Добірка наукової літератури з теми "ENERGY DISSIPATORS"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "ENERGY DISSIPATORS".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "ENERGY DISSIPATORS"
Chaudhry, M. Hanif. "Energy dissipators." Canadian Journal of Civil Engineering 23, no. 4 (August 1, 1996): 987. http://dx.doi.org/10.1139/l96-905.
Повний текст джерелаOu, Jin-Ping, Bo Wu, and T. T. Soong. "Performance Comparison of Passive Energy Dissipation Systems in Structural Applications – II: Nonlinear Reference System." Advances in Structural Engineering 1, no. 4 (October 1998): 261–72. http://dx.doi.org/10.1177/136943329800100403.
Повний текст джерелаDaneshfaraz, Rasoul, Ehsan Aminvash, Amir Ghaderi, Alban Kuriqi, and John Abraham. "Three-Dimensional Investigation of Hydraulic Properties of Vertical Drop in the Presence of Step and Grid Dissipators." Symmetry 13, no. 5 (May 18, 2021): 895. http://dx.doi.org/10.3390/sym13050895.
Повний текст джерелаAiken, Ian D., Douglas K. Nims, and James M. Kelly. "Comparative study of four passive energy dissipation systems." Bulletin of the New Zealand Society for Earthquake Engineering 25, no. 3 (September 30, 1992): 175–92. http://dx.doi.org/10.5459/bnzsee.25.3.175-192.
Повний текст джерелаGrigorian, C. E., T. S. Yang, and E. P. Popov. "Slotted Bolted Connection Energy Dissipators." Earthquake Spectra 9, no. 3 (August 1993): 491–504. http://dx.doi.org/10.1193/1.1585726.
Повний текст джерелаRajaratnam, N. "Energy dissipators and hydraulic jump." Canadian Journal of Civil Engineering 22, no. 3 (June 1, 1995): 649. http://dx.doi.org/10.1139/l95-075.
Повний текст джерелаProvorova, T. P. "Hydraulic calculation of energy dissipators." Hydrotechnical Construction 29, no. 10 (October 1995): 562–69. http://dx.doi.org/10.1007/bf02443044.
Повний текст джерелаOrekhov, Genrikh. "Pressure distribution and cavitation in counter-vortex flow energy dissipators of hydraulic spillways." MATEC Web of Conferences 251 (2018): 04034. http://dx.doi.org/10.1051/matecconf/201825104034.
Повний текст джерелаWang, Chengquan, Chongli Yin, Yun Zou, Boyan Ping, Xi Wu, Juan Liao, and Miaomiao Sun. "Numerical Investigations on Seismic Behavior of Segmental Assembly of Concrete Filled Steel Tube Piers with External Replaceable Energy-Dissipating Links." Materials 16, no. 3 (January 28, 2023): 1122. http://dx.doi.org/10.3390/ma16031122.
Повний текст джерелаEl-Sayed, Y. M., and R. A. Gaggioli. "The Integration of Synthesis and Optimization for Conceptual Designs of Energy Systems." Journal of Energy Resources Technology 110, no. 2 (June 1, 1988): 109–13. http://dx.doi.org/10.1115/1.3231363.
Повний текст джерелаДисертації з теми "ENERGY DISSIPATORS"
Cruz, Cháidez Servio Tulio de la. "Contribution to the assessment of the efficiency of friction dissipators for seismic protection of buildings." Doctoral thesis, Universitat Politècnica de Catalunya, 2003. http://hdl.handle.net/10803/6229.
Повний текст джерелаLa Tesis está organizada de tal manera que sea fácil su seguimiento. Por esta razón, los capítulos se han escrito siguiendo una secuencia lógica. Una breve descripción de los capítulos se presenta a continuación.
El primer capítulo trata de los aspectos generales del Control Estructural con un especial énfasis en los disipadores de fricción, los cuales se incluyen en el llamado enfoque de 'Control Pasivo'.
El Capítulo 2 proporciona un repaso general al estado del conocimiento relativo a los principios de la fricción seca y a la investigación y aplicación de los dispositivos disipadores de fricción, así como a sus simulaciones numéricas.
Un procedimiento numérico ha sido desarrollado (programa ALMA) en los Capítulos 3 (edificios de una sola planta) y 4 (edificios de varias plantas) para llevar a cabo simulaciones numéricas de edificios equipados con disipadores de fricción y los resultados obtenidos fueron comparados a los que se obtuvieron con el programa comercial ADINA. La similitud entre los resultados de ambos programas es aceptable.
El Capítulo 5 describe los ensayos sobre una mesa vibratoria que se hicieron en dos modelos de edificios: uno de una sola planta y otro de dos plantas; ambos equipados con disipadores de fricción. Los resultados obtenidos se compararon a los resultados conseguidos con ALMA. Los resultados coinciden aceptablemente.
Luego de probar la validez del programa ALMA, éste se usó para hacer un estudio numérico preliminar para obtener la llamada 'carga óptima de deslizamiento' de los disipadores de fricción en el Capítulo 5. Las curvas que se pueden dibujar a partir de los resultados obtenidos con este estudio, pueden ser aplicadas para determinar las cargas óptimas de deslizamiento de edificios de una y varias plantas.
Finalmente, el Capítulo 7 contiene las conclusiones de esta Tesis y algunas propuestas para las futuras líneas de investigación.
Además, se han incluido cinco apéndices. El Apéndice A contiene los principios básicos del Análisis del Contacto. El Apéndice B trata de la solución numérica de las ecuaciones de movimiento para sistemas de uno y varios grados de libertada. Este apéndice está muy relacionado con el contenido de los Capítulos 3 y 4 de esta Tesis. El Apéndice C describe la solución de las ecuaciones de movimiento usando multiplicadores de Lagrange. El Apéndice D describe el equipo de laboratorio y la instrumentación usada en los ensayos. Los resultados de éstos, y la comparación entre éstos y los resultados numéricos (programa ALMA), son presentados en el Apéndice E.
Izerrouken, Salah. "Contribution à la réduction des dissipations énergétiques dans les moto-ventilateurs à hautes vitesses." Thesis, Paris, ENSAM, 2016. http://www.theses.fr/2016ENAM0041/document.
Повний текст джерелаNowadays, centrifugal fans are widely used in many industrial applications such as automotive, aeronautic, vacuum cleaner, etc. Due to their high adaptability, they can operate over a wide flow range especially with high speed rotation. In order to reduce the impact on environment, centrifugal fan as other energy conversion system has to display a high efficiency. However, a better understanding of their working and of the rotor-stator interaction is required to enhance their design and to make them widely integrated in current applications. The purpose of this study is to analyze and to quantify the influence of the solidity vaned diffusers on the performance of a centrifugal fan. A computational study has been conducted to analyze the performance of a centrifugal fan under various levels of impeller-diffuser interactions. The objective was to understand the pressure recovery phenomena in each diffuser. Different geometries were proposed to reduce both separation flow phenomenon and viscous losses. The geometries are all composed with the same impeller and return channel, only the vaned diffusers differ; the trailing edges are maintained at the same position while the leading edges have different radial positions. The characterization of the fan has been realized by an experimental setup designed and built in agreement to the standards ISO 5801 and 516
Buffon, Franco Turco. "Determinação de pressões em fossas de erosão a jusante de dissipadores tipo salto esqui." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/140937.
Повний текст джерелаIn this dissertation are presented the main theorical concepts involved in the action of the jets formed in ski jump spillways on stilling basins type pre-excavated scour hole, from the path of the jet in its air stage and in his submerged phase, with particular emphasis on hydrodynamic pressures and its characterization by the bottom of the basin. To experimentally study the action of the jets in stilling basins, was used a physical model in scale 1:100 built in Hydraulic Works Laboratory of IPH/UFRGS with experiments of different flow rates and different depths of pre-excavated scour hole. The data were extracted from experiments on the physical model through extensive instrumentation, using gates, piezometers, pressure sensors, images and other equipment. A careful analysis of the data generated in the physical model from the jet images in your path through the air was performed and the flow of the jet in its submerged phase, comparing the model data to the results obtained by traditional methods of calculation. The pressure data generated during the tests and presented the results for the mean pressures and dynamic pressures were also analyzed. Dynamic pressures observed in the physical model were compared with those calculated by means of theoretical methods for the purpose of evaluating the quality of this methodology for use in engineering projects, where we observed large differences in magnitude of pressure when in shallow water beds, and diferences in pressure distribution over the stilling basin bottom, especially when in deep water beds. In order to adjust the applied methodology, it was proposed to change parameters governing the shape of the pressure bulb and the application of a pressure damping coefficient, and thus was possible to significantly improved the distribution and magnitude of the calculated pressures due to action of the jets in the stilling basin bottom. The results have been satisfactory up to a certain distance after the peak pressure caused by the jet, and after this point the hydraulic jump effects prevail and should be investigated in future studies.
Aguirre, Herrera Santiago Alberto, and Barazorda Elio Andre Vidal. "Comportamiento estructural de una edificación esencial de mediana altura usando aisladores de base y disipadores SLB." Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2021. http://hdl.handle.net/10757/654612.
Повний текст джерелаThis article consists of analyzing a new high-tech anti-seismic control alternative for the construction of hospitals in Peru, which in its regulations requires the use of base insulation for essential buildings. For this, the structural evaluation of a building constructed with seismic isolators is chosen and the same with the implementation of the SLB (Shear Link Bozzo) energy dissipation system. The results analyzed for each anti-seismic control technique studied are: mezzanine drifts, floor accelerations, energy balance and analysis of plastic hinges, based on the philosophy of continuous functionality.
Trabajo de investigación
Piedrafita, Francos Daniel. "Designing, testing and modelling two innovative non-conventional buckling restrained braces for seismic resistant buildings." Doctoral thesis, Universitat de Girona, 2014. http://hdl.handle.net/10803/284738.
Повний текст джерелаEn la present tesi, dos BVR totalment metàl·lics s’han dissenyat, fabricat i assajat, satisfent tots dos els requeriments dels protocols definits per les normes europees i americanes. Estan formats per un element de travat ranurat que estabilitza el nucli metàl·lic. El primer d’ells, el Braç de Vinclament Restringit Modular (BVRM), està format per diversos mòduls seriats que a la vegada contenen diverses unitats de dissipació, que plastifiquen sota esforços tallants, connectades en paral·lel. Tot i que té un bon comportament histerètic i una gran ductilitat, el nucli és pesat i difícil de fabricar. El segon braç, anomenat Braç de Vinclament Restringit Ranurat (BVRR), soluciona aquests inconvenients. Plastifica sota esforços axials, de la mateixa manera que els BVR convencionals, però el nucli massís és substituït per una platina perforada. Aquest nucli consisteix en un únic element composat per dos bandes laterals, dissenyades per a plastificar i amb una secció quasi constant, connectades per diversos ponts estabilitzadors que es mantenen sempre en el seu rang elàstic. Aquests ponts, juntament amb l’element de travat, impedeixen el vinclament de les bandes laterals. S’han proposat diverses expressions de disseny pels dos braços. S’ha formulat i implementat, en un programa d’elements finits comercial, un model de material per a simular numèricament el comportament dels braços, reduint així la dependència dels assajos a escala real durant el seu procés de disseny
Asad, Mohammad. "Failure analysis and mitigating strategies for masonry walls subject to vehicular impacts." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/201381/1/Mohammad_Asad_Thesis.pdf.
Повний текст джерелаTrad, Ayman. "Analyse du comportement et modélisation de structures souples de protection : le cas des écrans de filets pare-pierres sous sollicitations statique et dynamique." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00690546.
Повний текст джерелаJaui-Yao, Yeh, and 葉瑞堯. "Testing of Diagonal Bracing with Steel-Plate Energy Dissipators Under Cyclic Load." Thesis, 1993. http://ndltd.ncl.edu.tw/handle/67597145111026268837.
Повний текст джерелаLin, Hung-Yu, and 林宏宇. "A Study on Energy Dissipators and Local Scouring in Downstream of Check Dam." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/83600186757159976734.
Повний текст джерела國立中興大學
土木工程學系
89
According to the related research about the scouring effects of free over-fall will be used in this study. The situation will be discussed in steady flow by using different energy dissipators — apron, water cushion and secondary dam. Facilities, the protected effect and the comparative characteristics of scouring hole will be found (such as the max. depth, max. length, shape factor and volume) in downstream of the energy dissipators. The result would be determined by energy dissipating theory, which is the relations between the scale of dissipators and energy variation. In view of energy disspators, the water cushion had the result of protection better than apron, because of the current hits mutually at the water pond. And the height factorβ=0.13 is the best. The situation of the secondary dam is the moving bed, therefore analysis of the scouring characteristic to make use energy variety of system. In both the rigid and soft energy disspators, the energy loss of scouring increased with slop. The degree of scouring depth and volume could be lowered effectively in rigid energy disspators. In water cushion, the average decreased rate of the scouring length about is 40 percent, and the scouring volume quantity decreases rate reaches 40 percent at least. Although, scouring length can’t be decreased at apron disspators. The scour phenomenon be mollified to a downstream region for protective effects. Scouring is more serious between major and secondary dam if the distance is too short from both of them. Character factorα>1.56 is the suggested application. In this experiment condition, a simple formula is proposed for a relevant establishment. It is expected to be helpful in designs of energy disspators.
Moreira, Andreia Manuela Borges. "Numerical modelling of spillways and energy dissipators using the smoothed particle hydrodynamics method." Doctoral thesis, 2021. https://hdl.handle.net/10216/132628.
Повний текст джерелаКниги з теми "ENERGY DISSIPATORS"
Hager, Willi H. Energy Dissipators and Hydraulic Jump. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8048-9.
Повний текст джерелаHager, Willi H. Energy dissipators and hydraulic jump. Dordrecht: Kluwer Academic, 1992.
Знайти повний текст джерелаHydraulics of spillways and energy dissipators. New York: Marcel Dekker, 2005.
Знайти повний текст джерелаHydraulics of spillways and energy dissipators. New York: Marcel Dekker, 2005.
Знайти повний текст джерелаD, Vischer, and Hager Willi H, eds. Energy dissipators. Rotterdam, Netherlands: A.A. Balkema, 1995.
Знайти повний текст джерелаHager, Willi H. Energy Dissipators and Hydraulic Jump. Springer, 2013.
Знайти повний текст джерелаHager, Willi H. Energy Dissipators and Hydraulic Jump. Springer London, Limited, 2013.
Знайти повний текст джерелаHager, Willi H. Energy Dissipators and Hydraulic Jump. Springer Netherlands, 2009.
Знайти повний текст джерелаKhatsuria, R. M. Hydraulics of Spillways and Energy Dissipators. CRC Press, 2004. http://dx.doi.org/10.1201/9780203996980.
Повний текст джерелаKhatsuria, Rajnikant M. Hydraulics of Spillways and Energy Dissipators. Taylor & Francis Group, 2004.
Знайти повний текст джерелаЧастини книг з теми "ENERGY DISSIPATORS"
Ma, Xin, Yaan Hu, and Zhonghua Li. "Comparative Study of the Hydraulic Characteristics of Stratified Energy Dissipators in In-Chamber Longitudinal Culvert Systems." In Lecture Notes in Civil Engineering, 324–33. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6138-0_29.
Повний текст джерелаHager, Willi H. "Bucket-Type Energy Dissipator." In Energy Dissipators and Hydraulic Jump, 175–84. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8048-9_11.
Повний текст джерелаHager, Willi H. "Introduction." In Energy Dissipators and Hydraulic Jump, 1–4. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8048-9_1.
Повний текст джерелаHager, Willi H. "Expanding Channel." In Energy Dissipators and Hydraulic Jump, 151–74. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8048-9_10.
Повний текст джерелаHager, Willi H. "Various Aspects of Stilling Basins." In Energy Dissipators and Hydraulic Jump, 185–212. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8048-9_12.
Повний текст джерелаHager, Willi H. "Types of Stilling Basins." In Energy Dissipators and Hydraulic Jump, 213–28. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8048-9_13.
Повний текст джерелаHager, Willi H. "Experiences with Stilling Basins." In Energy Dissipators and Hydraulic Jump, 229–38. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8048-9_14.
Повний текст джерелаHager, Willi H. "Classical Hydraulic Jump." In Energy Dissipators and Hydraulic Jump, 5–40. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8048-9_2.
Повний текст джерелаHager, Willi H. "Sloping Jump." In Energy Dissipators and Hydraulic Jump, 41–52. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8048-9_3.
Повний текст джерелаHager, Willi H. "Hydraulic Jump in Non-Rectangular Channel." In Energy Dissipators and Hydraulic Jump, 53–66. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8048-9_4.
Повний текст джерелаТези доповідей конференцій з теми "ENERGY DISSIPATORS"
Neyra Torres, Jose Luis, Neicer Campos Vasquez, Ruben Kevin Manturano Chipana, Eduardo Lizana Gamarra, David Antonio Guerra-Quispe, and Luisa Andrea López Lau. "Performance Analysis of Energy Dissipators Implemented in Buildings." In 21st LACCEI International Multi-Conference for Engineering, Education and Technology (LACCEI 2023): “Leadership in Education and Innovation in Engineering in the Framework of Global Transformations: Integration and Alliances for Integral Development”. Latin American and Caribbean Consortium of Engineering Institutions, 2023. http://dx.doi.org/10.18687/laccei2023.1.1.556.
Повний текст джерелаAmaddeo, Carmen, Gianmario Benzoni, Enzo D'Amore, Adolfo Santini, and Nicola Moraci. "Structural Health Monitoring of a Bridge with Energy Dissipators." In 2008 SEISMIC ENGINEERING CONFERENCE: Commemorating the 1908 Messina and Reggio Calabria Earthquake. AIP, 2008. http://dx.doi.org/10.1063/1.2963752.
Повний текст джерелаDONG, JIANWEI, WEILIN XU, JUN DENG, SHANJUN LIU, and WEI WANG. "NUMERICAL SIMULATION OF TURBULENT FLOW THROUGH THROAT-TYPE ENERGY-DISSIPATORS." In Proceedings of the 13th IAHRߝ;APD Congress. World Scientific Publishing Company, 2002. http://dx.doi.org/10.1142/9789812776969_0067.
Повний текст джерелаGoel, Arun. "Laboratory Investigations on Development of Energy Dissipators for Square Shaped Outlets." In World Environmental and Water Resources Congress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40976(316)215.
Повний текст джерелаGiacomini, Anna, Giani Giani, and M. Migliazza. "Quasi-Static and Dynamic Response of Energy Dissipators for Rockfall Protection." In First Southern Hemisphere International Rock Mechanics Symposium. Australian Centre for Geomechanics, Perth, 2008. http://dx.doi.org/10.36487/acg_repo/808_64.
Повний текст джерелаWudi, Václav, Petr Štemberk, and Yuliia Khmurovska. "LBM-based analysis of concrete flow for rapid prototyping of spillway energy dissipators." In 24TH TOPICAL CONFERENCE ON RADIO-FREQUENCY POWER IN PLASMAS. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0136915.
Повний текст джерелаVillalba Morales, Jesús Daniel, AMADEO BENAVENT-CLIMENT, FRANCISCO LOPEZ-ALMANSA, and DAVID ESCOLANO-MARGARIT. "A HEURISTIC APPROACH FOR OPTIMAL DESIGN OF BRACE-TYPE HYSTERETIC DISSIPATORS FOR SEISMIC PROTECTION OF FRAMED BUILDINGS." In The 16th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures. Russian Association for Earthquake Engineering and Protection from Natural and Manmade Hazards, 2019. http://dx.doi.org/10.37153/2686-7974-2019-16-1162-1162.
Повний текст джерелаGuzel, Birhan U., Mahesh Prakash, Eren Semercigil, and Ozden Turan. "Energy Dissipation with Sloshing for Absorber Design." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79838.
Повний текст джерелаAraujo Rodriguez, Gustavo Adolfo, Barbara G. Simpson, Tu X. Ho, Gustavo F. Orozco O., Andre R. Barbosa, and Arijit Sinha. "CYCLIC TESTING AND NUMERICAL MODELING OF A THREE-STORY MASS-TIMBER BUILDING WITH A PIVOTING MASS PLY PANEL SPINE AND BUCKLING-RESTRAINED ENERGY DISSIPATORS." In World Conference on Timber Engineering 2023 (WCTE2023). As, Norway: World Conference on Timber Engineering (WCTE 2023), 2023. http://dx.doi.org/10.52202/069179-0286.
Повний текст джерелаCavallini, Alberto, Simone Mancin, Luisa Rossetto, and Claudio Zilio. "Porosity Effects on Thermal Behaviour of 10 PPI Aluminum Foam." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88467.
Повний текст джерела