Добірка наукової літератури з теми "Electronic Spin - Semiconductor Structures"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Electronic Spin - Semiconductor Structures".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Electronic Spin - Semiconductor Structures"

1

Koc, Husnu, Amirullah M. Mamedov, and Ekmel Ozbay. "Electronic Structure of Conventional Slater Type Antiferromagnetic Insulators: AIrO3 (A=Sr, Ba) Perovskites." Journal of Physics: Conference Series 2315, no. 1 (July 1, 2022): 012033. http://dx.doi.org/10.1088/1742-6596/2315/1/012033.

Повний текст джерела
Анотація:
Abstract The structural, mechanical, and electronic properties of Perovskite BaIrO3 and SrIrO3 compounds based on the density functional theory (DFT) have been examined in four different structures (C2/c, R-3m, P6_3/mmc and Pm-3m) and Pnma structure, respectively. The spin polarized generalized gradient approximation has been used for modeling exchange-correlation effects. As a result of spin polarized calculations, it has been observed that BaIrO3 compound showed magnetic properties in C2/c and R-3m structures, but not in Pm-3m and P6_3/mmc structures. SrIrO3 compound also shows magnetic properties in Pnma structure. The elastic constants have been calculated using the strain-stress method and the other related quantities (the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, anisotropy factor, sound velocities, and Debye temperature) have also been estimated. In electronic band structure calculations, while Pm-3m and P6_3/mmc structures of NaIrO3 compound are metallic and semiconductor (Eg = 1.190 eV indirect), respectively, while C2/c and R-3m structures showing magnetic properties are metallic in spin down state and semiconductor (Eg=0.992 eV indirect and Eg=0.665 eV direct, respectively) in the spin up state. The Pmna structure in the SrIrO3 compound is a semiconductor in both spin states (Eg=0.701 eV “0.632 eV” indirect in the spin up “spin down”).
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Butler, W. H., X. G. Zhang, Xindong Wang, Jan van Ek, and J. M. MacLaren. "Electronic structure of FM|semiconductor|FM spin tunneling structures." Journal of Applied Physics 81, no. 8 (April 15, 1997): 5518–20. http://dx.doi.org/10.1063/1.364587.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kacman, P. "Spin interactions in diluted magnetic semiconductors and magnetic semiconductor structures." Semiconductor Science and Technology 16, no. 4 (March 2, 2001): R25—R39. http://dx.doi.org/10.1088/0268-1242/16/4/201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

POTEMSKI, MAREK. "SPECTROSCOPIC STUDIES OF SEMICONDUCTOR STRUCTURES IN MAGNETIC FIELDS." International Journal of Modern Physics B 21, no. 08n09 (April 10, 2007): 1358–61. http://dx.doi.org/10.1142/s0217979207042835.

Повний текст джерела
Анотація:
The aptitude of magneto-spectroscopic methods for studying the electronic and spin properties of semiconductor structures is demonstrated with a few examples of our recent work on two-dimensional electron gases and semiconductor quantum dots, on bulk GaAs and GaN , as well as on thin graphitic layers.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Awschalom, D. D., J. F. Smyth, N. Samarth, H. Luo, and J. K. Furdyna. "Magnetic and electronic spin dynamics in magnetic semiconductor quantum structures." Journal of Luminescence 52, no. 1-4 (June 1992): 165–74. http://dx.doi.org/10.1016/0022-2313(92)90241-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tarucha, S., D. G. Austing, S. Sasaki, Y. Tokura, J. M. Elzerman, W. van der Wiel, S. de Franseschi, and L. P. Kouwenhoven. "Spin effects in semiconductor quantum dot structures." Physica E: Low-dimensional Systems and Nanostructures 10, no. 1-3 (May 2001): 45–51. http://dx.doi.org/10.1016/s1386-9477(01)00051-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yu, Leo, H. C. Huang, and O. Voskoboynikov. "Electron spin filtering in all-semiconductor tunneling structures." Superlattices and Microstructures 34, no. 3-6 (September 2003): 547–52. http://dx.doi.org/10.1016/j.spmi.2004.03.056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Takeyama, S., H. Mino, S. Adachi, T. Stirner, W. E. Hagston, H. Yokoi, Yu G. Semenov, et al. "Photoexcited spin states in diluted magnetic semiconductor quantum structures." Physica B: Condensed Matter 294-295 (January 2001): 453–58. http://dx.doi.org/10.1016/s0921-4526(00)00698-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Biao, Dahai Xu, Jun Zhao, and Hui Zeng. "First Principles Study of Electronic and Magnetic Properties of Co-Doped Armchair Graphene Nanoribbons." Journal of Nanomaterials 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/538180.

Повний текст джерела
Анотація:
Using the first principles calculations, we have studied the atomic and electronic structures of single Co atom incorporated with divacancy in armchair graphene nanoribbon (AGNR). Our calculated results show that the Co atom embedded in AGNR gives rise to significant impacts on the band structures and the FM spin configuration is the ground state. The presence of the Co doping could introduce magnetic properties. The calculated results revealed the arising of spin gapless semiconductor characteristics with doping near the edge in both ferromagnetic (FM) and antiferromagnetic (AFM) magnetic configurations, suggesting the robustness for potential application of spintronics. Moreover, the electronic structures of the Co-doped AGNRs are strongly dependent on the doping sites and the edge configurations.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gorbatyi, I. N. "Spin hall effect in semiconductor structures with spatially inhomogeneous spin relaxation." Semiconductors 43, no. 8 (August 2009): 1002–7. http://dx.doi.org/10.1134/s1063782609080089.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Electronic Spin - Semiconductor Structures"

1

Liu, William K. "Electron spin dynamics in quantum dots, and the roles of charge transfer excited states in diluted magnetic semiconductors /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/8588.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Segarra, Ortí Carlos. "Electronic structure of quantum dots: response to the environment and externally applied fields." Doctoral thesis, Universitat Jaume I, 2016. http://hdl.handle.net/10803/396165.

Повний текст джерела
Анотація:
En esta Tesis Doctoral se han estudiado teóricamente las propiedades electrónicas y ópticas de electrones y huecos confinados en puntos cuánticos semiconductores mediante el uso del método k·p dentro de las aproximaciones de masa efectiva y de función envolvente. Para tal fin, se han desarrollado modelos computacionales capaces de describir adecuadamente la estructura electrónica de las bandas de conducción y valencia de sistemas sometidos a varios fenómenos de interés. En concreto, se ha prestado especial atención a la respuesta de estas nanoestructuras frente a interacciones con el entorno (tensiones de deformación y piezoelectricidad) y a la aplicación de campos eléctricos y magnéticos externos. Adicionalmente, se ha estudiado la relajación de espín inducida por el acoplamiento espín-órbita teniendo en cuenta todas las posibles fuentes de mezcla de espín mediante modelos tridimensionales. Por último, se ha explorado también la aparición de estados de borde en nanoestructuras formadas por MoS2 monocapa.
In this PhD Thesis we theoretically investigate the optical and electronic properties of semiconductor nanostructures by using the k·p method within the effective mass and the envelope function approximations. To this end, computational models are built to properly describe the conduction and valence bands of nanoscopic systems subject to various relevant phenomena. Particularly, we focus on quantum dots of different shape, dimensions, and composition to explore their behavior under external magnetic fields and interactions with the environment such as strain and piezoelectricity. In addition, the spin-orbit-induced relaxation of the spin degree of freedom confined in quantum dots is also studied taking into account all relevant sources of spin mixing in fully three-dimensional models. Finally, we also study the emergence of edge states in nanoribbons and quantum dots of monolayer MoS2, which is a novel two-dimensional material. The obtained results reveal several interesting features which may be useful for future applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liu, Guoduan. "Fabrication and Characterization of Planar-Structure Perovskite Solar Cells." UKnowledge, 2019. https://uknowledge.uky.edu/ece_etds/137.

Повний текст джерела
Анотація:
Currently organic-inorganic hybrid perovskite solar cells (PSCs) is one kind of promising photovoltaic technology due to low production cost, easy fabrication method and high power conversion efficiency. Charge transport layers are found to be critical for device performance and stability. A traditional electron transport layer (ETL), such as TiO2 (Titanium dioxide), is not very efficient for charge extraction at the interface. Compared with TiO2, SnO2 (Tin (IV) Oxide) possesses several advantages such as higher mobility and better energy level alignment. In addition, PSCs with planar structure can be processed at lower temperature compared to PSCs with other structures. In this thesis, planar-structure perovskite solar cells with SnO2 as the electron transport layer are fabricated. The one-step spin-coating method is employed for the fabrication. Several issues are studied such as annealing the samples in ambient air or glovebox, different concentration of solution used for the samples, the impact of using filter for solutions on samples. Finally, a reproducible fabrication procedure for planer-structure perovskite solar cells with an average power conversion efficiency of 16.8%, and a maximum power conversion efficiency of 18.1% is provided.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Oliveira, Miguel Afonso Magano Hipolito De Jesus. "Electronic properties of layered semiconductor structures." Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406392.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Moehlmann, Benjamin James. "Spin transport in strained non-magnetic zinc blende semiconductors." Diss., University of Iowa, 2012. https://ir.uiowa.edu/etd/3353.

Повний текст джерела
Анотація:
The problem of spin manipulation via the spin-orbit interaction in nonmagnetic semiconductors in the absence of magnetic fields is investigated in this work. We begin with a review of the literature on spin dynamics in semiconductors, then discuss the semi-empirical k ⋅ p method of calculating direct-gap semiconductor properties, which we use to estimate material parameters significant for manipulation of spin even in the absence of a magnetic field. The total effective magnetic fields and precession lengths are calculated for a variety of quantum well orientations, and a class of devices are proposed that will allow for all-electric arbitrary manipulation of spin orientations. The strain- and momentum-dependent spin splitting coefficient C3 has been calculated using a fourteen band Kane k⋅p model for a variety of III-V semiconductors as well as ZnSe and CdSe. It is observed that the spin-splitting parameters C3 and γ, corresponding to the strain-induced spin-orbit interaction and Dresselhaus coefficient, are sensitive to the value of the inter-band spin-orbit coupling Δ− between the p valence and p̄ second conduction band in all cases. The value of Δ− has therefore been recalculated in these materials using a tight-binding model and modern experimental values of the valence and second conduction band spin-orbit splittings. The total effective magnetic field and precession length of spins in strained quantum wells in the (001), (110), and (111) planes are derived with consideration for all known effective magnetic fields except those due to interface effects in non- common-atom heterostructures (native inversion asymmetry). The orientation of the k-linear Dresselhaus field and the strain-dependent fields vary strongly with the growth axis of the quantum well. The precession length in the (110) and (001) cases can achieve infinite anisotropy, while the precession length of (111) quantum wells is always isotropic. We find that the electronic spin rotation induced by drift transport around a closed path in a wide variety of nonmagnetic semiconductors at zero magnetic field depends solely on the physical path taken. Physical paths that produce any possible spin rotation due to transport around a closed path are constructed for electrons experiencing strain or electric fields in (001), (110), or (111)-grown zinc blende semiconductor quantum wells. Spin decoherence due to travel along the path is negligible compared to the background spin decoherence rate. The small size of the designed paths (< 100 nm scale in GaAs) may lead to applications in nanoscale spintronic circuits.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nguyen, Cong Tu. "Spin dynamics in GaN- and InGaAs-based semiconductor structures." Thesis, Toulouse, INSA, 2014. http://www.theses.fr/2014ISAT0006/document.

Повний текст джерела
Анотація:
Ce travail de thèse est une contribution à l'étude de la dynamique de spin des porteurs dans des structures semiconductrices III-V en vue d’applications possibles dans le domaine émergent de la spintronique dans les semiconducteurs. Deux approches différentes on été envisagées afin de pouvoir obtenir une polarisation en spin des porteurs longue et robuste : i) le confinement spatial dans des nano-structures 0D (boîtes quantiques), ii) l’ingénierie des centres paramagnétiques dans des couches massives.Pour la première approche, nous avons étudié les propriétés de polarisation de spin d’excitons confinés dans des boîtes quantiques de GaN/AlN insérées dans des nano-fils. Nous avons d’abord mis en évidence un taux important de polarisation de la photoluminescence (15 %) à basse température sous excitation quasi-résonante et nous avons démontré que cette polarisation est temporellement constante pendant la durée de vie des excitons. Grâce à des mesures en température, nous avons aussi démontré que cette polarisation n’est aucunement affectée jusqu’à 300 K. Nous avons aussi développé un modèle détaillé basé sur la matrice densité pour décrire le dégré de polarisation de la photoluminescence et sa dépendance angulaire.Pour la deuxième approche, nous avons réalisé un dispositif prototype de filtrage de spin basé sur l’implantation de centres paramagnétiques dans des couches massives de InGaAs. Le principe repose sur la création de défauts interstitiels paramagnétiques comme précédemment démontré dans notre groupe pour les nitrures dilués tels que GaAsN. Le but de ce travail a été le développement d’un procédé de création de ces défauts qui puisse surmonter les inconvénients liés à l’insertion de l’azote dans les semiconducteurs de type GaAs : a) la dépendance de l’efficacité du filtrage de spin avec de l’énergie de photoluminescence, b) l’impossibilité de créer des zones actives avec des motifs spécifiques.Dans ce travail, nous démontrons que des régions actives de filtre à spin peuvent être créées par implantation ionique de défauts paramagnétiques avec une densité et des motifs spatiaux prédéfinis. Grâce à des études par photoluminescence, nous avons d’une part mis en évidence des taux de recombinaison dépendant en spin pouvant aller jusqu’à 240 % dans les zones implantées. D’autre part, nous avons déterminé la dose d’implantation la plus favorable grâce à une étude systématique sur différents échantillons implantés avec des densités ioniques étendues sur quatre ordres de grandeurs. Nous avons également observé que l’application d’un champ magnétique externe produit une augmentation significative du taux de recombinaison dépendant en spin due à la polarisation en spin des noyaux implantés
This thesis work is a contribution to the investigation by photoluminescence spectroscopy of the spin properties of III-V semiconductors with possible applications to the emerging semiconductor spintronics field. Two approaches have been explored in this work to achieve a long and robust spin polarization: i) Spatial confinement of the carriers in 0D nanostructured systems (quantum dots). ii) Defect engineering of paramagnetic centres in a bulk systems. Concerning the first approach, we have investigated the polarization properties of excitons in nanowire-embedded GaN/AlN quantum dots. We first evidence a low temperature sizeable linear polarization degree of the photoluminescence (~15 %) under quasi-resonant excitation with no temporal decay during the exciton lifetime. Moreover, we demonstrate that this stable exciton spin polarization is unaffected by the temperature up to 300 K. A detailed theoretical model based on the density matrix approach has also been developed to account for the observed polarization degree and its angular dependence.Regarding the second approach, we have demonstrated a proof-of-concept of conduction band spin-filtering device based on the implantation of paramagnetic centres in InGaAs epilayers. The principle relies on the creation of Ga interstitial defects as previously demonstrated in our group in dilute nitride GaAsN compounds. The driving force behind this work has been to overcome the limitations inherent to the introduction of N in the compounds: a) The dependence of the photoluminescence energy on the spin-filtering efficiency. b) The lack of spatial patterning of the active regions.In this work we show how the spin-filtering defects can be created by ion implantation creating a chosen density and spatial distribution of gallium paramagnetic centers in N-free epilayers. We demonstrate by photoluminescence spectroscopy that spin-dependent recombination (SDR) ratios as high as 240 % can be achieved in the implanted areas. The optimum implantation conditions for the most efficient SDR are also determined by the systematic analysis of different ion doses spanning four orders of magnitude. We finally show how the application of a weak external magnetic field leads to a sizable enhancement of the SDR ratio from the spin polarization of the implanted nuclei
Стилі APA, Harvard, Vancouver, ISO та ін.
7

O'Sullivan, Eoin. "Electronic states and dynamics in semiconductor structures." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325987.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

De, Amritanand Pryor Craig E. "Spin dynamics and opto-electronic properties of some novel semiconductor systems." [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/352.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

De, Amritanand. "Spin dynamics and opto-electronic properties of some novel semiconductor systems." Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/352.

Повний текст джерела
Анотація:
A set of problems pertaining to quantum information processing in semiconductors is investigated. Two schemes for implementing electronic qubits in strong and weak three dimensional quantum confinement regimes are studied along with their related electronic properties. Recent experiments motivated us to calculate electronic properties and g factors for nanowhisker quantum dots. These calculations were done using 8 band strain dependent k.p theory on a 3D grid and are in excellent agreement with experiment. It has been observed that the growth conditions cause the nanowhiskers to crystallize in wurtzite(WZ) form instead of their stable-phase zinc-blende bulk structure. Very little is known about the WZ phase of non-nitride III-V semiconductors as they do not naturally occur. We have therefore also predicted the electronic bandstructure and optical properties of nine III-V semiconductors in the WZ phase using transferable empirical pseudopotentials. Apart from quantum dots, the spin of an electron bound to an atomic impurity is an attractive candidate for quantum information processing as they do not suffer from structural uncertainties. This makes spin of an electron bound to a hydrogenic impurity an attractive candidate for a qubit as it possess the biggest radii of any ionic bound states in the solid and is a natural two state system. We have calculated the electric and magnetic field dependent modulation of the g tensor for a single Silicon donor embedded in a GaAs substrate. The spin dynamics of the weakly bound electron exhibits an unusual nonlinear behavior, which is not seen in structures with strong quantum confinement such as quantum dots.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Birkett, M. J. "Opto-electronic studies of semiconductor tunnelling structures and quantum wells." Thesis, University of Sheffield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Electronic Spin - Semiconductor Structures"

1

Ihn, Thomas. Electronic Quantum Transport in Mesoscopic Semiconductor Structures. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/b97630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Electron spin resonance and related phenomena in low-dimensional structures. Berlin: Springer, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chamberlain, J. M. Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures. Boston, MA: Springer US, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

NATO, Advanced Study Institute on Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures (1989 Castéra-Verduzan France). Electronic properties of multilayers and low-dimensional semiconductor structures. New York: Plenum Press, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chamberlain, J. M., Laurence Eaves, and Jean-Claude Portal, eds. Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-7412-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bechstedt, Friedhelm. Semiconductor surfaces and interfaces: Their atomic and electronic structures. Berlin: Akademie-Verlag, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Winkler, Roland. Spin-orbit coupling effects in two-dimensional electron and hole systems. Berlin: Springer, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kanazawa, Naoya. Charge and Heat Transport Phenomena in Electronic and Spin Structures in B20-type Compounds. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55660-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hemment, P. L. F., Denis Flandre, and A. N. Nazarov. Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment: Proceedings of the NATO Advanced Research Workshop on Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment Kiev, Ukraine 2630 April 2004 00. Dordrecht: Kluwer Academic Publishers, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

The globalisation of high technology production: Society, space, and semiconductors in the restructuring of the modern world. London: Routledge, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Electronic Spin - Semiconductor Structures"

1

Berg, A., and K. Klitzing. "Electron Spin Resonance and Nuclear Spin Relaxation in GaAs/AlgaAs Heterostructures." In Optical Phenomena in Semiconductor Structures of Reduced Dimensions, 3–11. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1912-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Meisels, R., I. Kulaç, G. Sundaram, F. Kuchar, B. D. Mccombe, G. Weimann, and W. Schlapp. "Electron Spin Resonance in the Domain of the Fractional Quantum Hall Effect." In Quantum Transport in Semiconductor Submicron Structures, 375–81. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1760-6_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sham, L. J. "Electronic Properties in Semiconductor Heterostructures." In Physics of Low-Dimensional Semiconductor Structures, 1–56. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-2415-5_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pepper, M. "Ballistic Electronic Transport in Semiconductor Structures." In Recent Progress in Many-Body Theories, 251–59. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-3798-4_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Reed, M. A. "Vertical Electronic Transport in Semiconductor Nanostructures." In Physics and Technology of Submicron Structures, 64–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83431-8_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Grundler, Dirk, Toru Matsuyama, and Claas Henrik Möller. "Spin Injection in Ferromagnet/ Semiconductor Hybrid Structures." In Advances in Solid State Physics, 443–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44838-9_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Heedt, S., I. Wehrmann, K. Weis, R. Calarco, H. Hardtdegen, D. Grützmacher, Th Schäpers, C. Morgan, and D. E. Bürgler. "Toward Spin Electronic Devices Based on Semiconductor Nanowires." In Future Trends in Microelectronics, 328–39. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118678107.ch25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ohnishi, S., S. Saito, C. Satoko, and S. Sugano. "Atomic and Electronic Structures of Semiconductor Clusters." In Physics and Chemistry of Small Clusters, 235–47. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-0357-3_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nakayama, T., and M. Murayama. "Electronic Structures of Hetero-Crystalline Semiconductor Superlattices." In Springer Proceedings in Physics, 29–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84821-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Beltram, F., and F. Capasso. "Artificial Semiconductor Structures: Electronic Properties and Device Applications." In Physics of Low-Dimensional Semiconductor Structures, 539–75. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-2415-5_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Electronic Spin - Semiconductor Structures"

1

Tackeuchi, Atsushi. "Electron spin flip in III-V semiconductor quantum confined structures." In Integrated Optoelectronics Devices, edited by Kong-Thon F. Tsen, Jin-Joo Song, and Hongxing Jiang. SPIE, 2003. http://dx.doi.org/10.1117/12.475702.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chernyshov, N. N., A. V. Belousov, and A. G. Grebenik. "Spin-Dependent Tunneling in Semiconductor Structures Without an Inversion Center." In 2019 International Seminar on Electron Devices Design and Production (SED). IEEE, 2019. http://dx.doi.org/10.1109/sed.2019.8798431.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Levy, J., V. Nikitin, J. M. Kikkawa, D. D. Awschalom, R. Garcia, and N. Samarath. "Femtosecond Near-field Spin Spectroscopy in Digital Magnetic Heterostructures." In Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/qo.1995.qwa1.

Повний текст джерела
Анотація:
The nature of electronic spin-scattering is central to a wide class of condensed matter systems, ranging from semiconductor quantum wells, magnetic multilayers and granular materials, high-Tc superconductors, Kondo insulators, and magnetic semiconductor quantum structures. The latter class of systems is particularly appealing because one can tailor both the electronic and magnetic properties using MBE techniques. Time-resolved spectroscopies allow one to probe both the electronic and magnetic dynamics within ultrafast timescales, but spatial information is typically diffraction-limited to the wavelength of light. Near-field scanning optical microscopy (NSOM) [1] overcomes this limit, and when combined with femtosecond time resolution and polarization analysis, provides direct information regarding carrier and spin dynamics in both space and time.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yablonovitch, E. "Photonic band structure: observation of an energy gap for light in 3-D periodic dielectric structures." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.fw6.

Повний текст джерела
Анотація:
By analogy to electron waves in a crystal, light waves in a 3-D periodic dielectric structure should be described by band theory. Recently, the idea of photonic band structure1 has been introduced. This means that the concepts of reciprocal space, Brillouin zones, dispersion relations, Bloch wave functions, Van Hove singularities, etc. must now be applied to optical waves. If the depth of index of refraction modulation is sufficient, a photonic band gap can exist. This is an energy band in which optical modes, spontaneous emission, and zero point fluctuations are all absent. Therefore, inhibited spontaneous emission can now begin to play a role in a semiconductors and solid-state electronics. It makes sense then to speak of photonic band structure and of a photonic reciprocal space, which has a Brillouin zone ~1000 times smaller than the Brillouin zone of the electrons. If the dielectric constant is periodically modulated in all three dimensions, it is possible to have a photonic band gap which overlaps the electronic band edge and for spontaneous electron-hole recombination to be rigorously forbidden. Indeed the photonic band gap is essentially ideal since the dielectric response can be real and dissipationless. It is interesting that the most natural real space structure for the optical medium is face centered cubic (fee), which is also the most famous atomic arrangement in crystals. The comparison between electronic and photonic band structure is revealing: (a) The underlying dispersion relation for electrons is parabolic, while that for photons is linear. (b) The angular momentum of electrons is 1/2, but the scalar wave approximation is frequently made; in contrast, photons have spin 1 and the vector wave character will likely play a major role in the band structure. (c) The band theory of electrons is only an approximation due to electron-electron repulsion, while photonic band theory is essentially exact since photon interactions are negligible.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Riblet, P., AR Cameron, and A. Miller. "Spin-Gratings and In-Well Carrier Transport Measurements in GaAs/AlGaAs Multiple Quantum Wells." In Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/qo.1997.qthe.3.

Повний текст джерела
Анотація:
We have recently demonstrated [1] that transient electron spin gratings created by cross-polarised excitation pulses at a wavelength resonant with the heavy hole exciton, can provide a new and unique way of measuring in-well electron drift mobilities in semiconductor multiple quantum well structures. This compares with the usual transient grating method in which only the ambipolar diffusion coefficient can be determined [2]. A comparison of concentration and spin grating decay rates allows the direct measurement of both the electron and hole drift mobilities in the same sample. In this work we extend these measurements to GaAs/AlGaAs multiple quantum wells with different well widths and compare results obtained under conditions of exciton saturation and broadening.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Akimoto, R., K. Ando, F. Sasaki, S. Kobayashi, and T. Tani. "Femtosecond Carrier Spin Dynamics in CdTe/Cd0.6Mn0.4Te Quantum Wells." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.tue.38.

Повний текст джерела
Анотація:
In recent years, many interests are focused on the spin relaxation in the semiconductor hetero structures such as the quantum wells, since the spin relaxation time is much faster than the carrier life time. In the quantum wells, the degeneracy between the heavy hole and the light hole excitons is lifted, so that the one spin state in the conduction- and valence-band state can be excited selectively by the circularly polarized light. In the previous study of the spin relaxation in the quantum wells, the pump-probe using the circular polarization where the wavelength of the pump and the prove are the same and resonant with the heavy hole exciton[1-4], or the time-resolved luminescence measurement where the heavy hole exciton is excited resonantly by the circularly polarized pulse, and the decay of the circular polarization in the luminescence is measured[5-9], have been employed. In both cases of the measurements for the undoped quantum wells, the spin relaxation of the heavy hole exciton is contributed to both the electron spin relaxation and the heavy hole spin relaxation, simultaneously. A possible way to isolate the electron spin relaxation from the heavy hole relaxation in GaAs/AlGaAs quantum wells, is to use the p-doped quantum wells for the electron spin relaxation and the n-doped one for the heavy hole spin relaxation[9]. However, the doped quantum wells may be quite different from undoped quantum wells in the spin relaxation mechanism such as carrier-impurity scattering, the Coulomb screening of the carriers and so on. Therefore, here, we present an approach to measure the electron spin relaxation separately from the heavy hole one in the undoped quantum wells by the measurement of the femtosecond time-resolved circular dichroic spectrum. The present pump-probe method has the unconventional configuration in the absorption saturation measured from unoccupied light hole (lh) spin state and occupied heavy hole (hh) spin state simultaneously using the circularly polarized probe pulse with the continuum spectrum. The sample used in our experiments is CdTe/Cd0.6Mn0.4Te quantum wells, where the sp-d exchange interaction between the carrier spin in the well and the Mn ion spin in the barrier can be controlled by the confinement degree of the carrier wave function and we can examine the effect of the sp-d exchange interaction on the carrier spin relaxation.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Oestreich, M., S. Hallstein, R. Nötzel, K. Ploog, E. Bauser, W. W. Rühle, and K. Köhler. "Spin quantum beats in bulk and low dimensional semiconductors." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.wc.5.

Повний текст джерела
Анотація:
The electron Landé g factor is one of the basic parameters in semiconductors which de scribes the magnitude of the Zeeman splitting of electronic states in magnetic fields. Since various theoretical models predict the value of g, accurate measurements of g provide a sensitive test of different band structure calculations. A recently introduced experimental technique enables the measurement of the electron g factor g* with high accuracy by spin quantum beats. [1] The technique proves to be feasible to measure various effects as the anisotropy of g* in quantum wires,[2] the dependence of g* on quantum well thickness,[3] and the temperature dependence of g* in bulk GaAs up to room temperature. [4, 5] The temperature dependent spin quantum beat experiments show interesting discrepancies between experiment and a well accepted five-band k→⋅p→ theory model.[4]
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nestoklon, M. O., S. A. Tarasenko, J. M. Jancu, and P. Voisin. "Spin structure of electron subbands in (110)-grown quantum wells." In THE PHYSICS OF SEMICONDUCTORS: Proceedings of the 31st International Conference on the Physics of Semiconductors (ICPS) 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4848439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, T., X. H. Zhang, X. Huang, Y. G. Zhu, L. F. Han, X. J. Shang, Z. C. Niu, Jisoon Ihm, and Hyeonsik Cheong. "Electron and Hole Spin Relaxation in InAs Quantum Dots and Quasi-2D Structure." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666577.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chernyshov, N. N., A. V. Belousov, I. N. Gvozdevskiy, N. I. Slipchenko, Khansaa A. Ghazi, and M. A. F. Alkhawaldeh. "Spin Resonance in a Semiconductor Structure in Quantizing Magnetic Field." In 2019 International Seminar on Electron Devices Design and Production (SED). IEEE, 2019. http://dx.doi.org/10.1109/sed.2019.8798465.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Electronic Spin - Semiconductor Structures"

1

Hadjipanayis, George, and Alexander Gabay. Electronic Structure and Spin Correlations in Novel Magnetic Structures. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1797990.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rudin, Sergey, Gregory Garrett, and Vladimir Malinovsky. Coherent Optical Control of Electronic Excitations in Wide-Band-Gap Semiconductor Structures. Fort Belvoir, VA: Defense Technical Information Center, May 2015. http://dx.doi.org/10.21236/ada620146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bandyopadhyay, Supriyo, Hadis Morkoc, Alison Baski, and Shiv Khanna. Self Assembled Semiconductor Quantum Dots for Spin Based All Optical and Electronic Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada483818.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії