiated by plane-parallel electron beams with energies between 0.1 and 100 MeV. Osaka, Japan: Research Institute for Advanced Science and Technology, University of Osaka Prefecture (1-2 Gakuen-cho, Sakai, Osaka 593, Japan), 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Papanikolaou, N. Handbook of calculated electron momentum distributions, compton profiles, and x-ray form factors of elemental solids. Boca Raton: CRC Press, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

United States. Congress. House. Committee on Energy and Commerce. Subcommittee on Commerce, Consumer Protection, and Competitiveness. Long-term care insurance standards: Hearing before the Subcommittee on Commerce, Consumer Protection, and Competitiveness of the Committee on Energy and Commerce, House of Representatives, One Hundred Second Congress, first session, on H.R. 1205, H.R. 1916, and H.R. 2378, bills to regulate long-term care insurance policies, to allow tax-free distributions from IRA's for purchase of long-term care insurance by certain individuals, and to establish federal standards for long-term care insurance policies, October 24, 1991. Washington: U.S. G.P.O., 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

National Aeronautics and Space Administration (NASA) Staff. Far-Infrared Spectral Energy Distributions of Quasars. Independently Published, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Energy distributions of desorbates"

1

Dapor, Maurizio. "Electron Energy Distributions." In Transport of Energetic Electrons in Solids, 121–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43264-5_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dapor, Maurizio. "Electron Energy Distributions." In Transport of Energetic Electrons in Solids, 93–105. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03883-4_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dapor, Maurizio. "Electron Energy Distributions." In Transport of Energetic Electrons in Solids, 95–108. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47492-2_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kroesen, G. M. W., M. Grift, R. J. M. M. Snijkers, and F. J. Hoog. "Ion Energy Distributions." In Advanced Technologies Based on Wave and Beam Generated Plasmas, 149–73. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-0633-9_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dapor, Maurizio. "Electron Energy Distributions." In Transport of Energetic Electrons in Solids, 151–72. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37242-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Starzak, Michael E. "Maxwell–Boltzmann Distributions." In Energy and Entropy, 197–216. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-77823-5_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Stanković, Ljubiša, Miloš Daković, and Ervin Sejdić. "Vertex-Frequency Energy Distributions." In Signals and Communication Technology, 377–415. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03574-7_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kurucz, Robert L. "Theoretical Stellar Energy Distributions." In Highlights of Astronomy, 827–31. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-010-9376-7_124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Da Costa Lewis, Nigel. "Modeling and Fitting Price Distributions." In Energy Risk Modeling, 65–106. London: Palgrave Macmillan UK, 2005. http://dx.doi.org/10.1057/9780230523784_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kellogg, G. J., P. E. Sokol, and J. White. "High Energy Inelastic Neutron Scattering from Hydrogen in Cesium Intercalated Graphite." In Momentum Distributions, 351–54. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-2554-1_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Energy distributions of desorbates"

1

Hiskes, J. R. "Electron energy distributions and vibrational population distributions." In Production and neutralization of negative ions and beams. AIP, 1990. http://dx.doi.org/10.1063/1.39654.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Polletta, M., L. Maraschi, L. Chiappetti, G. Trinchieri, M. Giorgetti, A. Comastri, L. Angelini, and M. Cappi. "Intrinsic AGN Spectral Energy Distributions." In X-RAY ASTRONOMY 2009; PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES: Proceedings of the International Conference. AIP, 2010. http://dx.doi.org/10.1063/1.3475317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

WOHLEVER, J., and R. BERNHARD. "Energy distributions in rods and beams." In 12th Aeroacoustic Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gay Ducati, Maria Beatriz. "Dilepton Backward Rapidity Distributions." In Diffraction 06, International Workshop on Diffraction in High-Energy Physics. Trieste, Italy: Sissa Medialab, 2007. http://dx.doi.org/10.22323/1.035.0053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jimenez-Delgado, Pedro. "Dynamical Parton Distributions at NNLO." In European Physical Society Europhysics Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.084.0307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Goldstein, Gary R. "Determining quark helicity from jet distributions." In HIGH−ENERGY SPIN PHYSICS/EIGHTH INTERNATIONAL SYMPOSIUM. AIP, 1989. http://dx.doi.org/10.1063/1.38276.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hautmann, Francesco. "TMD parton distributions and splitting functions." In 35th International Conference of High Energy Physics. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.120.0150.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wallon, Samuel, Mounir El Beiyad, Bernard Pire, Mathieu Segond, and Lech Szymanowski. "On chiral-odd Generalized Parton Distributions." In 35th International Conference of High Energy Physics. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.120.0178.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wan, X., L. Chen, D. Z. Jin, W. Xiang, and X. H. Tan. "Energy distributions and angular distributions of pulsed plasmas based on vacuum surface flashover." In 2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). IEEE, 2016. http://dx.doi.org/10.1109/deiv.2016.7748687.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wu, Alan C., Michael A. Lieberman, and John P. Verboncoeur. "Ion Energy Distributions in Multifrequency Capacitive Discharges." In 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4345772.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Energy distributions of desorbates"

1

Skurikhin, Alexei N., and Richard J. Stead. Seismic Spectrogram Recognition by Matching the Energy Distributions. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1331246.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fallen, Christopher T. Determining Energy Distributions of HF-Accelerated Electrons at HAARP. Fort Belvoir, VA: Defense Technical Information Center, November 2015. http://dx.doi.org/10.21236/ad1000661.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Woodworth, J. R., M. E. Riley, and D. C. Meister. Ion energy and angular distributions in inductively coupled Argon RF discharges. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/212756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schivell, J., D. A. Monticello, and S. J. Zweben. Calculation of charged fusion product distributions in space, energy, and time. Office of Scientific and Technical Information (OSTI), February 1992. http://dx.doi.org/10.2172/5609910.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

D.N. Ruzic, M.J. Goeckner, Samuel A. Cohen, and Zhehui Wang. Nitrogen Atom Energy Distributions in a Hollow-cathode Planar Sputtering Magnetron. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/8184.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schivell, J., D. A. Monticello, and S. J. Zweben. Calculation of charged fusion product distributions in space, energy, and time. Office of Scientific and Technical Information (OSTI), February 1992. http://dx.doi.org/10.2172/10130956.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhou, Li. A Retarding-potential Analyzer for Measuring Energy Distributions in Electron Beams. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6628.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Woodworth, J. R., M. E. Riley, and T. W. Hamilton. Ion energy and angular distributions in inductively driven RF discharges in chlorine. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/231654.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kerns, J. A. Alpha particle density and energy distributions in tandem mirrors using Monte-Carlo techniques. Office of Scientific and Technical Information (OSTI), May 1986. http://dx.doi.org/10.2172/5728137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Stanley, B. J., and G. Guiochon. Numerical estimation of adsorption energy distributions from adsorption isotherm data with the expectation-maximization method. Office of Scientific and Technical Information (OSTI), August 1993. http://dx.doi.org/10.2172/10173477.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії