Добірка наукової літератури з теми "Endoscopic image"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Endoscopic image".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Endoscopic image"

1

Truitt, Theodore O., Roger A. Adelman, Dan H. Kelly, and J. Paul Willging. "Quantitative Endoscopy: Initial Accuracy Measurements." Annals of Otology, Rhinology & Laryngology 109, no. 2 (February 2000): 128–32. http://dx.doi.org/10.1177/000348940010900203.

Повний текст джерела
Анотація:
The geometric optics of an endoscope can be used to determine the absolute size of an object in an endoscopic field without knowing the actual distance from the object. This study explores the accuracy of a technique that estimates absolute object size from endoscopic images. Quantitative endoscopy involves calibrating a rigid endoscope to produce size estimates from 2 images taken with a known traveled distance between the images. The heights of 12 samples, ranging in size from 0.78 to 11.80 mm, were estimated with this calibrated endoscope. Backup distances of 5 mm and 10 mm were used for comparison. The mean percent error for all estimated measurements when compared with the actual object sizes was 1.12%. The mean errors for 5-mm and 10-mm backup distances were 0.76% and 1.65%, respectively. The mean errors for objects <2 mm and ≥2 mm were 0.94% and 1.18%, respectively. Quantitative endoscopy estimates endoscopic image size to within 5% of the actual object size. This method remains promising for quantitatively evaluating object size from endoscopic images. It does not require knowledge of the absolute distance of the endoscope from the object, rather, only the distance traveled by the endoscope between images.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Thomas, Roy F., William T. Monacci, and Eric A. Mair. "Endoscopic Image-Guided Transethmoid Pituitary Surgery." Otolaryngology–Head and Neck Surgery 127, no. 5 (November 2002): 409–16. http://dx.doi.org/10.1067/mhn.2002.129821.

Повний текст джерела
Анотація:
OBJECTIVE: We describe a new endoscopic transethmoid approach for pituitary surgery and to compare it with other surgical techniques. STUDY DESIGN AND SETTING: Eleven patients undergoing pituitary surgery from September 2000 through January 2002 underwent an image-guided endoscopic transethmoid procedure to remove pituitary tumors. Ease of approach, resection, exposure of the surgical field, and operative complications were documented. RESULTS: Endoscopic ethmoidectomy permits enhanced exposure and simplified tumor resection. The use of one nostril to stabilize the endoscope and the other to pass instruments affords a bimanual procedure that avoids the difficulty of small nares and keeping the scope fixed while exchanging instruments. Operative morbidity was low with no significant complications in this pilot study. CONCLUSIONS: This approach opens a generous operative exposure while safely allowing room to endoscopically maneuver and affords direct access should revision surgery be needed. SIGNIFICANCE: This procedure uses a technique familiar to otolaryngologists and may be used for pituitary and other skull base tumors. The transseptal approach to the sella turcica is the most commonly performed procedure to reach the pituitary gland. Three major variations of the transseptal approach are used: sublabial approach, external rhinoplasty approach, and transnasal approach. Each has unique advantages and disadvantages relative to each other and the endoscopic procedure, apart from the shared transseptal route ( Table 1 ). The techniques have been described elsewhere previously. 1–3 More recently, endoscopy has been used to aid the approach to the pituitary. The first endoscopic procedures used the transseptal dissection route through a standard sublabial incision, with the endoscope passed through a self-retaining speculum. 4–6 In other cases the endoscope was used for the approach only, with the binocular operating microscope subsequently used for the tumor resection. 7 Except for the wide field of vision afforded by the endoscopic approach, the morbidity of a transseptal dissection remained. More recent advances have used an endonasal approach, which allows the surgeon to bypass the transseptal dissection. 8–11 The majority of procedures performed use one nostril to pass the endoscope and other instruments, with limited endoscopic operative maneuverability. We introduce an endonasal transethmoid approach bypassing the need for a nasal retractor, headrest, and postoperative nasal packing, while providing enhanced endoscopic operative maneuverability through bimanual instrumentation using both nares and an endoscope stabilizer.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sato, Tomoya. "TXI: Texture and Color Enhancement Imaging for Endoscopic Image Enhancement." Journal of Healthcare Engineering 2021 (April 7, 2021): 1–11. http://dx.doi.org/10.1155/2021/5518948.

Повний текст джерела
Анотація:
Recognition of lesions with subtle morphological and/or color changes during white light imaging (WLI) endoscopy remains a challenge. Often the endoscopic image suffers from nonuniform illumination across the image due to curvature in the lumen and the direction of the illumination light of the endoscope. We propose an image enhancement technology to resolve the drawbacks above called texture and color enhancement imaging (TXI). TXI is designed to enhance three image factors in WLI (texture, brightness, and color) in order to clearly define subtle tissue differences. In our proposed method, retinex-based enhancement is employed in the chain of endoscopic image processing. Retinex-based enhancement is combined with color enhancement to greatly accentuate color tone differences of mucosal surfaces. We apply TXI to animal endoscopic images and evaluate the performance of TXI compared with conventional endoscopic enhancement technologies, conventionally used techniques for real-world image processing, and newly proposed techniques for surgical endoscopic image augmentation. Our experimental results show that TXI can enhance brightness selectively in dark areas of an endoscopic image and can enhance subtle tissue differences such as slight morphological or color changes while simultaneously preventing over-enhancement. These experimental results demonstrate the potential of the proposed TXI algorithm as a future clinical tool for detecting gastrointestinal lesions having difficult-to-recognize tissue differences.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

HU, CHAO, LI LIU, BO SUN, and MAX Q. H. MENG. "COMPACT REPRESENTATION AND PANORAMIC REPRESENTATION FOR CAPSULE ENDOSCOPE IMAGES." International Journal of Information Acquisition 06, no. 04 (December 2009): 257–68. http://dx.doi.org/10.1142/s0219878909001989.

Повний текст джерела
Анотація:
A capsule endoscope robot is a miniature medical instrument for inspection of gastrointestinal tract. In this paper, we present image compact representation and preliminary panoramic representation methods for the capsule endoscope. First, the characteristics of the capsule endoscopic images are investigated and different coordinate representations of the circular image are discussed. Secondly, effective compact representation methods including special DPCM and wavelet compression techniques are applied to the endoscopic images to get high compression ratio and signal to noise ratio. Then, a preliminary approach to panoramic representation of endoscopic images is presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Akhmetvaleev, R. R., I. A. Lackman, D. V. Popov, and M. V. Krasnoperov. "Image segmentation technique to support automatic marking of objects in endoscopic images." Informatization and communication, no. 2 (February 16, 2021): 146–54. http://dx.doi.org/10.34219/2078-8320-2021-12-2-146-154.

Повний текст джерела
Анотація:
The aim of this study is to develop a method for visual segmentation of various objects of endoscopic images based on a collection of endoscopic images. The method was developed on the basis of a collection of images obtained by ENVD LLC on a contractual basis with medical organizations of the Republic of Bashkortostan, Russia. The collection consists of 70 endoscopic images recording clinical cases diagnosed in accordance with the Paris Tumor Classification of Gastrointestinal Diseases. A number of machine vision operations were carried out, including image preprocessing, image sampling, and subsequent clustering for the purpose of image segmentation. Results: A technique for the analysis of endoscopic images was developed, which makes it possible to obtain the contours of objects of interest to a specialist performing endoscopy. Conclusion. The developed solution allows to speed up and improve the procedure for marking endoscopic images, which in turn prepares a platform for further processing of endoscopic images, for example, nosological classification of neoplasms.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lu, Bin. "Image Aided Recognition of Wireless Capsule Endoscope Based on the Neural Network." Journal of Healthcare Engineering 2022 (April 7, 2022): 1–7. http://dx.doi.org/10.1155/2022/3880356.

Повний текст джерела
Анотація:
Wireless capsule endoscopy is an important method for diagnosing small bowel diseases, but it will collect thousands of endoscopy images that need to be diagnosed. The analysis of these images requires a huge workload and may cause manual reading errors. This article attempts to use neural networks instead of artificial endoscopic image analysis to assist doctors in diagnosing and treating endoscopic images. First, in image preprocessing, the image is converted from RGB color mode to lab color mode, texture features are extracted for network training, and finally, the accuracy of the algorithm is verified. After inputting the retained endoscopic image verification set into the neural network algorithm, the conclusion is that the accuracy of the neural network model constructed in this study is 97.69%, which can effectively distinguish normal, benign lesions, and malignant tumors. Experimental studies have proved that the neural network algorithm can effectively assist the endoscopist’s diagnosis and improve the diagnosis efficiency. This research hopes to provide a reference for the application of neural network algorithms in the field of endoscopic images.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wu, Chia Hsiang, and Mei Yun Su. "Specular Highlight Detection from Endoscopic Images for Shape Reconstruction." Applied Mechanics and Materials 870 (September 2017): 357–62. http://dx.doi.org/10.4028/www.scientific.net/amm.870.357.

Повний текст джерела
Анотація:
Endoscopy provides a convenient way to access the inner structures of various organs. The endoscopic images provide an immediate observation and help diagnosis and therapy. Shape reconstruction from endoscopic images further provides real scale factor for image-guided navigation. However, specular highlights, bright patches of light appearing on the imaged surface, mask the real image texture and result in erroneous reconstruction. Therefore, the detection of specular highlights is essential for accurate reconstruction. In this study, we divide the images into homogeneous regions by color quantization and spatial segmentation. Then, a thresholding technique based on histogram of the pixel intensity values is used. Finally, we check the gray level consistency for each region to avoid over segmentation. The experimental results show that the proposed method can achieve successfully detection.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

HSU, CHIEH-HAO, SHAOU-GANG MIAOU, and FENG-LING CHANG. "A DISTORTION CORRECTION METHOD FOR ENDOSCOPE IMAGES BASED ON CALIBRATION PATTERNS AND A SIMPLE MATHEMATIC MODEL FOR OPTICAL LENS." Biomedical Engineering: Applications, Basis and Communications 17, no. 06 (December 25, 2005): 309–18. http://dx.doi.org/10.4015/s1016237205000469.

Повний текст джерела
Анотація:
In the past 30 years, the progress in optical engineering, computer science and electronic techniques have made the endoscopy an invaluable tool in both internal clinics and surgical operation. As its applications increase exponentially, it has even become a specialized division in the clinical medicine. In order to obtain a larger field of view inside a small and narrow gastrointestinal tract, an endoscope is usually equipped with a wide-angle lens (Fish eye lens). Thus, an acquired image is often with certain degree of shape distortion. The distortion gets even more serious as the objects extend outward from the center of the lens in radial. This paper discusses the effect of such distortion and the correction of the effect. By using a calibration pattern, the nonlinear distortion is corrected with a simple mathematic model for the endoscope image. Once the endoscopic lens is calibrated, the same mathematic model can be utilized repeatedly for the images captured by that endoscope. After capturing the calibration pattern using an endoscopic instrument, digital image processing techniques are applied to extract the calibration pattern from the distorted image. We propose a second order mathematic model and consider the parameters of optical lens. The coordinates of each dot in the calibration pattern are the input to the mathematic model for the correction of endoscope images. The experimental results show that the correction method is effective. For example, by comparing to the original calibration pattern image, the average errors in area calculation are 76.46% and 4.68% for the distorted and the corrected images, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Uematsu, Junichi, Mitsushige Sugimoto, Mariko Hamada, Eri Iwata, Ryota Niikura, Naoyoshi Nagata, Masakatsu Fukuzawa, Takao Itoi, and Takashi Kawai. "Efficacy of a Third-Generation High-Vision Ultrathin Endoscope for Evaluating Gastric Atrophy and Intestinal Metaplasia in Helicobacter pylori-Eradicated Patients." Journal of Clinical Medicine 11, no. 8 (April 14, 2022): 2198. http://dx.doi.org/10.3390/jcm11082198.

Повний текст джерела
Анотація:
Background: Image-enhanced endoscopy methods such as narrow-band imaging (NBI) are advantageous over white-light imaging (WLI) for detecting gastric atrophy, intestinal metaplasia, and cancer. Although new third-generation high-vision ultrathin endoscopes improve image quality and resolution over second-generation endoscopes, it is unclear whether the former also enhances color differences surrounding atrophy and intestinal metaplasia for endoscopic detection. We compared the efficacy of a new third-generation ultrathin endoscope and an older second-generation endoscope. Methods: We enrolled 50 Helicobacter pylori-eradicated patients who underwent transnasal endoscopy with a second-generation and third-generation endoscope (GIF-290N and GIF-1200N, respectively) in our retrospective study. Color differences based on the International Commission on Illumination 1976 (L*, a*, b*) color space were compared between second-generation and third-generation high-vision endoscopes. Results: Color differences surrounding atrophy produced by NBI on the GIF-1200N endoscope were significantly greater than those on GIF-290N (19.2 ± 8.5 vs. 14.4 ± 6.2, p = 0.001). In contrast, color differences surrounding intestinal metaplasia using both WLI and NBI were similar on GIF-1200N and GIF-290N endoscopes. NBI was advantageous over WLI for detecting intestinal metaplasia on both endoscopes. Conclusions: NBI using a third-generation ultrathin endoscope produced significantly greater color differences surrounding atrophy and intestinal metaplasia in H. pylori-eradicated patients compared with WLI.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Iacucci, Marietta, Federica Furfaro, Takayuki Matsumoto, Toshio Uraoka, Samuel Smith, Subrata Ghosh, and Ralf Kiesslich. "Advanced endoscopic techniques in the assessment of inflammatory bowel disease: new technology, new era." Gut 68, no. 3 (December 22, 2018): 562–72. http://dx.doi.org/10.1136/gutjnl-2017-315235.

Повний текст джерела
Анотація:
Endoscopic assessment of inflammation and mucosal healing is crucial for appropriate management in IBD. Current definition of endoscopic mucosal healing has been derived using previous generation of standard white light endoscopes. New endoscopy technologies widely available provide much more detailed images of mucosal and vascular patterns. Novel endoscopic techniques with high definition image, optical and digital enhancement have enhanced the quality and fine details of vascular and mucosal pattern so that endoscopic images have started to reflect histological changes for lesions and inflammation/healing. These technologies can now define subtle inflammatory changes and increase detection and characterisation of colonic lesions in patients with IBD. The best endoscopic technique to detect dysplasia in IBD is still debated. Dye chromoendoscopy with targeted biopsies is considered by Surveillance for Colorectal Endoscopic Neoplasia Detection and Management in inflammatory Bowel Disease Patients: International Consensus Recommendations (SCENIC consensus the standard of care and recommended for adoption by gastroenterologists in practice. In future, it is possible that well-trained colonoscopists using high definition equipment with image enhancements may be able to obtain equivalent yield without pan-colonic dye spraying and characterise lesions. Finally, SCENIC introduced endoscopic resectability of some dysplastic colonic lesions—new techniques may now better characterise endoscopic resectability and limit the number of colectomies. In this review, we will provide a state-of-the-art opinion on the direction of technological advances in the assessment of IBD and how new concepts will refine clinical practice.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Endoscopic image"

1

Lotfy, M. Y. "Stereoscopic image feature matching during endoscopic procedure." Thesis, Boston, USA, 2020. http://openarchive.nure.ua/handle/document/11836.

Повний текст джерела
Анотація:
This research work describes of the developed software of endoscopic images processing. Calculating pairs of corresponding points, which in the future can be used for three-dimensional reconstruction, was conducted. The number of points for each frame is not large enough, so the 3D reconstruction should use the entire video stream. To increase the number of points should also conduct a study on setting the parameters of the detector. The study tested the stage of finding matches on stereo pairs of endoscopic images.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sdiri, Bilel. "2D/3D Endoscopic image enhancement and analysis for video guided surgery." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCD030.

Повний текст джерела
Анотація:
Grâce à l’évolution des procédés de diagnostiques médicaux et les développements technologiques, la chirurgie mini-invasive a fait des progrès remarquables au cours des dernières décennies surtout avec l’innovation de nouveaux outils médicaux tels que les systèmes chirurgicaux robotisés et les caméras endoscopiques sans fil. Cependant, ces techniques souffrent de quelques limitations liées essentiellement l’environnement endoscopique telles que la non uniformité de l’éclairage, les réflexions spéculaires des tissus humides, le faible contraste/netteté et le flou dû aux mouvements du chirurgien et du patient (i.e. la respiration). La correction de ces dégradations repose sur des critères de qualité d’image subjective et objective dans le contexte médical. Il est primordial de développer des solutions d’amélioration de la qualité perceptuelle des images acquises par endoscopie 3D. Ces solutions peuvent servir plus particulièrement dans l’étape d’extraction de points d’intérêts pour la reconstruction 3D des organes, qui sert à la planification de certaines opérations chirurgicales. C’est dans cette optique que cette thèse aborde le problème de la qualité des images endoscopiques en proposant de nouvelles méthodes d’analyse et de rehaussement de contraste des images endoscopiques 2D et 3D.Pour la détection et la classification automatique des anomalies tissulaires pour le diagnostic des maladies du tractus gastro-intestinal, nous avons proposé une méthode de rehaussement de contraste local et global des images endoscopiques 2D classiques et pour l’endoscopie capsulaire sans fil.La méthode proposée améliore la visibilité des structures locales fines et des détails de tissus. Ce prétraitement a permis de faciliter le processus de détection des points caractéristiques et d’améliorer le taux de classification automatique des tissus néoplasiques et tumeurs bénignes. Les méthodes développées exploitent également la propriété d’attention visuelle et de perception de relief en stéréovision. Dans ce contexte, nous avons proposé une technique adaptative d’amélioration de la qualité des images stéréo endoscopiques combinant l’information de profondeur et les contours des tissues. Pour rendre la méthode plus efficace et adaptée aux images 3Dl e rehaussement de contraste est ajusté en fonction des caractéristiques locales de l’image et du niveau de profondeur dans la scène tout en contrôlant le traitement inter-vues par un modèle de perception binoculaire.Un test subjectif a été mené pour évaluer la performance de l’algorithme proposé en termes de qualité visuelle des images générées par des observateurs experts et non experts dont les scores ont démontré l’efficacité de notre technique 3D d’amélioration du contraste. Dans cette même optique,nous avons développé une autre technique de rehaussement du contraste des images endoscopiques stéréo basée sur la décomposition en ondelettes.Ce qui offre la possibilité d’effectuer un traitement multi-échelle et d’opérer une traitement sélectif. Le schéma proposé repose sur un traitement stéréo qui exploite à la fois l’informations de profondeur et les redondances intervues,ainsi que certaines propriétés du système visuel humain, notamment la sensibilité au contraste et à la rivalité/combinaison binoculaire. La qualité visuelle des images traitées et les mesures de qualité objective démontrent l’efficacité de notre méthode qui ajuste l’éclairage des images dans les régions sombres et saturées et accentue la visibilité des détails liés aux vaisseaux sanguins et les textures de tissues
Minimally invasive surgery has made remarkable progress in the last decades and became a very popular diagnosis and treatment tool, especially with the rapid medical and technological advances leading to innovative new tools such as robotic surgical systems and wireless capsule endoscopy. Due to the intrinsic characteristics of the endoscopic environment including dynamic illumination conditions and moist tissues with high reflectance, endoscopic images suffer often from several degradations such as large dark regions,with low contrast and sharpness, and many artifacts such as specular reflections and blur. These challenges together with the introduction of three dimensional(3D) imaging surgical systems have prompted the question of endoscopic images quality, which needs to be enhanced. The latter process aims either to provide the surgeons/doctors with a better visual feedback or improve the outcomes of some subsequent tasks such as features extraction for 3D organ reconstruction and registration. This thesis addresses the problem of endoscopic image quality enhancement by proposing novel enhancement techniques for both two-dimensional (2D) and stereo (i.e. 3D)endoscopic images.In the context of automatic tissue abnormality detection and classification for gastro-intestinal tract disease diagnosis, we proposed a pre-processing enhancement method for 2D endoscopic images and wireless capsule endoscopy improving both local and global contrast. The proposed method expose inner subtle structures and tissues details, which improves the features detection process and the automatic classification rate of neoplastic,non-neoplastic and inflammatory tissues. Inspired by binocular vision attention features of the human visual system, we proposed in another workan adaptive enhancement technique for stereo endoscopic images combining depth and edginess information. The adaptability of the proposed method consists in adjusting the enhancement to both local image activity and depth level within the scene while controlling the interview difference using abinocular perception model. A subjective experiment was conducted to evaluate the performance of the proposed algorithm in terms of visual qualityby both expert and non-expert observers whose scores demonstrated the efficiency of our 3D contrast enhancement technique. In the same scope, we resort in another recent stereo endoscopic image enhancement work to the wavelet domain to target the enhancement towards specific image components using the multiscale representation and the efficient space-frequency localization property. The proposed joint enhancement methods rely on cross-view processing and depth information, for both the wavelet decomposition and the enhancement steps, to exploit the inter-view redundancies together with perceptual human visual system properties related to contrast sensitivity and binocular combination and rivalry. The visual qualityof the processed images and objective assessment metrics demonstrate the efficiency of our joint stereo enhancement in adjusting the image illuminationin both dark and saturated regions and emphasizing local image details such as fine veins and micro vessels, compared to other endoscopic enhancement techniques for 2D and 3D images
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Erian, Mark. "Contributions to the practice of endoscopic surgery in gynaecology : based on personal published work 1990-2005 /." [St. Lucia, Qld.], 2006. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19784.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Welge, Weston A., and Jennifer K. Barton. "In vivo endoscopic Doppler optical coherence tomography imaging of the colon." WILEY, 2017. http://hdl.handle.net/10150/623988.

Повний текст джерела
Анотація:
Background and ObjectiveColorectal cancer (CRC) remains the second deadliest cancer in the United States. Several screening methods exist; however, detection of small polyps remains a challenge. Optical coherence tomography (OCT) has been demonstrated to be capable of detecting lesions as small as 1mm in the mouse colon, but detection is based on measuring a doubling of the mucosa thickness. The colon microvasculature may be an attractive biomarker of early tumor development because tumor vessels are characterized by irregular structure and dysfunction. Our goal was to develop an endoscopic method of detecting and segmenting colon vessels using Doppler OCT to enable future studies for improving early detection and development of novel chemopreventive agents. MethodWe conducted in vivo colon imaging in an azoxymethane (AOM)-treated mouse model of colorectal cancer using a miniature endoscope and a swept-source OCT system at 1,040nm with a 16kHz sweep rate. We applied the Kasai autocorrelation algorithm to laterally oversampled OCT B-scans to resolve vascular flow in the mucosa and submucosa. Vessels were segmented by applying a series of image processing steps: (i) intensity thresholding; (ii) two-dimensional matched filtering; and (iii) histogram segmentation. ResultsWe observed differences in the vessels sizes and spatial distribution in a mature adenoma compared to surrounding undiseased tissue and compared the results with histology. We also imaged flow in four young mice (two AOM-treated and two control) showing no significant differences, which is expected so early after carcinogen exposure. We also present flow images of adenoma in a living mouse and a euthanized mouse to demonstrate that no flow is detected after euthanasia. ConclusionWe present, to the best of our knowledge, the first Doppler OCT images of in vivo mouse colon collected with a fiber-based endoscope. We also describe a fast and robust image processing method for segmenting vessels in the colon. These results suggest that Doppler OCT is a promising imaging modality for vascular imaging in the colon that requires no exogenous contrast agents.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chen, Min Si. "Calibration and registration of an image enhanced surgical navigation system for endoscopic sinus surgery." Thesis, University of East Anglia, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.439900.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Phan, Tan Binh. "On the 3D hollow organ cartography using 2D endoscopic images." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0135.

Повний текст джерела
Анотація:
Les algorithmes de « Structure from motion » (SfM, structure reconstituée à l’aide du mouvement) représentent un moyen efficace de construction de surfaces 3D étendues à partir des images d'une scène acquise sous différents points de vue. Ces algorithmes déterminent simultanément le mouvement de la caméra et un nuage de points 3D se trouvant à la surface des objets à reconstruire. Les algorithmes SfM classiques utilisent des méthodes de détection et de mise en correspondance de points caractéristiques pour poursuivre les points homologues à travers les séquences d'images, chaque ensemble de points homologues correspondant à un point 3D à reconstruire. Les algorithmes SfM exploitent les correspondances entre des points homologues pour trouver la structure 3D de la scène et les poses successives de la caméra dans un repère monde arbitraire. Il existe différents algorithmes SfM de référence qui peuvent reconstruire efficacement différents types de scènes lorsque les images comportent suffisamment de textures ou de structures. Cependant, la plupart des solutions existantes ne sont pas appropriées, ou du moins pas optimales, lorsque les séquences d'images contiennent peu de textures. Cette thèse propose deux solutions de type SfM basées sur un flot optique dense pour reconstruire des scènes complexes à partir d’une séquence d’images avec peu de textures et acquises sous des conditions d'éclairage changeantes. Il est notamment montré comment un flot optique précis peut être utilisé de manière optimale grâce à une stratégie de sélection d'images qui maximise le nombre et la taille des groupes de points homologues tout en minimisant les erreurs de localisation des points homologues. La précision des méthodes de cartographie 3D est évaluée sur des fantômes avec des dimensions connues. L’intérêt et la robustesse des méthodes sont démontrés sur des scènes médicales complexes en utilisant un jeu de valeurs constantes pour les paramètres des algorithmes. Les solutions proposées ont permis de reconstruire des organes observés dans différents examens (surface épithéliale de la paroi interne de l'estomac, surface épithéliale interne de la vessie et surface de la peau en dermatologie) et dans diverses modalités (lumière blanche pour tous les examens, lumière vert-bleu en gastroscopie et fluorescence en cystoscopie)
Structure from motion (SfM) algorithms represent an efficient means to construct extended 3D surfaces using images of a scene acquired from different viewpoints. SfM methods simultaneously determine the camera motion and a 3D point cloud lying on the surfaces to be recovered. Classical SfM algorithms use feature point detection and matching methods to track homologous points across the image sequences, each point track corresponding to a 3D point to be reconstructed. The SfM algorithms exploit the correspondences between homologous points to recover the 3D scene structure and the successive camera poses in an arbitrary world coordinate system. There exist different state-of-the-art SfM algorithms which can efficiently reconstruct different types of scenes, under the condition that the images include enough textures or structures. However, most of the existing solutions are inappropriate, or at least not optimal, when the sequences of images are without or only with few textures. This thesis proposes two dense optical flow (DOF)-based SfM solutions to reconstruct complex scenes using images with few textures and acquired under changing illumination conditions. It is notably shown how accurate DOF fields can be optimally used due to an image selection strategy which both maximizes the number and size of homologous point sets, and minimizes the errors in the homologous point localization. The accuracy of the proposed 3D cartography methods is assessed on phantoms with known dimensions. The robustness and the interest of the proposed methods are demonstrated on various complex medical scenes using a constant algorithm parameter set. The proposed solutions reconstructed organs seen in different medical examinations (epithelial surface of the inner stomach wall, inner epithelial bladder surface, and the skin surface in dermatology) and various imaging modalities (white light for all examinations, green-blue light in gastroscopy and fluorescence in cystoscopy)
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Matthias, Steffen Felix [Verfasser]. "A flexible endoscopic structured light 3-D sensor: Design, models and image processing / Steffen Felix Matthias." Garbsen : TEWISS - Technik und Wissen GmbH, 2019. http://d-nb.info/1187277967/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Matthias, Steffen [Verfasser]. "A flexible endoscopic structured light 3-D sensor: Design, models and image processing / Steffen Felix Matthias." Garbsen : TEWISS - Technik und Wissen GmbH, 2019. http://nbn-resolving.de/urn:nbn:de:101:1-2019052812071833963147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cabras, Paolo. "3D Pose estimation of continuously deformable instruments in robotic endoscopic surgery." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAD007/document.

Повний текст джерела
Анотація:
Connaître la position 3D d’instruments robotisés peut être très utile dans le contexte chirurgical. Nous proposons deux méthodes automatiques pour déduire la pose 3D d’un instrument avec une unique section pliable et équipé avec des marqueurs colorés, en utilisant uniquement les images fournies par la caméra monoculaire incorporée dans l'endoscope. Une méthode basée sur les graphes permet segmenter les marqueurs et leurs coins apparents sont extraits en détectant la transition de couleur le long des courbes de Bézier qui modélisent les points du bord. Ces primitives sont utilisées pour estimer la pose 3D de l'instrument en utilisant un modèle adaptatif qui prend en compte les jeux mécaniques du système. Pour éviter les limites de cette approche dérivants des incertitudes sur le modèle géométrique, la fonction image-position-3D peut être appris selon un ensemble d’entrainement. Deux techniques ont été étudiées et améliorées : réseau des fonctions à base radiale avec noyaux gaussiens et une régression localement pondérée. Les méthodes proposées sont validées sur une cellule expérimentale robotique et sur des séquences in-vivo
Knowing the 3D position of robotized instruments can be useful in surgical context for e.g. their automatic control or gesture guidance. We propose two methods to infer the 3D pose of a single bending section instrument equipped with colored markers using only the images provided by the monocular camera embedded in the endoscope. A graph-based method is used to segment the markers. Their corners are extracted by detecting color transitions along Bézier curves fitted on edge points. These features are used to estimate the 3D pose of the instrument using an adaptive model that takes into account the mechanical plays of the system. Since this method can be affected by model uncertainties, the image-to-3d function can be learned according to a training set. We opted for two techniques that have been improved : Radial Basis Function Network with Gaussian kernel and Locally Weighted Projection. The proposed methods are validated on a robotic experimental cell and in in-vivo sequences
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kang, Wei. "3-D Volumetric Optical Coherence Tomography Imaging and Image Analysis of Barrett's Esophagus." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1301501584.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Endoscopic image"

1

Peters, Terry M. Image-Guided Interventions: Technology and Applications. Boston, MA: Springer Science+Business Media, LLC, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Andersson, Pehr. The role of visual-spatial ability and working memory in image guided simulator performance. Umeå, Sweden: Umeå University, Department of Psychology, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Andersson, Pehr. The role of visual-spatial ability and working memory in image guided simulator performance. Umeå, Sweden: Umeå University, Department of Psychology, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

G, Bohorfoush Anthony, ed. Interpretation of ERCP: With associated digital imaging correlation. Philadelphia: Lippincott-Raven, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cardoso, M. Jorge, Tal Arbel, Xiongbiao Luo, Stefan Wesarg, Tobias Reichl, Miguel Ángel González Ballester, Jonathan McLeod, et al., eds. Computer Assisted and Robotic Endoscopy and Clinical Image-Based Procedures. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67543-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Stoyanov, Danail, Zeike Taylor, Duygu Sarikaya, Jonathan McLeod, Miguel Angel González Ballester, Noel C. F. Codella, Anne Martel, et al., eds. OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01201-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Veterinary image-guided interventions. Ames, Iowa: John Wiley & Sons Inc., 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Russo, Robert J. Intravascular ultrasound pocket guide. 7th ed. Sudbury, Mass: Jones and Bartlett Publishers, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

V, D'Amico Anthony, Loeffler Jay S, and Harris Jay R, eds. Image-guided diagnosis and treatment of cancer. Totowa, N.J: Humana Press, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

(Editor), Anthony V. DAmico, Jay S. Loeffler (Editor), and Jay R. Harris (Editor), eds. Image-Guided Diagnosis and Treatment of Cancer. Humana Press, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Endoscopic image"

1

Yañez, Carlos. "Computer image guided endoscopic surgery." In Endoscopic Sinus Surgery, 97–106. Vienna: Springer Vienna, 2003. http://dx.doi.org/10.1007/978-3-7091-6063-3_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kübler, C., J. Raczkowsky, and H. Wörn. "Endoscopic Robots." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2000, 949–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-540-40899-4_98.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lehr, H., R. Dreyer genannt Daweke, and S. Schrader. "Image Focusing in Endoscopic Systems." In IFMBE Proceedings, 87–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03906-5_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Höller, Kurt, Jochen Penne, Armin Schneider, Jasper Jahn, Javier Guttiérrez Boronat, Thomas Wittenberg, Hubertus Feußner, and Joachim Hornegger. "Endoscopic Orientation Correction." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009, 459–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04268-3_57.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Atasoy, Selen, Diana Mateus, Joe Lallemand, Alexander Meining, Guang-Zhong Yang, and Nassir Navab. "Endoscopic Video Manifolds." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010, 437–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15745-5_54.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jamlee Ludes, B., and Suresh R. Norman. "Enhancement of Endoscopic Image Using TV-Image Decomposition." In Proceedings of the International Conference on Soft Computing Systems, 67–75. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2671-0_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Selka, F., V. Agnus, S. Nicolau, A. Bessaid, L. Soler, J. Marescaux, and M. Diana. "Fluorescence-Based Enhanced Reality for Colorectal Endoscopic Surgery." In Biomedical Image Registration, 114–23. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08554-8_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Deshmukh, Amarsinh, Kapil Mundada, and Pramod Kanjalkar. "Endoscopic Image Enhancement Using Blind Denoising." In Lecture Notes in Networks and Systems, 239–50. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3812-9_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Seshamani, Sharmishtaa, William Lau, and Gregory Hager. "Real-Time Endoscopic Mosaicking." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006, 355–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11866565_44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Berent, Allyson. "Endoscopic Retrograde Cholangiopancreatography (ERCP) and Biliary Stent Placement." In Veterinary Image-Guided Interventions, 247–55. Oxford: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118910924.ch24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Endoscopic image"

1

Poduval, Radhika K., David O. Otuya, Shoumik Lodh, Seth Judson, Darina Postupaka, Abigail L. Gregg, and Guillermo J. Tearney. "OCT image guidance for gastrointestinal endoscopic cryobiopsy." In Endoscopic Microscopy XVII, edited by Melissa J. Suter, Guillermo J. Tearney, and Thomas D. Wang. SPIE, 2022. http://dx.doi.org/10.1117/12.2612714.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Atuegwu, Nkiruka C., Louise Mawn, and Robert Galloway. "Transorbital Endoscopic Image Guidance." In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4353380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Behrens, Alexander, Michael Bommes, Sebastian Gross, and Til Aach. "Image quality assessment of endoscopic panorama images." In 2011 18th IEEE International Conference on Image Processing (ICIP 2011). IEEE, 2011. http://dx.doi.org/10.1109/icip.2011.6116325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kim, Hyung-Jin, Kwan Jun Park, Taeseok D. Yang, Wonshik Choi, Beop-Min Kim, and Youngwoon Choi. "High-resolution image reconstruction for GRIN rod lens probe (Conference Presentation)." In Endoscopic Microscopy XII, edited by Guillermo J. Tearney and Thomas D. Wang. SPIE, 2017. http://dx.doi.org/10.1117/12.2251768.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Caravaca Mora, Oscar, Maxime Abah, Lucile Heroin, Guiqiu Liao, Zhongkai Zhang, Philippe Zanne, Benoit Rosa, et al. "OCT image-guidance of needle injection for robotized flexible interventional endoscopy." In Endoscopic Microscopy XVI, edited by Melissa J. Suter, Guillermo J. Tearney, and Thomas D. Wang. SPIE, 2021. http://dx.doi.org/10.1117/12.2576186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liao, Guiqiu, Beatriz B. Farola Barata, Oscar Caravaca Mora, Philippe Zanne, Benoit Rosa, Diego Dall’Alba, Paolo Fiorini, Michel de Mathelin, Florent Nageotte, and Michalina J. Gora. "Coordinates encoding networks: an image segmentation architecture for side-viewing catheters." In Endoscopic Microscopy XVII, edited by Melissa J. Suter, Guillermo J. Tearney, and Thomas D. Wang. SPIE, 2022. http://dx.doi.org/10.1117/12.2608993.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lang, Ryan, Jacob Tatz, Eric Kercher, Dana Brooks, and Bryan Spring. "Micro-image mosaicking for video-rate multi-channel fluorescence microendoscopy (Conference Presentation)." In Endoscopic Microscopy XIV, edited by Melissa J. Suter, Guillermo J. Tearney, and Thomas D. Wang. SPIE, 2019. http://dx.doi.org/10.1117/12.2510880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zazzarini, Cynthia C., Alberto Pansini, Pietro Cerveri, Renzo Zaltieri, and Damiano Lavizzari. "Design of a Robotic Endoscope for Mini Invasive Surgery." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47445.

Повний текст джерела
Анотація:
Natural orifice transluminal endoscopic surgery (NOTES) is a novel surgical technique which uses endoscopic tools to perform mini invasive abdominal operations through natural orifices. The main limitation for a secure use of this technique is the lack of a proper surgical device, since it is still performed by non rigid endoscopes designed for diagnostic applications. Robot Assisted Surgery is the ideal solution to perform this kind of surgical operations. This research project is a preliminary study for the design of an endoscope, with variable stiffness in effort to provide the surgeons with a device which meets specific clinical requirements. The body is composed of a series of robotic modules connected by joints capable of two different movements: an axial rotation and a longitudinal bending. The movements are servo commanded and carried out by two brushless DC electric motors and an encoder. A force sensor is mounted on each module in order to provide a haptic feedback to the surgeon. The end point of the robot is equipped with a high definition camera which is able to perform zoom, autofocus and image stabilization. Illumination is provided by a power led system. A CAN bus ensures the communication between the modules, the camera and the haptic interface.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Akons, Kfir, Adel Zeidan, Daniella Yeheskely-Hayon, Limor Minai, and Dvir Yelin. "Image-guided optical measurement of blood oxygen saturation within capillary vessels (Conference Presentation)." In Endoscopic Microscopy XI, edited by Guillermo J. Tearney and Thomas D. Wang. SPIE, 2016. http://dx.doi.org/10.1117/12.2208911.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liedlgruber, M., and A. Uhl. "Endoscopic image processing - an overview." In 2009 6th International Symposium on Image and Signal Processing and Analysis. IEEE, 2009. http://dx.doi.org/10.1109/ispa.2009.5297635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії